

Implementing a Frequency Scaling Algorithm for
iPAQ H3975
(Final Report)

CSC 714

Prof. Frank Mueller

 Prakash Ramrakhyani
Mark Wah

Benjamin Welch

Implementing a Frequency Scaling Algorithm for iPAQ H3975

 1

Table of Contents

1) Introduction
2) Detailed Progress Report and Contribution
3) Results
4) Conclusion
5) Future Work
6) Project Homepage
7) References

1) Introduction

In the world of computing today there is a great need for low power general-purpose processors.
This is evident by the number of battery-operated devices in use. Support for energy awareness
comes in two flavors: (1) hardware-driven or (2) software-driven. In our research we plan to focus
on a software-driven approach. More specifically, we plan to study the benefits of a dynamic
voltage-scaling (DVS) algorithm. A brief overview of the project is presented next.

Currently, there is much research focusing on this topic as listed on the References section. Most of
them present algorithms and test results on homegrown systems or open systems environments. This
project aims at implementing some of the solutions on a commercial embedded device in a simulated
environment.

We propose to implement the chosen DVS algorithm via a simulated task scheduler on Windows CE
3.0.

2) Detailed Progress Report and Contribution

a) Simulation vs Device Driver approach

Description: After researching the methodology of implementing the DVS algorithm we
have found some obstacles with the device driver approach. In the end, we chose a
simulation approach instead.

Problem(s): Writing a device driver requires more hardware and software support. Platform
Builder 3.0 is the software needed to write the device driver for Windows CE 3.0. Other than
that, there is very little support for the relatively new processor (Intel XScale PXA250).
There is very little access to OEM (Compaq) information and Windows CE 3.0 source code.

Solution: After discussion with Dr. Mueller, all members agreed that writing a simulator
would let us focus more on the algorithm, experimentation and results. There was also a great
learning curve cost associated with the development environment.

Contribution: All members

Implementing a Frequency Scaling Algorithm for iPAQ H3975

 2

Notes: Due to time constraints, the simulator approach is more feasible. We agree that we
would learn more using this approach.

b) Power Management API

Description: Initially, we attempt to find as many existing Power Management API as
possible to aid us in our goal to implement the DVS algorithm. After some research, we were
only able to find a battery status API and mode set API. GetSystemPowerStatusEx() was
used a little initially to get some power measurement but was not used in the end due to long
run time problem.

Problem(s): There is no existing API to change frequency as expected. The granularity of
battery status is very coarse and may not be he lpful enough.

Solution: Use the existing API for informational purpose and seek additional method to
change frequency, like using assembly language.

Contribution: All members.

Notes: In the end we did not use any of these APIs found, since they did not meet our
requirement. We also faced a problem where the frequency change causes some problems in
the stability of the system and opted against their use since we cannot extract the information.

c) Scheduler and timing resolution

Description: Since we are creating a simulation, we need to control the timing of the
scheduler and all the tasks in the system. In order to implement the scheduler, we must be
able to allow tasks to run for a precise amount of time. We have found that the
GetThreadTimes() function is extremely accurate and can be used for the timing of tasks.
Another issue is putting the scheduler to sleep. This can be accomplished via the Sleep()
function.

The following code was to be used as the busy loop for the tasks.

do{
 //useless calculations

 x = x * x;
 y = (z << 3) * (23 / (w * 1.1));
 x = x / 1.1;

GetThreadTimes(GetCurrentThread(), // specifies the thread of interest

 &lpCreationTime, // when the thread was created
 &lpExitTime, // when the thread was destroyed
 &lpKernelTime, // time the thread has spent in kernel model
 &lpUserTime // time the thread has spent in user mode
);

}while(lpUserTime.dwLowDateTime < time*TIMESTEP);

Implementing a Frequency Scaling Algorithm for iPAQ H3975

 3

where time is the relative time in the simulation and TIMESTEP is a value of time with units
of 100ns.

Another issue is: knowing when a task has completed. The following function can be used
for this:

//check to see if the thread has finished executing
GetExitCodeThread(hThread[index], // handle to the thread
 &lpExitCode // address to receive termination status
);

By testing the lpExitCode variable, we can determine if the thread specified by
hThread[index] has finished.

if(lpExitCode != STILL_ACTIVE)
…recreate the thread….

Problem(s): Some basic timing functions like Sleep() were not working as expected. Some
information revealed that the OEM (Compaq) might have changed some of its specification.
Attempts to use POSIX threads are not successful either since Windows CE 3.0 is not fully
POSIX compliant.

Solution: A lot of testing and experiment was done and in the end, we found the function
Sleep() worked properly. It turns out that the method used to verify the tick function did not
wrok properly under the Pocket PC 2002 SDK. We were initially testing the amount of time
used by the Sleep() function by using the GetSystemTime() function. This function appears
to not be working properly. Instead, we used GetTickCount() which gives good timing
granularity. However, we were unable to use any of this functionality since we changed the
way we obtained the data. We used a simulated timing environment. This functionality will
be useful for future work or other projects that may want to follow up our findings.

Contribution: Benjamin Welch

Notes: Most of the work done here is research in various websites, discussion groups and a
lot of testing. We regret that we don’t have enough time to implement a useful ‘real time’
environment.

d) Assembly Language approach

Description: We resorted to use assembly language since there are no proper power
management APIs. Reference to several Intel manuals on the XScale PXA 250 processor
showed that ARM assembly language can be used to write to the CCLKCFG register on co-
processor 14 which deals with the FCS (Frequency Change Sequence), and the turbo and run
modes.

Problem(s): Research to several websites and discussion groups showed that assembly
language support in eVC++ is poor. The conventional inline assembly language is
discouraged. There is also a compatibility problem since we are not sure if the ARM
assembler will work with the new XScale processor

Implementing a Frequency Scaling Algorithm for iPAQ H3975

 4

Solution: Assembly language can be written in a separate .asm file and be added to the
workspace in eVC++. Instruction to build the .asm file needs to be explicitly set also. The
notes below show how to use assembly language in eVC++.

Contribution: Mark Wah

Notes: Steps for assembly language use:

1) Write the required ARM assembly language into a .asm file and link it into the Project
Workspace, the code in bold below is writing 2 to the CCLKCFG Register which will set the
FCS (Frequency Change Sequence) bit.

AREA |.data|, DATA
|?ControlFreq@@3PCKC| DCD 0x41300000 ; ControlFreq

EXPORT |?enable_frequency_change@@YAXXZ| ; enable_frequency_change

AREA |.pdata|, PDATA
|$T24415| DCD |?enable_frequency_change@@YAXXZ|
DCD 0x40000501

AREA |.text|, CODE

|?enable_frequency_change@@YAXXZ| PROC ; enable_frequency_change

; Line 7
sub sp, sp, #4
|$M24413|
; Line 9
mov r3, #2
str r3, [sp]

mov r3, #2
mcr p14, 0, r3, c6, c0, 0

; Line 10
add sp, sp, #4
mov pc, lr
|$M24414|

ENDP ; |?enable_frequency_change@@YAXXZ|, enable_frequency_change

2) Set the build instructions for this file and the output, for example:

 build command: armasm file.asm ARMDbg\file.obj

 output: ARMDbg\file.obj

e) Frequency Change on Intel Xscale PXA250

Description: The frequency change sequence is a 2-step process. Besides writing to the
CCLKCFG register, the CCCR (Core Clock Configuration Register), which is a memory-
mapped register, needs to be written to. The value in the CCCR determines the frequency
that the processor will run at after setting the FCS bit in the CCLKCFG register.

Implementing a Frequency Scaling Algorithm for iPAQ H3975

 5

Problem(s): eVC++ support to write to the memory-mapped register is not documented.
Research shows that VirtualAlloc() and VirtualCopy() can be used for this purpose.
However, VirtualCopy() is not an exported function in eVC++ although it is defined in
coredll.lib. Platofrm Builder 3.0 has this function exported.

Solution: To enable the use of VirtualCopy(), we defined it in a .h file as follows:

 extern "C" BOOL VirtualCopy(LPVOID dest, LPVOID src, DWORD size, DWORD flags);

This is needed since none of the .h file in the SDK or eVC++ has the above function defined
although it is defined in the library file coredll.lib. Details to write to the CCCR are shown
below on the Notes section.

Contribution: Prakash Ramrakhyani

Notes: Steps to write to the CCCR

1) Define VirtualCopy() in a .h file since it is not an exported function in eVC++ but

exported in Platform Builder. Coredll.lib contains the implementation and both eVC++
and Platform Builder have access to it.

 extern "C" BOOL VirtualCopy(LPVOID dest, LPVOID src, DWORD size, DWORD flags);

 2) Use VirutalAlloc() to allocate the memory

 LPVOID VirtualCCCR = VirtualAlloc(0, sizeof(DWORD), MEM_RESERVE,

PAGE_NOACCESS);

 3) Use VirtualCopy() to map the memory location we want to write to:

if(!VirtualCopy((LPVOID)VirtualCCCR, (LPVOID)CCCR, sizeof(DWORD), PAGE_READWRITE
|PAGE_NOCACHE | PAGE_PHYSICAL))

 {
 VirtualFree(VirtualCCCR,0,MEM_RELEASE);

 VirtualCCCR = NULL;
 }

 4) Using the different frequency level we have computed in the table below, write the value

to it, for example:

 *(int *)VirtualCCCR = 289; (for 100 Mhz, using the default memory frequency)

The values for these registers for the four frequency settings are detailed in the

following table:

 100 MHz 200 MHz 300 MHz 400 MHz
CCCR 289 321 449 577

CCLKCFG 2 2 3 3

 Table 1: Control Register Values for Various Frequencies

Implementing a Frequency Scaling Algorithm for iPAQ H3975

 6

The table below summarizes the typical voltage settings for the four frequency settings.
(Source: Electrical, Mechanical, and Thermal Specification Datasheet for PXA250 [7])

Note: There are more than four frequency settings for the PXA250. However, we have chosen to
utilize only four of these settings. The register values given above specify a single frequency for
memory i.e. for our experiments we do not scale the memory frequency

Frequency(MHz) Voltage (V)

100 0.85
200 1.00
300 1.10
400 1.30

 Table 2: Voltage/Frequency Relationship

f) Implementing the Algorithm

Description: The algorithm is based on the feedback EDF scheduling described in [1] and
[3]. It addresses

a. Using idle slots that may appear in the Worst Case schedule,
b. Slack generated due to early completion
c. Passing slack safely to a preempting task without causing any missed deadlines

For slack distribution our algorithm uses a greedy approach as described [1] i.e. allocating all
available slack to the next task being scheduled, so that it may run at the lowest possible
frequency.

Problem(s): The approach for the utilizing idle slots, as hinted in the paper, seemed a little
too tedious. The paper hints at using “future knowledge” of a basic EDF schedule for the task
set to locate idle slots, such that only those idle slots in the base-EDF schedule, that occur
before the deadline of the task to be scheduled, are utilized for frequency scaling. This
approach seems to be non-trivial for task sets that have large hyper-periods, requiring
maintenance of large structures.

Solution:
Our algorithm has a slightly different approach for utilizing idle slots. It is based on the
“Maximum Constant Speed” technique as described in [2]. “Maximum constant speed is the
lowest possible clock speed that guarantees a feasible schedule for the task set at hand.”[2]

fmax = UWC
. fpeak

fmax : Maximum Constant Speed (frequency).
UWC : Worst Case Utilization at peak frequency(fpeak).
fpeak : Peak operating frequency of the processor

Implementing a Frequency Scaling Algorithm for iPAQ H3975

 7

The idea is to statically choose a frequency at which at which the worst-case utilization is 1,
so that there are no idle slots in the worst-case schedule. For slack estimation due to early
completion WCET for each task in the task set is now scaled up to account for the lower
maximum frequency. (WCET’ = WCET/ UWC)

Contribution: All members

Notes: The algorithm has been implemented on a time-driven scheduling simulator that is
run as a Real Time task on Windows CE. We first built a basic EDF scheduling simulator,
and then enabled it for frequency scaling. The task set is input from a text file (very much
like the homework schedulers). Within the scheduler, there is the notion of relative time and
actual time. We have decided to reuse the basic EDF scheduler from homework 2 and add
the notion of actual time. Actual time is accounted for via a Windows API. Windows CE
provides a mechanism for accessing the amount of time that a thread has been active (as
discussed earlier). Using this data we are able to interrupt executing tasks at regularly
scheduled intervals. Our code and data from the experiments we performed have been posted
on our website.

g) Experiment and Results
Since we do not have a standard “benchmark” to test our scheduler ran our scheduler for 3
distinct task sets. One of these is described in [1] and the other two are arbitrary test cases
that we built. The task sets and the duration of simulation for each task set are described
below.

a) 3-task Task set WC Utilization = 0.75 Hyper-period: 40

Duration of Simulation: 5 Hyper-periods

Task Period Deadline Phase WCET

A 8 8 0 2

B 5 5 0 2

C 20 20 0 2

 Table 3: Task Set 1

b) 10-task Task set WC Utilization = 0.718 Hyper-period: 120

Duration of Simulation: 1 Hyper-period

Task Period Deadline Phase WCET

A 8 8 0 1

B 10 10 0 1

C 12 12 0 1

D 15 15 0 1

E 20 20 0 1

Implementing a Frequency Scaling Algorithm for iPAQ H3975

 8

F 24 24 0 1

G 30 30 0 2

H 40 40 0 3

I 60 60 0 4

J 120 120 0 5

Table 4: Task Set 2

c) 3-task Task set described in [1] WC Utilization = 0.718 Hyper-period: 280
Duration of Simulation: 1 Hyper-period

Task Period Deadline Phase WCET

A 8 8 0 3

B 10 10 0 3

C 14 14 0 1

Table 5: Task Set 3

Problem(s): We are unable to run the algorithm for long durations due to instability of the
system after initiating the FCS (Frequency Change Sequence) repeatedly. The Intel manual
reveals that during the Frequency Change Sequence, for Hardware and Watchdog Resets,
the resets takes precedence over the FCS. This may fouled our experiments for runs greater
than 3.5 minutes. Moreover, if the GPIO Reset is asserted, the contents of the SDRAM will
be lost. This is critical since we are gathering data and there is a potential loss when this
happens. Due to our inability to run experiments for a long duration we have not been able to
prove the energy benefits DVS-EDF by measuring battery life.

Solution: Instead of showing benefits of EDF-DVS using battery life consumption we have
shown a comparison of the schedule produced by EDF vs. that produced by our
implementation of the DVS-EDF algorithm. We have also shown, for one test case a
comparison of analytical estimates of energy consumption of the two algorithms.

Contribution: All members

3) Results

 Analytical Estimate of energy consumption for when task–set 1 is executed for 1 Hyperperiod.

P a f 3 E a f 2

P = x . f 3 E = y . f 2
To compare energies for the two algorithms, we assume x = y = 1. Consider power at peak
frequency (400 MHz) = 64 units and energy consumption at peak frequency for 1 scheduling
time period is 16 units. Further consider no energy is consumed in idle slots. By the equations
above, power and energy consumption at other frequencies is described in the table below

Implementing a Frequency Scaling Algorithm for iPAQ H3975

 9

Frequency Power Energy

100 MHz 1 1

200 MHz 8 4

300 MHz 27 9

 Using the above assumptions we estimated the average power over the first hyper period for task

set 1 for DVS-EDF algorithm to be 21.875 units while that for the EDF schedule to be 40 units
This implies approximately 45% power savings over the base case. Energy consumption over the
first hyper-period for this task set was estimated to be 293 units with the DVS-EDF schedule and
400 units with EDF schedule. This indicates that the DVS-EDF algorithm, for the given scenario
had 27% energy savings over that base-case.

The figures below show a comparison of excerpts from the schedule produced by basic EDF
scheduler and that produced by our DVS-EDF scheduler for the 3 scenarios described above.

 We shall discuss some observations for the second (b) scenario described above

Fig 3 shows an excerpt from the basic EDF schedule between scheduling instants 35-50
 Fig 4 shows the DVS-EDF schedule for the same time duration

Y – axis indicates the fraction of the peak frequency at which a task is run
 X axis indicates progressing time.

 In the DVS-EDF schedule G1 is pushed to execute at a later time, due to its later deadline.

Earlier tasks like D2 take advantage of this and run at a lower frequency (75 % of peak
frequency). This indicates utilization of idle slots.
C3 utilizes slack passed from previous tasks due to early completion and runs at 25% of peak
frequency.
A5 and A6 are initiated at same scheduling instants in both the schedules but DVS-EDF runs
them at 75% of peak frequency. This is an indication that our DVS-EDF schedule utilizes future
idle slots to run jobs at a lower frequency.

Implementing a Frequency Scaling Algorithm for iPAQ H3975

 10

a) 3 task set with WC Utilization = 0.75

Task Schedule 1 on EDF Scheduler

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Time

A
lp

h
a'

B0A0 C0 B1 A1 B2 B3 A2 B4 C1 A3 B5 A3 A4B6

Figure 1: Partial EDF Schedule for Task Set 1

Figure 2: DVS-EDF Schedule (partial) for Task Set 1

Task Set 1 Scheduled on DVS-EDF Scheduler

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Time

A
lp

h
a'

B0 A0 C0

B1 A1

B2 C0 B3

A2

B4 C1

A3 B5 A3

B6

C1

A4

Implementing a Frequency Scaling Algorithm for iPAQ H3975

 11

b) 10 task set with WCET utilization = 0.718

EDF Schedule for Task Set 2

0

0.25

0.5

0.75

1

1
Time

A
lp

h
a'

G B4 E2 H1 D3A5C3 A6 C4

35 504540

Figure 3: Partial EDF Schedule for Task Set 2

DVS-EDF Schedule for Task Set 2

0

0.25

0.5

0.75

1

32

Time

A
lp

h
a'

A A6

E2

C

G D3

I0 B4

D2

3 4 45 50

Figure 4: DVS-EDF Schedule (partial) for Task Set

Implementing a Frequency Scaling Algorithm for iPAQ H3975

 12

c) Task Set 3. Utilization = 0.718

EDF Schedule for Task Set 3

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Time

A
lp

h
a'

A0
B0

C0 A1 B1 C1 A2 B2 A3 C2 B3 A4

Figure 5: Partial EDF Schedule of Task Set 3

DVS-EDF Schedule for Task Set 3

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

Time

A
lp

h
a'

A0

B0

C0

A1

B1

A2

C1 B2

A3 C2 C2

B3

A4

Figure 6: DVS-EDF Schedule (partial) for Task Set 3

Implementing a Frequency Scaling Algorithm for iPAQ H3975

 13

4) Conclusion

The DVS-EDF algorithm shows potential energy savings while meeting all deadlines. Due to
several major setbacks, we were unable to produce a stable environment on the Windows CE 3.0
platform. However, we have successfully implemented a DVS algorithm capable of functioning in a
simulated environment. Although we were unable to meet all the goals set forth by our proposal, we
have delivered a base for future work to build upon.

5) Future Work

There is more work to be done to get accurate real world results. This project provides a good base
for future work, which includes but not limited to:

a) Stabilization of iPAQ following frequency scaling
b) Running simulation on Windows CE 3.0 platform
c) Implementing a device driver
d) Implementing DVS algorithm in the scheduler of Windows CE 3.0, since the source code is

available for download.

Our project demonstrates that running the DVS-EDF algorithm on a commercial embedded device is
possible with more effort, and also has significant power and energy savings.

6) Project homepage

http://www4.ncsu.edu/~mwah/index.htm

7) References

[1] A. Dudani, F. Mueller, Y. Zhu “Energy-Conserving Feedback EDF Scheduling for

Embedded Systems with Real-Time Constraints.”

[2] C. J. Hughes et. al. “Variability in the Execution of Multimedia Applications and

Implications for Architecture,” Proc. of 28th International Symposium on Computer
Architecture, June 2001.

[3] F. Mueller, Y. Zhu “Preemption Handling and Scalability of Feedback DVS-EDF.”

[4] T. Pering, T.Burd, and R. Broderson. “Dynamic Voltage Scaling and the Design of a Low-

Power Microprocessor System.”

[5] Intel® XScale™ Core Developer’s Manual

[http://www.intel.com/design/intelxscale/27347301.pdf]

Implementing a Frequency Scaling Algorithm for iPAQ H3975

 14

[6] Intel® PXA250 and PXA210 Applications Processors: Operating System Developer’s Guide.

[http://www.intel.com/design/pca/applicationsprocessors/manuals/278535-001.pdf]

[7] Intel Electrical, Mechanical, and Thermal Specification Datasheet for PXA250

[ftp://download.intel.com/design/pca/applicationsprocessors/manuals/278524-001.pdf]

[8] Microsoft : Windows CE
 [http://msdn.microsoft.com/library/default.asp?url=/library/en-us/wceintro/htm/cestart.asp]

[9] Microsoft : Introduction to Development for Pocket PC
 [http://msdn.microsoft.com/library/default.asp?url=/library/e -us/dnppc2k/html/ppc_ntro.asp]

[10] Microsoft : Mobile Device Developers
 [http://www.microsoft.com/mobile/developer/default.asp]

[11] (Almost) No POSIX OS Is An Island

[http://www.embedded.com/story/OEG20020111S0071]

[12] Pocket PC Developer Network
 [http://www.pocketpcdn.com/]

[13] Open Source POSIX Threads for Win32

[http://sources.redhat.com/pthreads-win32/]

