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Abstract

General-purpose processors are expected to be increas-
ingly employed for multimedia workloads on systems where
reducing energy consumption is an important goal. Re-
searchers have proposed the use of two forms of hardware
adaptation – architectural adaptation and dynamic voltage
(and frequency) scaling or DVS – to reduce energy. This
paper develops and evaluates an integrated algorithm to
control both architectural adaptation and DVS targeted to
multimedia applications. It also examines the interaction
between the two forms of adaptation, identifying when each
will perform better in isolation and when the addition of
architectural adaptation will benefit DVS.

Our adaptation control algorithm is effective in saving
energy and exploits most of the available potential. For the
applications and systems studied, DVS is consistently bet-
ter than architectural adaptation in isolation. The addition
of architectural adaptation to DVS benefits some applica-
tions, but not all. Finally, in a seemingly counter-intuitive
result, we find that while less aggressive architectures re-
duce energy for fixed frequency hardware, with DVS, more
aggressive architectures are often more energy efficient.

1 Introduction

Multimedia applications are expected to form a large part
of the workload on a growing number of systems, including
future handheld computers, wireless phones, laptops, and
desktop systems [6, 7, 18, 19]. General-purpose processors
(as opposed to DSPs or ASICs) are expected to be increas-
ingly employed for such workloads and systems [3, 6, 7].
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Since most of these devices are powered by batteries, en-
ergy is a precious commodity. Therefore, reducing energy
consumption of general-purpose processors for multimedia
applications has become an important research goal.

Multimedia applications are required to process each
unit of data, typically called a frame, within a time limit
called a deadline. The processor may complete a frame’s
computation before the deadline, and may then remain idle
until the end of the deadline. The existence of this idle time,
called slack, implies that the processor can be slowed to
save energy. The slowdown will not affect the perceived
application performance as long as the frame is processed
before the deadline. Further, this paper focuses on soft
real-time applications, for which missing a small fraction
of deadlines also does not perceptibly affect output quality.

This paper concerns hardware adaptations that slow
down the processor to save energy for multimedia applica-
tions. Recall the execution time and energy equations:1

Execution time = Instruction count � 1
IPC

� 1
f

Energy = Power � Execution time

= C V 2 f Instruction count
IPC � f

= C V 2 Instruction count
IPC

Above,f is frequency,V is supply voltage, andC is the
effectivecapacitance (including the effect of the number of
gate transitions) [2]. These equations suggest at least two
forms of hardware adaptation. The first is dynamic volt-
age scaling (DVS) [10, 11, 12, 20, 25, 26, 27, 29]. Re-
ducing voltage reduces energy, but also requires reducing
frequency, increasing execution time. The second tech-
nique adapts the architecture to reduce the effective capac-
itance [1, 8, 9, 17, 22, 23]. Since a lower effective capaci-
tance often results in a lower IPC and vice versa, a net re-
duction in energy results only if the ratio of the two terms
is reduced. Further, reducing IPC increases execution time.

1The energy equation assumes dynamic power is dominant, as in cur-
rent systems.
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Examples of architectural adaptations are speculation con-
trol [22], changing instruction window size [8], changing
the number of functional units [23], switching issue strat-
egy between in-order and out-of-order [9], and shutting off
parts of the cache [1].

Most studies have considered only one of these forms of
adaptation (e.g., [1, 8, 9, 10, 11, 20, 22, 23, 25, 26, 27, 29]),
and most studies of architectural adaptation target general
applications without exploiting common characteristics of
multimedia applications (e.g., [1, 8, 13, 17, 22, 23]).

This paper makes two contributions. First, we develop an
integrated algorithm to control both architectural adaptation
and DVS for saving processor energy for multimedia appli-
cations. The algorithm was partly outlined in our previous
work [14]. Second, we use the algorithm to understand the
interaction between the two forms of adaptation for multi-
media applications. To our knowledge, this is the first such
algorithm and study for multimedia applications.

Our adaptation control algorithm performs adaptations
at the granularity of a frame. It begins with a short profil-
ing phase that predicts theenergy per instruction (EPI)of
all possible hardware configurations (combinations of ar-
chitecture and frequency), using profiles of a single frame
for a subset of the configurations. Subsequently, before the
execution of each frame, the algorithm predicts the number
of instructions that will be executed for the frame. Using the
instruction count and EPI estimates, the algorithm chooses
the architecture and frequency combination that will con-
sume the least energy and meet the deadline for the next
frame. We also develop a simpler variation of the algorithm
for a DVS system supporting a continuous range of frequen-
cies [16]. The variation exploits the observation that with
continuous DVS, a single architecture has the lowest EPI
for most frequencies.

We evaluate the algorithm quantitatively, studying pro-
cessors that have no adaptation, that perform only DVS, that
perform only architectural adaptation, and that perform both
DVS and architectural adaptation. We provide a qualitative
analysis to explain the interaction between the two forms of
adaptation. Our primary findings are as follows.

� Our adaptation control algorithm reduces slack effec-
tively to provide significant energy savings with few
missed deadlines. In cases where significant slack re-
mains, most of it can be accounted for by the inher-
ent limitations of the adaptive system and would be
present regardless of the control algorithm.

� We identify the situations in which DVS alone or ar-
chitectural adaptation alone saves the most energy,
and when it is beneficial to add architectural adapta-
tion to a system with DVS. For the applications, sys-
tems, and deadlines studied here, DVS alone gives sig-
nificantly more benefits than architectural adaptation

alone. Adding architectural adaptation to a system
with DVS is significantly beneficial for some of our
applications, but not for all.

� A seemingly counter-intuitive finding is that the en-
ergy efficiency of an architecture depends on whether
the system supports DVS. As expected, for fixed fre-
quency hardware, less aggressive (i.e., low IPC) archi-
tectures are usually useful for energy reduction. How-
ever, with DVS, more aggressive architectures are of-
ten more energy efficient. This behavior occurs be-
cause the higher IPCs of the more aggressive architec-
tures often allow them to be run at lower frequencies.
Thus, architects can use aggressive architectures at low
frequency for energy savings, potentially side-stepping
the high-frequency design problems that occur when
using such architectures for high performance.

2 Controlling Hardware Adaptation

When employing adaptive hardware, two key questions
to answer are: when to trigger an adaptation and what adap-
tation to trigger. This section uses the results and an algo-
rithm outline from our previous work [14] to address these
questions. For the first question (when to adapt), [14] rec-
ommended adaptation at the frame granularity. This is be-
cause (1) that work found variability in execution time for
different frames, implying a potential for adaptation, and
(2) a frame is usually associated with a completion dead-
line, giving a natural target for processor slowdown.

The rest of this section concerns the second question
(what to adapt) for systems capable of changing both volt-
age/frequency and architecture. Section 2.1 gives some
background and assumptions. Section 2.2 describes the al-
gorithm for systems that change voltage in discrete steps, as
in Transmeta’s Crusoe processors. Section 2.3 describes a
variation for systems that change voltage continuously, as in
Intel’s XScale processor. Sections 2.4, 2.5, and 2.6 discuss
three remaining aspects of the algorithm – instruction count
prediction, IPC changes, and overheads.

2.1 Background and Assumptions

Some of our applications statically distinguish multiple
frame types (e.g., I, P, and B frames for MPEG). Our algo-
rithm makes the same distinctions. The algorithm uses three
results for multimedia applications from [14] as follows:

� IPC is almost constant for different frames of the same
type at a given frequency. This is because while the
amount of work per frame may vary, the nature of the
work is the same for all frames of a given type.
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� IPC of a frame is almost independent of clock fre-
quency, since little time is spent in memory stalls.

� For a given frame type, instruction count varies slowly
from frame to frame, due to mostly smooth changes in
the amount of work per frame.

Based on the intuition behind the first result, we assume
that average power dissipation is almost constant for all
frames of the same type at a given frequency (validated in
Section 3.2). We also assume hardware recognizes when
a new frame begins, the type of the frame, and its dead-
line (in time units). It is conceptually straightforward to get
this information from the software – either from the applica-
tion or from the CPU scheduler. Real-time CPU schedulers
typically require the application to provide deadline infor-
mation and to identify the beginning of a new frame [5],
and could also benefit from distinguishing between differ-
ent frame types.

Below, we call the possible architecturesarchitectural
configurationsand the possible combinations of architec-
tures and voltage/frequencyhardware configurations.

2.2 The Algorithm for Systems with Discrete DVS

As long as a frame of a multimedia application is pro-
cessed within its deadline, its execution time is irrelevant to
the perceived quality of the output but can impact energy.
We therefore seek to use hardware that meets the deadline,
but consumes minimal energy.

The algorithm proceeds in two phases – aprofiling phase
and anadaptation phase. During the profiling phase, the
algorithm (1) determines the maximum instructions that a
hardware configuration can execute within the deadline for
each frame type, and (2) orders all hardware configurations
in increasing order ofenergy per instruction (EPI). In the
adaptation phase, at the end of each frame the algorithm
predicts the number of instructions that will be executed for
the next frame of the same type. It then uses the profiling
information to find the lowest energy hardware configura-
tion that can execute the predicted number of instructions
within the deadline. The following describes how the above
goals are achieved in each phase. Figure 1 summarizes the
discussion.
Profiling Phase
This phase is invoked at the start of the application. It mea-
sures the IPC and power dissipation for one frame of each
type for each architectural configuration. This measurement
is done at only one common frequency and voltage for all
architectures. The IPC and power dissipation measurements
are used as predictions for IPC and power dissipation of
that architecture for all frames of that type (since both are
expected to be roughly constant across all frames of a given
type). Since IPC is expected to be almost constant across all

frequencies, we use the same prediction for all frequencies.
We scale power dissipation with the square of the voltage
required for each frequency.

Given the IPC estimate for a hardware configuration, the
algorithm calculates the maximum number of instructions
that the hardware can execute within the deadline,Imax,
asdeadline� f � IPC.

For EPI calculation, consider a hardware configuration,
H, with architecture,A, for some frame type. Denote the
measured IPC and average power dissipation for architec-
tureA and this frame type asIPCA andPA, respectively.
The EPI forH and this frame type is:

EPIH =
EnergyH

Instruction count
=

CA VH
2

IPCA

SincePA = CAV
2f , whereV andf are the voltage

and frequency where power is measured and are constant
for all architectures,

EPIH / PA
VH

2

IPCA

(1)

The profiling phase uses this expression to order all hard-
ware configurations by EPI. For each frame type, it builds
an energy-performance tablethat gives the hardware con-
figurations in increasing EPI order, along with theirImax.

The profiling phase need only last for a number of frames
equal to Number of frame types� Number of architectural
configurations. This is a negligible number compared to the
total frames processed by our applications.
Adaptation Phase
This phase comprises the rest of the application run. It ex-
ploits the result that instruction count changes slowly from
frame to frame. At the end of each frame, the hardware pre-
dicts the number of instructions to be executed for the next
frame of the same type (as discussed in Section 2.4). The
prediction is then matched against theImax values in the
energy-performance table. The first entry with anImax as
large as the prediction is predicted to be the hardware that
will consume the least energy and still make the deadline.

Both phases can be implemented in either hardware or
software. In software, the phases could be incorporated into
the CPU scheduler, which would run the adaptive phase or
part of the profiling phase each time the application com-
pletes a frame, when it yields control to the scheduler.

2.3 Variation for Systems with Continuous DVS

The algorithm described so far assumes a system with
a finite number of frequency choices, when building the
energy-performance tables. However, at least one commer-
cial processor with DVS can vary frequency and voltage
continuously [16]. Our algorithm can be applied to such a
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2. For each hardware configuration define:
Imax = Deadline x frequency x IPC

This is increasing EPI order.
Order the hardware configurations in increasing order of

3. For each frame type,

IPC
.

2
AP VH

A

1. For each architectural configuration and frame type:
(i) Measure IPC  and power, PA A

(at one common base voltage/frequency for all architectures)

4. Predict instruction count for the next
frame of the same type using a predictor
described in Section 2.4.

5. Choose the lowest EPI architecture
(as determined by step 3) that has

instruction count.
Imax higher than the predicted

Profiling Phase

Application
starts

Adaptation Phase

Profiling
complete

Figure 1. The algorithm for choosing hardware configurations for a system with discrete DVS.

system by considering only a finite number of frequencies,
but may be sub-optimal. We develop a better variation of
our algorithm for systems with continuous DVS as follows.

Re-examining equation 1, we note that voltage is related

to frequency asfH =
k�(VH�Vthreshold)

2

VH
. Thus, for sup-

ply voltages sufficiently far from the threshold voltage, volt-
age is roughly proportional to frequency. Below, consider
the range of the system whenVH � Vthreshold, which can
be expected to be a substantial part of the supported fre-
quency range. This leads toEPIH / fH

2 PA
IPCA

, and

sincefH =
ImaxH

Deadline�IPCA
,

EPIH / ImaxH
2 PA

IPCA
3
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Figure 2. Example EPI versus Imax curves
for GSMenc. Each curve represents a dif-
ferent architecture from Table 3(a), and each
point represents a different frequency from
Table 3(b), ranging from 100MHz to 1GHz.

SincePA andIPCA are specific to an architecture, at
each value ofImax, the lowest EPI hardware configuration
has the same architecture. Thus, for each application and
frame type, one architecture is most energy efficient for all
values ofImax.2 To illustrate this, Figure 2 shows EPI ver-
susImax curves generated from the profiling phase of our
control algorithm, using the experimental methodology in
Section 3. The different curves represent different architec-
tures studied in this paper (Table 3(a)). Each curve connects

2This observation is not true for discrete DVS systems because not all
frequencies are supported in the latter, as further explained in Section 4.4.

configurations with the same architecture, with frequency
ranging from 100MHz to 1GHz. As expected, one line is
lower than all others for all values ofImax except at small
values ofImax, whereVH is close toVthreshold.

The above observation motivates the following algorithm
for a system with continuous DVS (summarized in Fig-
ure 3). The profiling phase finds the architecture with the
smallest value of PA

IPCA
3 . This has the lowest EPI for all

values ofImax except possibly at the lower frequencies.
The adaptation phase computes the frequency necessary for
that architecture to execute the predicted number of instruc-
tions within the deadline. If this frequency is within the
range supported by the system, then the above architecture
and this frequency are used for the next frame.

If the above frequency is outside the supported range,
then the closest supported frequency (the minimum or max-
imum) is chosen. For the minimum frequency case, the
architecture chosen above may not have the lowest EPI at
that frequency. For the maximum frequency case, the ar-
chitecture may not meet the deadline at that frequency. We
adjust the algorithm to handle these cases as follows. The
profiling phase creates two energy-performance tables, one
each for the maximum and minimum frequencies. These ta-
bles are analogous to those for the discrete DVS algorithm,
but each needs to contain only one entry per architectural
configuration (at the corresponding frequency). If the min-
imum or maximum frequency is chosen, the architecture is
determined by searching the corresponding table analogous
to the discrete DVS algorithm. Thus, the first architecture
in the table withImax � the predicted instruction count is
chosen.

2.4 Instruction Count Predictor

Much work has been done on predicting execution times
and processor utilizations for DVS (e.g., [10, 29]). This
work can be applied to predicting instruction count of a
frame as well. Typically, previous predictors use a function
of the past application behavior to predict future behavior.
We tested a wide range of predictors for the next frame’s in-
struction count, including all of those tested in [10], as well
as some others (e.g., stride predictors) [15]. Most previous
studies have been concerned only with accuracy. However,
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1. For each architectural configuration and frame type:
(i) Measure IPC  and power, PA A

(at one common base voltage/frequency for all architectures)

PA .
IPCA

3
Identify the architectural configuration with the smallest

2. For each frame type,

This has the smallest EPI for most instruction counts.

frame of the same type using a predictor
3. Predict instruction count for the next

described in Section 2.4.

4. Use the architecture chosen in
step 2.  Choose the frequency to be

Predicted instruction count
.

ADeadline x IPC

Profiling Phase Adaptation Phase

Profiling
complete

Application
starts

Figure 3. The algorithm for choosing hardware configurations for a system with continuous DVS.
Two enhancements are applied to this algorithm to handle the minimum and maximum frequencies,
as explained in the text.

since an under-prediction may cause a missed deadline, we
also use the fraction of under-predictions as a metric. As
one would expect, the predictors with the least error under-
predict about half of the time, which is unacceptable. We
set 5% as the limit for the fraction of under-predictions and
introduce the following modifications to achieve this.

We add a margin of error,l, to each prediction, called
the leeway. We multiply each prediction byl, wherel � 1.
The choice ofl involves a tradeoff between the number
of under-predictions and error. Since application behav-
ior varies widely, we elect to dynamically change the lee-
way. We startl at 1.1 (10% greater than the prediction), and
decay it by 0.25% per frame until a deadline is missed, in
which case it is reset to 1.1.

Also, some applications have frames with much larger
instruction counts than the surrounding frames (e.g., due to
a scene change). We find it is best for the predictor to ig-
nore these frames; therefore, we add some hysteresis to the
predictor. If a frame’s instruction count increases by�20%
from the previous frame, the predictor ignores the frame.

With leeway and hysteresis, only one predictor meets our
criteria of�5% under-predictions for all applications [15].
This predictor uses the maximum instruction count of the
last five frames as the prediction for the next frame. This has
a mean error of 9.2% (maximum 11.4%), and a mean frac-
tion of under-predictions of 2.8% (maximum 4.8%). There-
fore, we choose this predictor for our algorithm.

2.5 IPC Changes

Although we expect IPC to be nearly constant for all
frames of a given type, small changes could result in sub-
optimal energy savings or missed deadlines. The continu-
ous DVS system is particularly sensitive to IPC reductions,
which can lead to a slightly lower than optimal frequency
choice causing a missed deadline. (The distance between
supported frequencies in a discrete DVS system makes it
relatively more robust). We therefore periodically correct
for IPC changes in the adaptation phase as follows. For
the discrete case, when a deadline is missed, the IPC and
power values for the architecture just used are updated with
the values from the frame just completed, and the energy-

performance table is rebuilt. For the continuous case, after
each frame, the IPC for the architecture used is updated with
that of the frame just completed. We also add a 1% leeway
to this IPC when computing the frequency at which to run
the next frame.

2.6 Overheads

The algorithm does not incorporate adaptation over-
heads, but it can be modified to do so. For most of our appli-
cations, the deadline is much larger than the time to invoke
either an architectural or DVS adaptation. Two exceptions
are GSM and G728 (Table 4). GSM runs in a single hard-
ware configuration in all our experiments, incurring only a
one-time adaptation cost.3 For G728, the time overhead for
DVS is about 10% in the worst case (using data from [12]).
The adaptation control algorithm will itself also incur over-
head, but its simplicity makes us believe that those over-
heads will also generally be small relative to the frame size.

3 Experimental Methodology

3.1 Workload and Architectures Studied

Table 1 summarizes the nine applications and inputs used
in this work. These were also used, and are described in
more detail, in [14]. We also verified that the profiling phase
run on a second set of inputs gives similar IPC and power
dissipation values (�4% difference) for all applications on
our base architecture (described below).

The base processor studied is similar to the MIPS
R10000 and is summarized in Table 2. Several variations
are also studied to model an adaptive processor (described
in Table 3(a)). We allow adaptation of the issue width [17],
the instruction window size [8], and the number of func-
tional units [23]. All of these have a significant impact
on both power and IPC for these applications (Table 3(a)),
and so provide a range of interesting architectural configu-
rations. We did not study an in-order issue variation because

3With multithreading, the cost depends on the thread that ran before the
GSM frame, but such interactions are outside the scope of this paper.
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App. Input Size Media Frame Length

GSMenc 21.45s Speech 20ms
GSMdec 20s
G728enc 7.23s Speech 625�s
G728dec 20s
H263enc 4s Video 40ms
H263dec 18s
MPGenc 3.33s Video 33.3ms
MPGdec 15s
MP3dec 65.25s Audio 26.1ms

Table 1. Workload description.

our energy simulator (described below) does not model in-
order issue. For DVS, the voltages and frequencies consid-
ered for the discrete case are given in Table 3(b). For the
continuous case, the same frequency range is considered.
The voltages corresponding to the frequencies were derived
from the information available for Intel’s XScale proces-
sor [16]. This information gave usk andVthreshold for the

equation:f =
k�(Vsupply�Vthreshold)

2

Vsupply
. We used the equa-

tion to extrapolate the rest of the desired points.
We evaluate six processors in this study.NoAdaptis the

base processor.Arch supports only architectural adapta-
tion as in Table 3(a).DDVSandCDVSsupport only dis-
crete and continuous DVS, respectively.Arch+DDVSand
Arch+CDVSsupport both architectural adaptation and DVS
(discrete and continuous, respectively).

Base Processor Parameters
Processor Speed 1GHz
Fetch/Retire Rate 8 per cycle
Functional Units 4 Int, 4 FP, 2 Address generators
Integer FU Latencies 1/7/12 add/multiply/divide (pipelined)
FP FU Latencies 4 default, 12 div. (all but div. pipelined)
Instruction window 128 entries
(reorder buffer) size
Memory queue size 32 entries
Branch Prediction 2KB bimodal agree, 32 entry RAS

Base Memory Hierarchy Parameters
L1 (Data) 64KB, 2-way associative,

64B line, 2 ports, 12 MSHRs
L1 (Instr) 16KB, direct mapped
L2 (Unified) 1MB, 4-way associative,

64B line, 1 port, 12 MSHRs
Main Memory 16B/cycle, 4-way interleaved

Base Contentionless Memory Latencies
L1 (Data) hit time (on-chip) 2 cycles
L2 hit time (off-chip) 20 cycles
Main Memory (off-chip) 102 cycles

Table 2. Base (default) system parameters.

3.2 Performance and Energy Evaluation

We use the RSIM simulator [24] for performance eval-
uation, and the Wattch tool [4] integrated with RSIM for
energy measurement. All applications were compiled with
the SPARC SC4.2 compiler with the following options:–
xO4 –xtarget=ultra1/170 –xarch=v8plus.

Name Description Mean Mean
(difference from base) IPC Power(W)

base Base architecture 2.64 12.3
.5x IW 4-issue, 64 entry inst. win. 2.17 9.1
.5x IW/.5x FU 4-issue, 64 entry inst. win. 1.86 7.3

2 Int, 2 FP func. units
.25x IW/.5x FU 2-issue, 32 entry inst. win. 1.45 5.6

2 Int, 2 FP func. units
(a)

Freq. (MHz) Voltage (V) Freq. (MHz) Voltage (V)

100 0.7 600 1.3
200 0.80 700 1.45
300 0.85 800 1.6
400 1.0 900 1.7
500 1.15 1000 1.8

(b)

Table 3. (a) Architectural configurations con-
sidered. IPC and power are averaged across
all applications at 1GHz. (b) Voltage and fre-
quency combinations for discrete DVS.

To model power for architectural adaptation, we gener-
ate separate power models for each possible architecture,
as if each one were a separate processor. In particular, we
assume that when an architecture other than the base is se-
lected, the components not available in that architecture are
powered down, consuming no energy. As discussed in Sec-
tion 2.6, adaptation overheads are not modeled.

We verified our assumption that power dissipation is al-
most constant for all frames. The standard deviation nor-
malized to the mean of the per frame power for each appli-
cation and frame type on the base processor is always�3%.

3.3 Metrics and Deadlines

The primary metrics for our evaluation are energy con-
sumed and missed deadlines. A missed deadline occurs
when the execution time for a frame exceeds the deadline.
We also examine the mean per frame execution time slack
for each of the processors, not counting the frames with
missed deadlines. The slack is the difference between the
deadline and the execution time for the frame.

We consider two sets of deadlines, one loose and one rel-
atively tight, to understand the dependence of our algorithm
on this factor. The deadlines are shown in Table 4.

For the loose deadline, we use the application’s frame
length (from Table 1). This provides a bound on energy
savings. The only exception is MPGenc, for which even
NoAdaptcannot sustain the specified frame rate. Instead,
we use twice this frame length (66.6ms) as the deadline for
MPGenc.

We also study tighter deadlines. Real systems may run
multiple applications simultaneously. In such a system, the
admission control software typically provides a reservation
for each application that is less than the loose deadline. We
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GSMenc G728enc H263enc MPGenc
Loose 20ms 625�s 40ms 66.6ms
Tight 140�s 130�s 40ms 66.6ms

GSMdec G728dec H263dec MPGdec MP3dec
Loose 20ms 625�s 40ms 33.3ms 26.1ms
Tight 50�s 120�s 2.9ms 6.3ms 2.7ms

Table 4. Application deadlines.
DDVS CDVS Arch Arch+DDVS Arch+CDVS

Loose Deadlines
Mean 0.4% 0.2% 0% 0.6% 0.2%

Maximum 2.3% 1.1% 0% 3.4% 1.1%
Tighter Deadlines

Mean 0.5% 2.2% 0% 0.8% 2.0%
Maximum 2.3% 4.3% 0% 3.4% 3.6%

Table 5. Missed deadlines.

study tighter deadlines to represent this scenario.4

We choose each application’s tighter deadline to be three
times the maximum frame processing time onNoAdapt.
This rule ensures that the least aggressive architectures can
meet the deadline for most frames at least at the higher fre-
quencies, thereby providing some potential for adaptation.
For the video encoders, we use the same deadlines as before
because they were already relatively tight.

4 Results

We evaluated the six processors with both sets of dead-
lines. Section 4.1 presents the missed deadlines. Section 4.2
presents the energy consumption. Section 4.3 presents the
hardware configurations selected by the algorithm. Sec-
tion 4.4 presents a qualitative analysis of our algorithm and
discusses interaction of architectural adaptation with DVS.
Section 4.5 discusses the remaining potential.

4.1 Missed Deadlines

Table 5 shows the fraction of missed deadlines for the
different processors, for each deadline. The mean fraction
of missed deadlines averaged over all applications is very
small (� 2.2%) for all processors and deadlines. The maxi-
mum fraction for any application is also small (� 4.3%).

4.2 Energy Consumption

Figure 4 shows the energy consumption for all proces-
sors normalized toNoAdaptfor both sets of deadlines. Ta-
ble 6 shows the mean relative energy reduction for different
pairs of processors.

For both sets of deadlines, architectural adaptation and
DVS combined gives the lowest energy. However, DVS
alone gives most of this reduction.DDVS reduces energy

4There is clearly an interaction required between the admission control
software and our algorithm. This is beyond the scope of this study.

Savings from Relative to Loose Deadline Tighter Deadline
DDVS NoAdapt 78% 68%
Arch NoAdapt 22% 22%

CDVS DDVS 1% 13%
Arch+DDVS DDVS 17% 11%
Arch+CDVS CDVS 16% 5%

Table 6. Mean relative energy savings for dif-
ferent processor pairs.

by averages of 78% and 68% for the loose and tighter dead-
lines, respectively. Relative toDDVS, CDVSshows signif-
icant reduction for some applications (up to 10% for the
loose and 23% for the tighter deadlines). The average re-
duction is 13% for the tighter deadlines, but only 1% for
the loose deadlines. For MPGenc,CDVSperforms slightly
worse thanDDVSfor reasons explained in Section 4.4.1.

Architectural adaptation alone shows significant savings
(22% mean with both sets of deadlines), but these are
much lower than DVS alone. When added to DVS, for the
loose deadlines, architectural adaptation reduces energy by
a mean of 17% overDDVSand 16% overCDVS. The aver-
age reduction from adding architectural adaptation toDDVS
andCDVSwith tighter deadlines is more modest (11% and
5%, respectively), but each case shows significant benefits
(� 20%) for two or more applications.

Thus, architectural adaptation gives lower (though sub-
stantial) benefits than DVS when used in isolation, and
gives mixed benefits when used in addition to DVS.

4.3 Configurations Used

The frequencies exercised with DVS are as expected.
With loose deadlines, processors with DVS use the min-
imum frequency for all applications except the video en-
coders, showing there is considerable slack. For tighter
deadlines, more frequencies are exercised. The detailed
data appears in [15], and is not shown here for lack of space.

Architectural adaptation shows more intriguing results.
Figure 5 shows the architectural configurations exercised
for Arch, Arch+DDVS, andArch+CDVSfor each applica-
tion for the tighter deadlines. Each bar shows the percent-
age of frames that used a specific configuration. The figure
shows that different architectures are exercised depending
on whether there is DVS and whether it is discrete or contin-
uous. Architectural adaptation alone exercises the two least
aggressive architectures for all but a few frames. In contrast,
architectural adaptation used with DVS exercises the more
aggressive architectures quite frequently. In particular, con-
tinuous voltage scaling with tighter deadlines uses the most
aggressive architecture exclusively for six out of nine appli-
cations. It is also interesting that the architectures exercised
in the discrete and continuous cases have some differences.

These results lead to the non-intuitive conclusion that the
most energy efficient architecture is different for systems

7
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Figure 4. Energy consumption for (a) loose deadlines and (b) tighter deadlines.
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Figure 5. Architectural configurations used for tighter deadlines. Each application name (except
MP3) refers to two bars, with the encoder on the left and the decoder on the right.

that do or do not use DVS. Without DVS, less aggressive
architectures are more energy efficient, but with DVS, more
aggressive architectures are often more efficient.

4.4 Qualitative Analysis

This section presents a qualitative analysis to explain the
above results on the relative performance of the different
processors and the configurations they exercise. For under-
standing, we use the EPI versusImax graphs as in Fig-
ure 2 in Section 2.3. OnlyArch+CDVShas all points on
this graph available for adaptation; the rest of the processors
adapt between a subset of these points as discussed below.

For a predicted number of instructions (I) for a frame,
the lowest energy configuration that will meet the deadline
is the one with the lowest EPI andImax � I. Our algo-
rithm picks exactly this configuration with some exceptions

for Arch+CDVSthat are recalled below.

4.4.1 DVS Alone

Processors with DVS alone have points on only the base
curve in the EPI graph available.CDVScan adapt between
all points on the curve whileDDVScan only adapt between
the discrete points marked on this curve. SinceCDVSsup-
ports more points, it is likely to perform better thanDDVS.
The primary exceptions to this are if there is too much or
too little slack, in which case bothDDVS and CDVS run
at the minimum or maximum frequency. This occurs for
the loose deadlines; therefore,CDVSshows no added ben-
efit for any application except H263enc. MPGenc actually
sees lower energy savings forCDVSbecause the IPC predic-
tion used byDDVSis larger than the actual value for many
frames. This results inDDVSchoosing a lower frequency

8



thanCDVS(thereby saving more energy), but it also results
in more missed deadlines forDDVS(2.3% instead of 1.1%).

4.4.2 Adaptive Architecture Alone

For a processor with an adaptive architecture alone, the only
points available on the EPI graph are the ones at a fixed
(the maximum) frequency. The lowest of these varies from
application to application, but we expect the less aggres-
sive architectures (i.e., lower IPC) to have lower EPI at the
same frequency. In our suite, the least aggressive archi-
tecture has the lowest EPI for six of the nine applications
(the second least aggressive is lowest for the other three).
The architecture with the lowest EPI will be chosen if the
predicted instruction count does not exceed itsImax. For
larger predicted instruction counts, a more aggressive archi-
tecture will be chosen to make the deadline. In our appli-
cations, the two least aggressive architectures can meet all
deadlines except for some in MPGenc. Thus, architectural
adaptation provides substantial benefits over no adaptation.

For our applications and deadlines, DVS is always bet-
ter than architectural adaptation because DVS always has a
point with a lower or same EPI with a large enoughImax.
Nevertheless, it is possible for architectural adaptation to do
better than DVS, as illustrated in Figure 6. WithCDVS, this
is possible only if the EPI for a less aggressive architecture
at the maximum frequency (pointA in Figure 6(a)) is below
the base architecture curve. ThenArch will be better than
CDVSfor instruction counts that are (1) less than theImax

of configurationA and (2) greater than anImax where
the DVS curve (the base architecture) has the same EPI as
A (point B in Figure 6(a)). In our experiments, G728enc
and G728dec satisfy the first condition, but the instruction
counts were too low to see higher gains fromArch.

Arch can do better thanDDVS for the above case, and
also becauseDDVSmay not support the frequency at which
the base architecture would give the optimal EPI for a given
Imax (e.g., pointA in Figure 6(b)). Thus,DDVS will
choose the next supported frequency with the base architec-
ture (pointB). In that case, if a less aggressive architecture
(at maximum frequency) gives a better EPI than pointB,
and the architecture has a high enoughImax (point C in
Figure 6(b)),Archwill do better thanDDVS.

4.4.3 Continuous DVS Combined with an Adaptive
Architecture

Arch+CDVShas all points in the EPI graph available. Our
algorithm typically picks the architecture with the lowest
PA

IPCA
3 , and uses the frequency that will execute the pre-

dicted instructions within the deadline. If the computed fre-
quency is outside the supported range, the algorithm picks
the closest supported frequency and the lowest EPI archi-
tecture at that frequency that can meet the deadline.

E
PI

Base
Less aggressive

Arch better than

B A

DVS for these instruction counts

Imax
(a)

E
PI

Base
Less aggressive
Frequency
Steps

Arch+DDVS better

Arch and Arch+DDVS

than DDVS

better than DDVS

C
B

A
Y

1X

2X

Imax
(b)

Figure 6. Situations for which architectural
adaptation is better than or enhances DVS.

The architecture with the lowest EPI curve depends on
the tradeoff betweenPA and IPCA

3. For most of our
applications, this architecture is base. While it may seem
counter-intuitive for a more aggressive architecture to be
more energy-efficient than a less aggressive one, the higher
IPC of the former means that it can be run at a lower fre-
quency. The drop in EPI from the lower frequency may
overcome the largerPA due to the increased aggressiveness.

The above observation has significant implications for
architects. When considering performance, it is important
to target aggressive architectures at high frequencies. Such
a design poses formidable challenges, often forcing a com-
promise between IPC and increased complexity (e.g., clus-
tered microarchitectures). The above observation implies
that, with DVS, it is sufficient to target aggressive archi-
tectures for the lower frequency ranges for the purpose of
energy efficiency. Thus, adaptive processors could be de-
signed so that the more aggressive architectures are only run
at the lower frequencies for higher energy efficiency, result-
ing in relatively simpler designs for such architectures.

The base architecture has the smallestPA
IPCA

3 for six of
the nine applications (all except G728enc, G728dec, and
H263dec). However, for the loose deadlines, the predicted
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instruction counts for all frames result in frequencies be-
low the minimum supported for four of these six applica-
tions; therefore, they choose less aggressive architectures
and show significant energy reductions from the addition of
architectural adaptation toCDVS. For the tighter deadlines,
the base architecture is used for all six of the above appli-
cations; therefore, they show no benefit from adding archi-
tectural adaptation. Of the other applications, G728enc and
G728dec see the most improvement from adding architec-
tural adaptation (28% and 27%, respectively).

Effectively, we will see benefits from architectural adap-
tation added to continuous DVS only if (1) the architecture
with the lowest PA

IPCA
3 is not base, or (2) if the predicted

instruction count requires a frequency lower than the mini-
mum supported and another less aggressive architecture can
meet that count with a lower EPI at the minimum frequency.

4.4.4 Discrete DVS Combined with an Adaptive Archi-
tecture

Arch+DDVS is similar to Arch+CDVSexcept that on the
EPI graph, it has only the discrete points marked on all
curves available. Thus, in this case, our algorithm will be-
have in a manner similar toArch+CDVSwith one primary
exception: architectural adaptation may occur for instruc-
tion counts within the discreteImax ranges of the architec-
ture with the smallest PA

IPCA
3 . Figure 6(b) illustrates when

this can happen. In our experiments, we see this case occur
most for MP3dec, where architectural adaptation due to the
frequency step gives an extra 21% and 20% savings for the
loose and tighter deadlines, respectively.

4.5 Available Potential Exploited

We next seek to understand the extent to which our algo-
rithm exploits the available potential for energy savings. We
use the execution time slack for this purpose since the algo-
rithm seeks to minimize this slack to save energy. Figure 7
shows the mean slack for the tighter deadlines.

The remaining slack in all cases has four possible
sources: the minimum frequency of the adaptive system, the
finite number of frequency choices with discrete DVS, vari-
ability in IPC, and over-estimatation (error) in instruction
count prediction. The first two are inherent to the system
and would be present regardless of the control algorithm.

Where significant slack remains, the hardware usually
runs at the minimum frequency or suffers from the fre-
quency step. Thus, most of this slack is apparently due
to system limitations. For corroboration, we focus on
Arch+CDVSwith the tighter deadlines since it has the least
system constraints (fewest frames run at lowest frequency
and no frequency steps). For this processor, G728dec has
the largest remaining slack (18%). Half of this application’s

frames run at the minimum frequency, and so much of its
remaining slack is attributable to this system constraint.

The above observations lead us to conclude that our algo-
rithm is effective in eliminating most of the execution time
slack that is not inherent to the system.

5 Related Work

There has been a lot of work in the area of low power and
low energy systems. For lack of space, we focus our dis-
cussion on systems supporting DVS (Section 5.1), architec-
tural adaptation (Section 5.2), and both DVS and architec-
tural adaptation (Section 5.3) to save energy from dynamic
switching. Excellent coverage of circuit-level techniques
to automatically detect idle circuits and switch them off to
save power and energy appears in [2].

5.1 DVS

Significant work has been done on algorithms to control
DVS. In general, these algorithms predict future work and
set the voltage and frequency of the system based on this
prediction. Most of this work isintervalbased, meaning the
algorithm divides the execution time into fixed intervals and
predicts processor utilization in an interval as some function
of the utilization in the previous intervals [10, 11, 12, 20,
29]. The processor speed is set based on this prediction
and some heuristics. A recent study on a real system by
Grunwald et al. found that none of these heuristic policies
gave significant energy savings [11].

Our work differs and can give better results than interval-
based algorithms because we perform our scheduling on
frame boundaries. Frame based intervals are a natural fit
to multimedia applications. We additionally introduce lee-
way in our prediction strategy to explicitly minimize missed
application deadlines.

More recent work on DVS has also considered frame
boundaries. These studies show significant energy sav-
ings on a small set of applications or on synthetic bench-
marks [25, 26, 27]. Our energy savings results confirm these
results for a wider range of applications.

Recently,Šimuníc et al. have proposed a stochastic algo-
rithm for execution time prediction, but they do not seem to
consider under-predictions [28]. Lorch et al. propose PACE,
a framework that can work in conjunction with any existing
DVS algorithm [21]. Working with the existing prediction
algorithm, PACE proposes an optimal voltage/frequency
schedule which leads to better results. It would be interest-
ing to map these ideas to our algorithm, but this is beyond
the scope of this study.

None of the above studies consider architectural adapta-
tion, either by itself, or integrated with DVS.
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Figure 7. Slack for tighter deadlines.

5.2 Architectural Adaptation

Several researchers have proposed architectural adapta-
tions for energy savings including speculation control [22],
changing instruction window size [8, 17], changing the
active functional units [23], changing issue width [17],
and shutting off parts of the cache [1]. These techniques
have been evaluated primarily for SPEC and technical
benchmarks, and either ignore execution time degradation
(e.g., [17]) or try to minimize it (e.g., [22]). In contrast,
multimedia applications inherently have slack. Our algo-
rithm exploits this slack to save energy by increasing exe-
cution time without impacting perceived performance.

Ghiasi et al. propose switching between in-order and
out-of-order issue to exploit slack in multimedia applica-
tions [9]. They use IPC to determine when to switch. This
study evaluates the technique only on MPGdec, and does
not give energy savings results. Their algorithm also uses
fixed instruction count intervals.

5.3 Combined Architectural Adaptation and DVS

To our knowledge, Huang et al. propose the only other
framework capable of dynamically choosing multiple en-
ergy saving techniques related to architectural adaptation
and DVS [13]. That work is driven by general applications.
It requires software to provide the maximum slowdown al-
lowed in terms of reduction in IPC over a base configura-
tion, and a priority ordering of various energy saving tech-
niques in order of their effectiveness. Hardware to effect
adaptation is invoked every few milliseconds. An energy
saving technique is chosen to be used if the reduction in
the IPC due to that technique does not exceed the accept-
able slowdown. Our framework is different because (1) we
adapt at a frame granularity which is the typical granularity
at which multimedia tasks are scheduled, and (2) we ex-
ploit characteristics of multimedia applications discovered
in [14]. Specifically, we show that at the frame granular-
ity, the number of instructions rather than the IPC should be
used to control adaptation.

Our previous work studied execution time variability for
multimedia applications, and used those results to outline

an algorithm for controlling hardware adaptation to save en-
ergy [14]. The algorithm for discrete DVS presented here
is based on that work. This paper advances the previous
work by fully developing the discrete DVS algorithm, in-
cluding identifying an appropriate instruction count predic-
tor; by developing a simpler variation for continuous DVS,
for which the previously outlined algorithm may be sub-
optimal; by evaluating the algorithm extensively; and by
analyzing the interaction between architectural adaptation
and DVS.

6 Conclusions

High energy consumption limits the use of general-
purpose processors for the increasingly important workload
of multimedia applications, but hardware adaptation is a
possible solution to this. Two important forms of adaptation
proposed previously are architectural and voltage/frequency
adaptation (DVS). We have developed and evaluated an al-
gorithm for controlling a processor with an adaptive archi-
tecture and DVS in an integrated way. To our knowledge,
this is the only such algorithm targeted at multimedia appli-
cations and this is the first integrated evaluation of architec-
tural adaptation and DVS for multimedia applications.

We have three sets of findings. First, our algorithm is
effective at controlling adaptive architectures and DVS for
multimedia applications. The algorithm effectively elimi-
nates slack to save energy with few missed deadlines for the
systems studied. In cases where significant slack remains,
most of this remaining slack can be accounted for by the
inherent limitations of the adaptive system.

Second, we examine the interaction of DVS and architec-
tural adaptation. We identify the situations in which DVS
alone or architectural adaptation alone would perform best,
and when it is beneficial to add architectural adaptation to
DVS. For the applications, systems, and deadlines studied
here, we find that DVS alone gives most of the energy ben-
efits; architectural adaptation is beneficial, both alone and
with DVS, but helps less than DVS.

Third, in a seemingly counter-intuitive result, we find
that more aggressive (i.e., higher IPC) architectures are
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more energy efficient for many multimedia applications in
the presence of DVS, since they can be run at lower fre-
quency. This implies that for energy efficient adaptive pro-
cessors with DVS, it is beneficial to target aggressive archi-
tectures only for low frequencies, avoiding the complexities
of high frequency design for such architectures.

There are several directions for future work. First,
we need to consider multiprogrammed workloads, and un-
derstand the interaction with the operating system’s CPU
scheduler. Second, we would like to explore intra-frame
hardware adaptation. Third, it may be possible to improve
our instruction count predictors using insights from previ-
ous work. Finally, we are exploring the design of high IPC,
low frequency architectures for multimedia applications.
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