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1) Introduction 
 
In the world of computing today there is a great need for low power general-purpose processors.  
This is evident by the number of battery-operated devices in use.  Support for energy awareness 
comes in two flavors: (1) hardware-driven or (2) software-driven.  In our research we plan to focus 
on a software-driven approach. More specifically, we plan to study the benefits of a dynamic 
voltage-scaling (DVS) algorithm.  A brief overview of the project is presented next. 
 
Currently, there is much research focusing on this topic as listed on the References section. Most of 
them present algorithms and test results on homegrown systems or open systems environments. This 
project aims at implementing some of the solutions on a commercial embedded device in a simulated 
environment. 
 
We propose to implement the chosen DVS algorithm via a simulated task scheduler on Windows CE 
3.0.  
 
 
2) Detailed Progress Report and Contribution 
 

a) Simulation vs Device Driver approach 
 

Description: After researching the methodology of implementing the DVS algorithm we 
have found some obstacles with the device driver approach. In the end, we chose a 
simulation approach instead. 
 
Problem(s): Writing a device driver requires more hardware and software support. Platform 
Builder 3.0 is the software needed to write the device driver for Windows CE 3.0. Other than 
that, there is very little support for the relatively new processor (Intel XScale PXA250). 
There is very little access to OEM (Compaq) information and Windows CE 3.0 source code. 
 
Solution: After discussion with Dr. Mueller, all members agreed that writing a simulator 
would let us focus more on the algorithm, experimentation and results. There was also a great 
learning curve cost associated with the development environment. 
 
Contribution: All members 
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Notes: Due to time constraints, the simulator approach is more feasible. We agree that we 
would learn more using this approach. 

 
 

b) Power Management API  
 

Description: Initially, we attempt to find as many existing Power Management API as 
possible to aid us in our goal to implement the DVS algorithm. After some research, we were 
only able to find a battery status API and mode set API. GetSystemPowerStatusEx() was 
used a little initially to get some power measurement but was not used in the end due to long 
run time problem. 
 
Problem(s): There is no existing API to change frequency as expected. The granularity of 
battery status is very coarse and may not be he lpful enough. 
 
Solution: Use the existing API for informational purpose and seek additional method to 
change frequency, like using assembly language. 
 
Contribution: All members. 
 
Notes: In the end we did not use any of these APIs found, since they did not meet our 
requirement. We also faced a problem where the frequency change causes some problems in 
the stability of the system and opted against their use since we cannot extract the information. 
 
 

c) Scheduler and timing resolution 
 

Description: Since we are creating a simulation, we need to control the timing of the 
scheduler and all the tasks in the system.  In order to implement the scheduler, we must be 
able to allow tasks to run for a precise amount of time.  We have found that the 
GetThreadTimes() function is extremely accurate and can be used for the timing of tasks.  
Another issue is putting the scheduler to sleep.  This can be accomplished via the Sleep() 
function.   
 
The following code was to be used as the busy loop for the tasks. 
 

do{    
              //useless calculations 

  x = x * x; 
  y = (z << 3) * (23 / (w * 1.1)); 
  x = x / 1.1; 

  
GetThreadTimes(GetCurrentThread(),     // specifies the thread of interest 

   &lpCreationTime,     // when the thread was created 
       &lpExitTime,    // when the thread was destroyed 
   &lpKernelTime,    // time the thread has spent in kernel model 
   &lpUserTime    // time the thread has spent in user mode 
  ); 
  
}while( lpUserTime.dwLowDateTime < time*TIMESTEP); 
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where time is the relative time in the simulation and TIMESTEP is a value of time with units 
of 100ns. 
 
Another issue is: knowing when a task has completed.  The following function can be used 
for this: 
 

//check to see if the thread has finished executing 
GetExitCodeThread(hThread[index],  // handle to the thread 
      &lpExitCode  // address to receive termination status 
      ); 

 
By testing the lpExitCode variable, we can determine if the thread specified by 
hThread[index] has finished.   
 

if(lpExitCode != STILL_ACTIVE) 
…recreate the thread…. 
 

 
Problem(s): Some basic timing functions like Sleep() were not working as expected. Some 
information revealed that the OEM (Compaq) might have changed some of its specification. 
Attempts to use POSIX threads are not successful either since Windows CE 3.0 is not fully 
POSIX compliant. 
 
Solution: A lot of testing and experiment was done and in the end, we found the function 
Sleep() worked properly.  It turns out that the method used to verify the tick function did not 
wrok properly under the Pocket PC 2002 SDK.  We were initially testing the amount of time 
used by the Sleep() function by using the GetSystemTime() function.  This function appears 
to not be working properly.  Instead, we used GetTickCount() which gives good timing 
granularity. However, we were unable to use any of this functionality since we changed the 
way we obtained the data. We used a simulated timing environment. This functionality will 
be useful for future work or other projects that may want to follow up our findings.   
 
Contribution: Benjamin Welch 
 
Notes: Most of the work done here is research in various websites, discussion groups and a 
lot of testing. We regret that we don’t have enough time to implement a useful ‘real time’ 
environment. 

 
d) Assembly Language approach 
 

Description: We resorted to use assembly language since there are no proper power 
management APIs. Reference to several Intel manuals on the XScale PXA 250 processor 
showed that ARM assembly language can be used to write to the CCLKCFG register on co-
processor 14 which deals with the FCS (Frequency Change Sequence), and the turbo and run 
modes. 
 
Problem(s): Research to several websites and discussion groups showed that assembly 
language support in eVC++ is poor. The conventional inline assembly language is 
discouraged. There is also a compatibility problem since we are not sure if the ARM 
assembler will work with the new XScale processor 
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Solution: Assembly language can be written in a separate .asm file and be added to the 
workspace in eVC++. Instruction to build the .asm file needs to be explicitly set also. The 
notes below show how to use assembly language in eVC++. 
 
Contribution: Mark Wah 
 
Notes: Steps for assembly language use: 
 
1) Write the required ARM assembly language into a .asm file and link it into the Project 
Workspace, the code in bold below is writing 2 to the CCLKCFG Register which will set the 
FCS (Frequency Change Sequence) bit.  
 
AREA |.data|, DATA 
|?ControlFreq@@3PCKC| DCD 0x41300000 ; ControlFreq 
 
EXPORT |?enable_frequency_change@@YAXXZ| ; enable_frequency_change 
 
AREA |.pdata|, PDATA 
|$T24415| DCD |?enable_frequency_change@@YAXXZ| 
DCD 0x40000501 
 
AREA |.text|, CODE 
 
|?enable_frequency_change@@YAXXZ| PROC ; enable_frequency_change 
 
; Line 7 
sub sp, sp, #4 
|$M24413| 
; Line 9 
mov r3, #2 
str r3, [sp] 
 
mov r3, #2 
mcr p14, 0, r3, c6, c0, 0 
 
; Line 10 
add sp, sp, #4 
mov pc, lr 
|$M24414| 
 
ENDP ; |?enable_frequency_change@@YAXXZ|, enable_frequency_change 
 
 
2) Set the build instructions for this file and the output, for example:  
 
        build command: armasm file.asm ARMDbg\file.obj 
 
        output: ARMDbg\file.obj 
 

 
e) Frequency Change on Intel Xscale PXA250 
 

Description: The frequency change sequence is a 2-step process. Besides writing to the 
CCLKCFG register, the CCCR (Core Clock Configuration Register), which is a memory-
mapped register, needs to be written to. The value in the CCCR determines the frequency 
that the processor will run at after setting the FCS bit in the CCLKCFG register. 
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Problem(s): eVC++ support to write to the memory-mapped register is not documented. 
Research shows that VirtualAlloc() and VirtualCopy() can be used for this purpose. 
However, VirtualCopy() is not an exported function in eVC++ although it is defined in 
coredll.lib. Platofrm Builder 3.0 has this function exported. 
 
Solution: To enable the use of VirtualCopy(), we defined it in a .h file as follows: 
 
      extern "C" BOOL VirtualCopy(LPVOID dest, LPVOID src, DWORD size, DWORD flags); 
 
This is needed since none of the .h file in the SDK or eVC++ has the above function defined 
although it is defined in the library file coredll.lib. Details to write to the CCCR are shown 
below on the Notes section. 
 
Contribution:  Prakash Ramrakhyani 
 
Notes: Steps to write to the CCCR 
 
1) Define VirtualCopy() in a .h file since it is not an exported function in eVC++ but 

exported in Platform Builder. Coredll.lib contains the implementation and both eVC++ 
and Platform Builder have access to it.  

 
    extern "C" BOOL VirtualCopy(LPVOID dest, LPVOID src, DWORD size, DWORD flags); 
 
 2) Use VirutalAlloc() to allocate the memory   
 
    LPVOID VirtualCCCR = VirtualAlloc(0, sizeof(DWORD), MEM_RESERVE,   

PAGE_NOACCESS); 
 
 3) Use VirtualCopy() to map the memory location we want to write to:  
 

if(!VirtualCopy((LPVOID)VirtualCCCR, (LPVOID)CCCR, sizeof(DWORD), PAGE_READWRITE 
|PAGE_NOCACHE | PAGE_PHYSICAL)) 

     { 
     VirtualFree(VirtualCCCR,0,MEM_RELEASE); 
 
     VirtualCCCR = NULL; 
     }  
 
 4) Using the different frequency level we have computed in the table below, write the value 

to it, for example:  
 
        *(int *)VirtualCCCR = 289; (for 100 Mhz, using the default memory frequency) 
 
The values for these registers for the four frequency settings are detailed in the 

following table: 
 

 100 MHz 200 MHz 300 MHz 400 MHz 
CCCR 289 321 449 577 

CCLKCFG 2 2 3 3 

  Table 1: Control Register Values for Various Frequencies 
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The table below summarizes the typical voltage settings for the four frequency settings. 
(Source: Electrical, Mechanical, and Thermal Specification Datasheet for PXA250 [7]) 
 

Note:  There are more than four frequency settings for the PXA250.  However, we have chosen to 
utilize only four of these settings.  The register values given above specify a single frequency for 
memory i.e. for our experiments we do not scale the memory frequency 

 
 

 
Frequency(MHz) Voltage (V) 

100 0.85 
200 1.00 
300 1.10 
400 1.30 

  Table 2:  Voltage/Frequency Relationship 

 
 

f) Implementing the Algorithm 
 

Description: The algorithm is based on the feedback EDF scheduling described in [1] and 
[3]. It addresses   

a. Using idle slots that may appear in the Worst Case schedule,  
b. Slack generated due to early completion 
c. Passing slack safely to a preempting task without causing any missed deadlines   

 
For slack distribution our algorithm uses a greedy approach as described [1] i.e. allocating all 
available slack to the next task being scheduled, so that it may run at the lowest possible 
frequency. 
  
Problem(s):  The approach for the utilizing idle slots, as hinted in the paper, seemed a little 
too tedious. The paper hints at using “future knowledge” of a basic EDF schedule for the task 
set to locate idle slots, such that only those idle slots in the base-EDF schedule, that occur 
before the deadline of the task to be scheduled, are utilized for frequency scaling.  This 
approach seems to be non-trivial for task sets that have large hyper-periods, requiring 
maintenance of large structures.  
 
Solution: 
Our algorithm has a slightly different approach for utilizing idle slots. It is based on the 
“Maximum Constant Speed” technique as described in [2]. “Maximum constant speed is the 
lowest possible clock speed that guarantees a feasible schedule for the task set at hand.”[2]   

fmax = UWC 
. fpeak 

 
fmax : Maximum Constant  Speed (frequency). 
UWC : Worst Case Utilization at peak frequency(fpeak). 
fpeak : Peak operating frequency of the processor 
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The idea is to statically choose a frequency at which at which the worst-case utilization is 1, 
so that there are no idle slots in the worst-case schedule. For slack estimation due to early 
completion WCET for each task in the task set is now scaled up to account for the lower 
maximum frequency.  (WCET’ = WCET/ UWC) 
 
Contribution: All members 
 
Notes: The algorithm has been implemented on a time-driven scheduling simulator that is 
run as a Real Time task on Windows CE. We first built a basic EDF scheduling simulator, 
and then enabled it for frequency scaling.  The task set is input from a text file (very much 
like the homework schedulers).  Within the scheduler, there is the notion of relative time and 
actual time.  We have decided to reuse the basic EDF scheduler from homework 2 and add 
the notion of actual time.   Actual time is accounted for via a Windows API.  Windows CE 
provides a mechanism for accessing the amount of time that a thread has been active (as 
discussed earlier).  Using this data we are able to interrupt executing tasks at regularly 
scheduled intervals. Our code and data from the experiments we performed have been posted 
on our website. 
    

g) Experiment and Results 
Since we do not have a standard “benchmark” to test our scheduler ran our scheduler for 3 
distinct task sets. One of these is described in [1] and the other two are arbitrary test cases 
that we built. The task sets and the duration of simulation for each task set are described 
below.  
 
a) 3-task Task set   WC Utilization = 0.75   Hyper-period: 40 

Duration of Simulation: 5 Hyper-periods 
 

Task Period Deadline  Phase WCET 

A 8 8 0 2 

B 5 5 0 2 

C 20 20 0 2 

  Table 3: Task Set 1 

 
b) 10-task Task set WC Utilization = 0.718  Hyper-period: 120 

Duration of Simulation: 1 Hyper-period 
 

Task Period Deadline  Phase WCET 

A 8 8 0 1 

B 10 10 0 1 

C 12 12 0 1 

D 15 15 0 1 

E 20 20 0 1 
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F 24 24 0 1 

G 30 30 0 2 

H 40 40 0 3 

I 60 60 0 4 

J 120 120 0 5 

Table 4: Task Set 2 

c) 3-task Task set described in [1] WC Utilization = 0.718  Hyper-period: 280 
Duration of Simulation: 1 Hyper-period 

 

Task Period Deadline  Phase WCET 

A 8 8 0 3 

B 10 10 0 3 

C 14 14 0 1 

Table 5: Task Set 3 

 
Problem(s): We are unable to run the algorithm for long durations due to instability of the 
system after initiating the FCS (Frequency Change Sequence) repeatedly. The Intel manual 
reveals that during the Frequency Change Sequence, for Hardware and Watchdog Resets,  
the resets takes precedence over the FCS. This may fouled our experiments for runs greater 
than 3.5 minutes. Moreover, if the GPIO Reset is asserted, the contents of the SDRAM will 
be lost. This is critical since we are gathering data and there is a potential loss when this 
happens. Due to our inability to run experiments for a long duration we have not been able to 
prove the energy benefits DVS-EDF by measuring battery life. 
 
Solution: Instead of showing benefits of EDF-DVS using battery life consumption we have 
shown a comparison of the schedule produced by EDF vs. that produced by our 
implementation of the DVS-EDF algorithm. We have also shown, for one test case a 
comparison of analytical estimates of energy consumption of the two algorithms. 
 
Contribution: All members 

 
3) Results 
 
      Analytical Estimate of energy consumption for when task–set 1 is executed for 1 Hyperperiod. 

 
P a f 3        E a f 2 

P = x . f 3        E = y . f 2 
To compare energies for the two algorithms, we assume x = y = 1. Consider power at peak 
frequency (400 MHz) = 64 units and energy consumption at peak frequency for 1 scheduling 
time period is 16 units. Further consider no energy is consumed in idle slots.  By the equations 
above, power and energy consumption at other frequencies is described in the table below  
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Frequency Power Energy 

100 MHz 1 1 

200 MHz 8 4 

300 MHz 27 9 

 
 Using the above assumptions we estimated the average power over the first hyper period for task 

set 1 for DVS-EDF algorithm to be 21.875 units while that for the EDF schedule to be 40 units 
This implies approximately 45% power savings over the base case. Energy consumption over the 
first hyper-period for this task set was estimated to be 293 units with the DVS-EDF schedule and 
400 units with EDF schedule. This indicates that the DVS-EDF algorithm, for the given scenario 
had 27% energy savings over that base-case. 

  
The figures below show a comparison of excerpts from the schedule produced by basic EDF 
scheduler and that produced by our DVS-EDF scheduler for the 3 scenarios described above. 

 We shall discuss some observations for the second (b) scenario described above 
  

Fig 3 shows an excerpt from the basic EDF schedule between scheduling instants 35-50 
 Fig  4 shows the DVS-EDF schedule for the same time duration 
  

Y – axis indicates the fraction of the peak frequency at which a task is run 
 X axis indicates progressing time. 
 
 In the DVS-EDF schedule G1 is pushed to execute at a later time, due to its later deadline. 

Earlier tasks like D2 take advantage of this and run at a lower frequency (75 % of peak 
frequency). This indicates utilization of idle slots.  
C3 utilizes slack passed from previous tasks due to early completion and runs at 25% of peak 
frequency.  
A5 and A6 are initiated at same scheduling instants in both the schedules but DVS-EDF runs 
them at 75% of peak frequency. This is an indication that our DVS-EDF schedule utilizes future 
idle slots to run jobs at a lower frequency. 
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a) 3 task set with WC Utilization = 0.75 

 
 

Task Schedule 1 on EDF Scheduler
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Figure 1:  Partial EDF Schedule for Task Set 1 

 

Figure 2: DVS-EDF Schedule (partial) for Task Set 1 
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b) 10 task set with WCET utilization = 0.718 

 
 
 

EDF Schedule for Task Set 2
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Figure 3:  Partial EDF Schedule for Task Set 2 

 

DVS-EDF Schedule for Task Set 2
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Figure 4:  DVS-EDF Schedule (partial) for Task Set  
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c) Task Set 3.  Utilization = 0.718 
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Figure 5:  Partial EDF Schedule of Task Set 3  
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Figure 6:  DVS-EDF Schedule (partial) for Task Set 3 
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4) Conclusion 
 
The DVS-EDF algorithm shows potential energy savings while meeting all deadlines.  Due to 
several major setbacks, we were unable to produce a stable environment on the Windows CE 3.0 
platform.  However, we have successfully implemented a DVS algorithm capable of functioning in a 
simulated environment.  Although we were unable to meet all the goals set forth by our proposal, we 
have delivered a base for future work to build upon.   
 
 
5) Future Work 
 
There is more work to be done to get accurate real world results. This project provides a good base 
for future work, which includes but not limited to: 
 

a) Stabilization of iPAQ following frequency scaling 
b) Running simulation on Windows CE 3.0 platform 
c) Implementing a device driver  
d) Implementing DVS algorithm in the scheduler of Windows CE 3.0, since the source code is 

available for download.  
 
Our project demonstrates that running the DVS-EDF algorithm on a commercial embedded device is 
possible with more effort, and also has significant power and energy savings. 
 
6) Project homepage 
 
http://www4.ncsu.edu/~mwah/index.htm 
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