Preemption Handling and Scalability of Feedback DVS-EDF

Yifan Zhu and Frank Mueller *
Department of Computer Science/Center for Embedded Systems Research
North Carolina State University,Raleigh, NC 27695-7534

mueller@cs.ncsu.edu, phone: +1.919.515.7889, fax: +1.919.515.7925

ABSTRACT

Power-aware scheduling methods are a promising method to
exploit the voltage and frequency scaling features of modern
processors. We have devised a novel dynamic voltage scal-
ing (DVS) scheme under earliest-deadline first (EDF) pre-
emptive scheduling for hard real-time systems. This paper
goes beyond our previous results [5] and makes the following
contributions. First, we present the details of slack schedul-
ing and address the challenges of preemption handling in
DVS scheduling. Second, we present new results of our DVS
scheme that demonstrate the scalability of our approach for
task sets of different sizes. The results demonstrate that
our DVS scheduling scheme provides up to 37% additional
savings of the best published prior work with low runtime
complexity and it scales for varying number of tasks.

Keywords

Real-Time Systems, Scheduling, Dynamic Voltage Scaling

1. INTRODUCTION

Energy consumption is a major concern for mobile em-
bedded systems due to their limited battery lifetime. In
embedded hard real-time systems, temporal constraints due
to hard deadlines have to be met as well. The objective of
this work is to exploit energy conservation due to DVS /
dynamic frequency scaling (DFS) while guaranteeing feasi-
ble schedules. Since the energy consumption scales linearly
and quadratically with frequency and voltage modulations,
respectively, the combination of DFS and DVS can result in
significantly lower power consumption. Real-time schedula-
bility theory [15, 1, 21, 2, 3, 23] generally relies on a prior
knowledge about the worst-case execution time (WCET)
of each task, either statically or at admission time. How-
ever, experiments show a wide variation between longest
and shortest execution times for many embedded applica-
tions, ranging between 30% and 89% of the WCET [24, 26].

Prior work has shown the potential to save energy by
combining these scaling techniques with operating system
scheduling, and significant savings have been reported for
general-purpose computing systems [6, 9, 13, 16, 18, 25, 20,
8] as well as real-time systems [11, 12, 14, 22, 19, 10, 4, 17, 7]
detailed in the related work section. Qur work goes beyond
the techniques explored for real-time systems in these previ-
ous studies. We contribute a novel approach for exploiting
the slack time of a schedule and handle preemption through
reservation schemes. Slack time is generated by actual ex-
ecutions of tasks that complete under budget with respect
to their WCET. Our experiments demonstrate that the re-
sulting energy savings exceed those of previously published

*This work was supported in part by NSF grant CCR-
0208581.

09-1

work, they more closely resemble the optimal case, and they
scale for varying number of tasks.

Our work is based on the widely used variation of EDF
scheduling under frequency scaling. Consider a set of n tasks
T; with periods P; and WCETs C;. Let a = £i denote
the scaling factor representing the fraction of tﬁg current
processor frequency f; over the maximum frequency fp:

L s

Our DVS methods takes a novel approach to frequency scal-
ing for EDF. Instead of assuming uniform scaling over all
future tasks as in previous work, we scale the current task
T, (incidentally also the task with the earliest deadline).
The remaining tasks are assumed to execute at maximum
frequency fm, i.e., « = 1. This can be expressed as:
~1C%
«a i +

1)

<1

(2)

3 &Q

ie{l,...,n}\{k}

The motivation for only scaling the current task is that av-
erage execution times are typically smaller than worst-case
execution times C;, as explained before. If the current task
finishes early, its slack can be used by the next task to scale
frequencies again, and so on. Hence, early scaling is likely
to leave enough potential for later scaling. In addition, slack
due to future idle time can be utilized for scaling as well, as
detailed next.

2. IDLETIMEUTILIZATION

In our DVS scheme, there are two opportunities for slack
generation. One is due to early completion of tasks, which
is calculated and converted to slack dynamically. The other
is due to idle time resulting from idle slots in under-utilized
system configurations and is determined statically. In our
EDF-based scheduling, a maximum of 100% system utiliza-
tion can be achieved in theory. But in practice, even the
worst-case utilization of realistic real-time systems is gener-
ally lower than 100%. Here, we take a novel approach to
convert the under-utilized system time slots into slack. A
new task 7,41, called idle task, is introduced to the task
set to fill the gap between the actual utilization and 100%
utilization. It is called the idle task since its actual execu-
tion time is always zero while its worse-case execution time
is not. In other words,

Pop1=P,Crq1 = Poy1(1=U),cnq1 =0. 3)

Notice that any other choice of idle task periods is legal.
Most notably, the shortest period of any task P; and the
longest one P, are interesting choices. We consider these
options since they affect the complexity of our scheduling
scheme, as detailed later. The idle task always completes

early, thereby providing slack for other tasks in the task set.
Most significantly, we know in advance the number of idle
time slots (calculated in constant time). The total slack S
generated by idle task Tr41 for the interval [¢t1..42] is:

idle(tl..42) = %

t1..12

idle slots 4)

This idle time utilization approach is intriguing, not just
because of its simplicity, but also because it naturally fits our
slack-passing scheme. We choose the shortest task period in
the task set as the idle task’s period to ensure that there is
at least one idle time slot lying between any actual task’s
invocation to provide slack for that task.

3. SLACK GENERATION

Slack passing and new slack generation are key techniques
in our scheduling scheme. For n tasks, the algorithm takes
O(1) or O(n) time for an idle task period equal to the short-
est and longest task period, respectively. Slack passing is
based on the observation that slack generated by one task
will usually not be exhausted during the task’s execution
even if the task has been scaled as much as possible. The re-
maining slack (or part of the remaining slack) can be passed
on to the next task if some conditions are satisfied. This
slack is further adjusted and utilized to scale the next task
to suit the actual frequency levels, as depicted in Figure 1.

dl d2

o

T o Ll

t1

t2

t3 t4 t5 t6 t7 t8 t9

Figure 1: Slack Generation

Let task T1 with WCET C; and deadline t8 execute its
4™ invocation with an actual execution time of ¢1;. Assume
that when 77 was invoked at time t2, it inherited a total
slack of S from its previous tasks. 77 was then scaled to a
suitable level with that slack and completed at time t4. The
difference between C1 and ci; is the new slack dynamically

generated by T1. So the total slack available at t5 is

S=85+C1—cyy (5)

Note the fact that the actual execution time c¢;; may be
less than, equal to, or greater than the worst-case execution
time C; because of task scaling. If C; > ci;, Equation 5
just adds the slack produced by the early completion of T}
into the total slack. When C1 < ¢1;, Equation 5 will in
fact reduce the total slack because the task exceeded its slot
alloted at the highest frequency under EDF. (Notice that
exceeding a task’s WCET is feasible under DVS-EDF due
to slack exploitation as long as the available slack is not
exceeded as well.) The adjusted total slack (Equation 5)
cannot be passed in full to the next task T5. Due to EDF
scheduling, the next task T has a deadline equal to or larger
than Ti’s deadline t8. Hence, the amount of slack available
to T> depends on T3’s release time and deadline. This is
based on the observation that slack beyond a task’s release
time and deadline cannot be used by this task. Let r2 be

(early completion)

09-2

T’s release time and t9 be its deadline. First, T> can utilize
all of the slack (ro < t5), part of the slack (¢5 < r2 < ¢8), or
none of the slack (ro > t8). More abstractly, we can express
these portions in terms of the release time r.; within the
dynamic EDF schedule of the current task instance as well
as the initiation time I,; and completion time Fj; within the
static (worst-case EDF) schedule of the predecessor task’s
instance.

Co—cor if rej < Lok + ok
Scj = Fop — 1ej if Lop + cpp < 71ej < Fpp (6)
0 if rej > Fpi

Based on the above adjustment, T> can further utilize the
slack produced by the idle task before T%’s deadline t9 but
after T1’s deadline t8. We use formula 4 to find this slack
portion and add it to the total slack (with constant over-
head):

S =85 +idle(dl..d2) (idle slots) (7)

The idle function simply aggregates idle slots of the static
schedule in the specified interval while the old slack is de-
rived from Equation 5. In summary, Equation 7 gives us the
total slack that can be utilized by T5».

4. REFINED PREEMPTION HANDLING

When preemption occurs, the preempted task will relin-
quish its remaining slack and pass it on to the next task,
just as during task completion. It again follows a greedy
scheme in that we try to pass as much slack as possible to
scale running tasks and speculate on early completion to
aggregate more slack. But there are two differences here.
First, the preempted task itself cannot generate any slack
based on its own execution at preemption points since the
completion time is unknown (in the future). Hence, no addi-
tional slack is added to its inherited total slack. Second, the
preempted task still needs some time to complete its execu-
tion in the future. The remaining execution time must be
reserved in advance to avoid future deadline misses caused
by over-exploiting slack by other tasks. At preemption, the
expected remaining execution time of the preempted task
leftij is:

leftij =C; — cij X al

(8)
Our slack passing scheme promises that the preempted task
will not miss its deadline by reserving corresponding slack:

S =85-—left (future slots) 9)

The old slack is derived from Equation 7 and the resulting
slack S can be passed to the next task.

Future slot allocation in this manner is essential to ensure
the feasibility of the scheduling under DVS. Future slots
will be allocated only if the static schedule does not include
sufficient slots for the preempted task’s instance between
the preemption point and its deadline. We devised multiple
schemes for reserving these slots.

e Forward sweep: When a task T'1 is preempted and
requires left1; future slots, the preempting task T2
deduces this amount from its available slack S. If
lefti; > S, then T2 remains without slack. If another
task T'3 is initiated, the calculation repeats itself.

e Backward sweep: Future slots of T'1 are allocated in
idle slots within the static schedule from its deadline d1

backwards. Any of these idle slots become unavailable
for slack generation, i.e., these slots are excluded in
Equation 7.

An example is depicted in Figure 2. The upper time line
of idle slots presents a excerpt of the static schedule that
depicts idle task allocations, only. The lower time line shows
the dynamic schedule of tasks. Upon release of T2 at t2,
T1 is preempted. Let us assume that T'1 does not have
sufficient static slots (three slots) beyond t2 to finish its
execution. Hence, it has to rely on future idle slots. During
T?2’s execution, T'3 is released. Both T2 and T'3 have smaller
deadlines than T1 (d2 < d3 < d1). Subsequently, T'1 only

resumes some time after T'3 completes.
cont.

di

\j

t2 d2

Figure 2: Future Slot Reservation

Future slot allocation of 71 then depends on the cho-
sen scheme. The forward sweep results in zero idle slack
for T2 and T3 since idle slots during the tasks’ periods are
not sufficient to cover T'1’s future needs of three slots at
the respective invocation times. The backward sweep, on
the other hand, reserves the last 3 idle slots (from d1 back-
wards), such that T2 and T'3 may consume at least two and
one idle slots for scaling, respectively, even if they use up
their time quantum in full.

Overall, the forward sweep is not as greedy as the back-
ward sweep in the sense that earlier tasks may not be scaled
due to T'1’s future slots. A forward sweep is likely to result
in zero slack for the preempting task T2 if P2 << P1, i.e., if
its period is much shorter. There are simply fewer idle slots
available, which may not suffice to cover T'1’s future require-
ments. More idle slots past d2 will be required in this case.
The backward sweep always results in the most greedy ap-
proach in delaying the needs of T'1 as long as possible. This
is consistent with the observation that early completion is
likely to generated slack for each task, which is inherent to
our base algorithm.

5. FEEDBACK SCHEME

In a previous paper [5] we introduced a greedy task parti-
tioning scheme. In the ideal case, an energy optimal sched-
ule can be achieved when the processor changes its frequency
level frequently, even during the execution of a task. How-
ever, when taking into consideration the frequency and volt-
age scaling overhead, frequent changes can inflict consider-
able overhead, thereby resulting in anything but the optimal
schedule. To address this dilemma, we restrict the number
of frequency changes for each task to be at most two. Any
task is split into two parts (Ca and Cg). While the sec-
ond part (Cg) always executes at the maximum frequency
level, the first part (C4) can execute at the lowest feasible
frequency level, which depends on the ratio of C4 and Cg.

09-3

Initially, C4 is chosen as 50% of the WCET. Half of the
task’s execution is budgeted at a low frequency, half of it is
reserved at the maximum frequency. The task can still meet
its deadline, even if the worst case is exhibited. Initially, the
energy savings may already be significant but are likely to
digress from the optimal case due to inappropriate estima-
tion of the actual execution time. Over time, we replace Ca
with the actual execution time of the task through execu-
tion time fed back after each task completion. The mean of
execution times over past executions is utilized to anticipate
future C'4 portions. On the average, this scheme allows us
to complete the entire task’s budget at a low frequency level,
which closely approximates the optimal energy-saving sched-
ule. Let Cy4; be the anticipated C4 value when instance i of
a task is released. We define the following equations to get
the anticipated C4 value for instance 7 + 1:

Ca1 =05 x WCET

— CAiX(i'—1)+Ci i1

10
Cag+1y ; (10)

Here, ¢; is the actual execution time of the task’s instance
i. Fach time an instance completes execution, its actual
execution time is fed back and aggregated to anticipate the
next instance’s actual execution time, which is further used
to calculate an ideal scaling factor for that task.

6. PREEMPTION EXAMPLE

An algorithmic description of the optimistic scheduling
technique derived in the last section is depicted in Figure
3. The algorithm is a refinement of our previous work [5]
and reflects the backward sweep scheme. A forward sweep
changes the calculation of the slack during task activation
for the preemption case, as explained before. We use the
following notation:

e Tj;: the j-th instance of task T;

e 7j, pk : indices for the current and previous tasks rela-
tive to Ti;

now: the current time

ri;: the release time of Tj;

dij: the deadline of T3

C;: the WCET of T; (without scaling)

¢ij: the actual execution time of Tj; up to now (with
scaling)

e left;;: the remaining WCET of T;; (without scaling)
e slack: system current slack

e idle(t1..t2): the amount of idle slots between time
[t1,62]

slots(T;j,t1..t2): the amount of time slots reserved for
Ti; in the worst case between time [t1,t2]

The following example illustrates the behavior of our
feedback-DVS algorithm. Consider the task set and actual
execution times in Figures 4(a) and 4(b), respectively. This
task set results in the traditional EDF schedule without volt-
age scaling depicted in Figure 5(a). Figure 5(b) shows a
snapshots for preemption under our feedback DVS scheme.
At time 240, T1 preempts T'3 and inherits slack (2.0ms)
from T3. Since T'3’s remaining execution time is 0.5ms, T'1
reserves the corresponding time unit from its inherited slack,
which results in a final available slack of 1.5ms and makes T'1
run at 50% frequency. At time 242, T'1 completes and gener-
ates one unit of slack. The total slack becomes 1.54+1=2.5ms

Procedure Initialization
for each T}, € {T1,T5,..., T} do
Cavg_k — Ck/2
U5 +5+--+5
Poi1+ P1,Cry1 Pix (1 -U),cnq1 + 0}
let slack + 0

Procedure TaskA ctivation(T;;)
if processor was idle for d then
slack + slack — d
if Ty, was preempted/interrupted then
slack + slack — idle(d;;..dpr)
if leftpr > slots(Tpr, now..dp;)then
reserveyy, +— leftyor — slots(Tyr, now..dpy)
slack + slack — reserveyy,
else (T, completed execution)
if now > dyi, then
slack + slack — idle(dyr, now)
slack + slack + idle(dpy..dij)
al(—mln{?%,,%bf;— Z %
if (ar = 1) then
Ca+0
else
Ca + slack x at/(1 — o)
SetInterrupt(T;, Ca /o)
SetFrequency(a/)

Procedure TaskCompletion(T;;)

if T;; is preempted then
lefti(j_H) =C; — cij X al

else
slack + slack — ci; + C;
Cavg i ¢ (Cavgi X (J — 1) +ci5 X al) /5
leftiv1y = Cs
ifreserve;; > 0 then

release idle(now..d;;) up to |reservei;|

Figure 3: Pseudocode of Feedback DVS Scheme

and is passed on to the next task T2. T'2 discovers one addi-
tional unit of idle slack between T'1’s deadline 248 and T'2’s
own deadline 250 and adds it to the inherited slack. Us-
ing a total slack of 3.5ms, T2 runs at 256% frequency. Note
that the 3.5ms slack still leaves a slack of 0.5ms reserved
for the preempted task T3. At time 246, T3 resumes and
runs at 25% frequency without missing its deadline. This
demonstrates another property of our slack-passing scheme.
Whenever any slack is reserved for the preempted task, the
reservation can also be passed on to next tasks as long as
the preempted task does not resume execution.

In the next section, we compare the results of our algo-
rithm with another approach and demonstrate that our DVS
scheme results in a schedule that matches the optimal en-
ergy consumption more closely independent of the number
of tasks.

7. EXPERIMENTS

We implemented our algorithm in a simulation environ-
ment that supports EDF-based scheduling. We chose to
implement idle periods equal to the shortest period and for-

09-4

Task T; | WCET C; | Period P;
1 3 ms 8 ms
2 3 ms 10 ms
3 1 ms 14 ms

idle 1 ms 4 ms

(a) Task Set

Invocations

Task T; Ci1 Cij,j >1
1 2 ms 1 ms
2 1 ms 1 ms
3 1 ms 1 ms
idle 0 ms 0 ms

(b) Actual Execution Times

Figure 4: Sample Task Set

100% A T1T213 TL T2 T3 T1 T2 TL T3
75%
50%
25%
T I t
0 5 10 15 20 25 30
(a) No Scaling
0% 3 T3 TL T 3 T T2
75% cont.
50%
25%
238 240 242 246 248 250 254

(b) Our Feedback DVS at Time 240

Figure 5: Sample Execution

ward sweeping for future slot allocation upon preemption.
In the same environment, we also implemented a look-ahead
DVS algorithm [19], which is the best dynamic scheduling
algorithm for energy conservation that we know of. In order
to make a comparison, energy values produced in ideal op-
timal scaling levels without consideration of deadline misses
are also computed, which provide theoretical lower bounds.
We provide different frequency settings and assume the pro-
cessor will scale to the lowest level during idle time since it is
not realistic to put a processor into sleep mode for frequent
task releases. We restrict ourselves here to report results
based on four frequency settings and associated voltage lev-
els, as depicted in Table 1. The choice of DVS levels is
consistent with look-ahead DVS work [19] as well as exper-
imental work with the StrongARM [20].

frequency | voltage
25% 2V
50% 3V
75% 4V
100% 5V

Table 1: Processor Model for Scaling

Due to the feedback of our DVS approach, energy results
exhibited during the first hyperperiod are slightly worse due
to the fact that its initial tasks cannot accurately predict
actual execution times. After one hyperperiod, the values

60%

1 Our DVS on 3-task set
50% - I Our DVS on 10-task set
Optimal of 3-task set
40% T —o— Optimal of 10-task set
[
g
& 30% +
(8]
5
a
20% +
10% +
0% +——
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Utilization
(a) Energy Consumption for 26% of WCET
45% -
20% | [Our DVS on 3-task set
I Our DVS on 10-taks set
35% + .
Optimal of 3-task set
30% —=— Optimal of 10-task set
© 25% -+
(=]
8
& 20% +
(8]
o
o 15% +
10% +
5% —+
0% +—

5% L
0.1

0.2

0.3 0.4 0.5 0.6

Utilization

(c¢) Energy Consumption for 75% of WCET

0.7 0.8 0.9

45% T

1 Our DVS on 3-task set

I Our DVS on 10-task set
Optimal of 3-task set

—o— Optimal of 10-task set

40% +

35% +

30% +

25% +

Percentage

20% +

15% +

10% +

0% +—

0.1 0.2 0.3 0.4 0.5 0.6

Utilization

(b) Energy Consumption for 50% of WCET

0.7 0.8 0.9

40%

350 + I Our DVS on 3-task set

30% - I Our DVS on 10-task set
Optimal of 3-task setl

25% + .
—e— Optimal of 10-task set

20% +

15% +

Percentage

10% +

5% —+

0% +—

5% -+

-10% —~

0.1 0.2 0.3 0.4 0.5

0.6
Utilization

(d) Energy Consumption for 100% of WCET

07 08 09

Figure 6: Relative Energy Consumption Savings of Our Feedback DVS over Look-Ahead DVS

approach a stable point, and scaling is more accurate result-
ing in higher energy savings. In the graphs, we reported the
results for up to ten hyperperiods. Hence, our actual results
for later hyperperiods are even slightly better than shown.

We experimented with different task sets consisting of 3
and 10 tasks. Task set utilizations were varied between 10%
and 100% in increments on 10%. We also varied each task’s
actual execution time to be 256%, 50%, 76% and 100% of the
WOCET, respectively, to see the performance effects of our
algorithm in different situations.

Figures 6(a-d) summarize the results of our comparison
for 3 and 10 tasks. These figures depict the savings of (i)
our DVS scheme and (ii) of the lower bound, in both cases
relative to Pillai’s approach [19]. In other words, Pillai’s
Look-Ahead scheme is equivalent to 0%. The optimal curve
is an upper bound on the savings (or a lower bound on
energy consumption) that can potentially be achieved by
any DVS scheme.

For actual executions of 25% relative to the WCET, de-
picted in Figure 6(a), we observe close to optimal results of
our DVS scheme up to 50% utilization with savings of up

09-5

to 26% over the Look-Ahead method. The set of 10 tasks
shows higher savings than the 3-task set. Higher utilizations
also result in savings over Look-Ahead but here, the 3-task
set is performing better.

The highest savings of 37% for our scheme can be observed
for actual executions of 50% relative to the WCET and un-
der 40% utlization, as shown in Figure 6(b). The trends for
larger task sets to perform better under low utilization and
vice versa can be observed again.

With 75% of the WCET (Figure 6(c)), most savings over
Look-Ahead occur in low utilization cases while hardly any
differences can be observed on the high utilization end. This
trend continues for 100% of the WCET (Figure 6(d) where
our Feedback DVS performs slightly (but not significantly)
worse than the Look-Ahead method. These results are con-
sistent when we consider the greedy nature of our approach.
We speculate on early completion and greedily exploit all
slack available at the earliest point in time. However, if
tasks use 100% of their execution time, we cannot profit
from early completion. Our scheme also exploits idle slots
for scaling. But under high utilization (close to 100%), there

is little to no idle time left for scaling. As mentioned before,
actual executions are typically well below the worst case and
utilizations typically stay well below 100%, i.e., our feed-
back shines in the range that can typically be encountered
in embedded real-time systems.

Overall, our Feedback-DVS outperforms the Look-Ahead
DVS approach [19]. Both schemes reduce energy consump-
tion considerably compared to the upper bound without
scaling for tasks. Our scheme approximates the lower bound
more closely than the Look-Ahead scheme). In summary,
the experiments show that our approach scales for differ-
ent sizes of task sets and exhibits considerable savings for
most realistic scenarios of lower actual execution times up
to medium utilizations.

8. CONCLUSION

We presented refined details of our Feedback DVS schedul-
ing scheme. Our approach follows preemptive EDF schedul-
ing for hard real-time systems and guarantees feasible sched-
ules while preserving energy. This power-aware scheduling
method exploits voltage and frequency scaling features of
modern processors. We detailed the efforts of slack genera-
tion due to early completion, future idle slot budgeting and
slot reservation at preemption points. We also presented re-
sults that demonstrate the strengths of our approach. Our
Feedback DVS scheduling scheme provides up to 37% addi-
tional savings over the best published prior work, combined
with low runtime complexity, and scales for varying number
of tasks.

9. REFERENCES

[1] N. Audsley, A. Burns, R. Davis, K. Tindell, and A. J.
Wellings. Fixed priority pre-emptive scheduling: An
historical perspective. J. of Real-Time Systems,
8:173-198, 1995.
T.P. Baker. Stack-based scheduling of realtime
processes. Real-Time Systems, 3(1):67-99, March
1991.
Giorgio C. Buttazzo. Hard Real-Time Computing
Systems. Kluwer, 1997.
J. Kim D. Shin and S. Lee. Intra-task voltage
scheduling for low-energy hard real-time applications.
In IEEE Design and Test of Computers, March 2001.
A. Dudani, F. Mueller, and Y. Zhu. Energy-conserving
feedback edf scheduling for embedded systems with
real-time constraints. In ACM SIGPLAN Joint
Conference Languages, Compilers, and Tools for
Embedded Systems (LCTES’02) and Software and
Compilers for Embedded Systems (SCOPES’02), page
(accepted), June 2002.
K. Govil, E. Chan, and H. Wasserman. Comparing
algorithms for dynamic speed-setting of a low-power
cpu. In 1st Int’l Conference on Mobile Computing and
Networking, Nov 1995.
F. Gruian. Hard real-time scheduling for low energy
using stochastic data and dvs processors. In
Proceedings of the International Symposium on
Low-Power Electronics and Design ISLPED’01, Aug
2001.
F. Gruian and Kuchcinski. Lenes: task scheduling for
low-energy systems using variable voltage processors.
In Proceedings of ASP-DAC, 2001.

2]

B)

[4]

—_

(5]

[6]

[7]

(8]

09-6

[9] D. Grunwald, P. Levis, C. Morrey I1I, M. Neufeld, and
K. Farkas. Policies for dynamic clock scheduling. In
Symp. on Operating Systems Design and
Implementation, Oct 2000.

D. Mosse H. Aydin, R. Melhem and P.M. Alvarez.
Dynamic and aggressive scheduling techniques for
power-aware real-time systems. In Proceedings of 22nd
Real-Time Systems Symposium, December 2001.

I. Hong, M. Potkonjak, and M. Srivastava. On-line
scheduling of hard real-time tasks on variable voltage
processor. In Int’l Conference on Computer-Aided
Design, Nov 1998.

I. Hong, G. Qu, M. Potkonjak, and M. Srivastava.
Synthesis techniques for low-power hard real-time
systems on variable voltage processors. In 19th
Real-Time Systems Symposium, Dec 1998.

C. Krishna and Y. Lee. Voltage clock scaling adaptive
scheduling techniques for low power in hard real-time
systems. In 6th Real-Time Technology and
Applications Symposium, May 2000.

Y. Lee and C. Krishna. Voltage clock scaling for low
energy consumption in real-time embedded systems.
In 6th Int’l Conf. on Real-Time Computing Systems
and Applications, Dec 1999.

J. Liu. Real-Time Systems. Prentice Hall, 2000.

J. Lorch and A. J. Smith. Improving dynamic voltage
scaling algorithms with pace. In Proceedings of the
ACM SIGMETRICS 2001 Conference, June 2001.

D. Mosse, H. Aydin, B. Childers, and R. Melhem.
Compiler-assisted dynamic power-aware scheduling for
real-time applications. In Workshop on Compilers and
Operating Systems for Low Power, October 2000.

T. Pering, T. Burd, and R. Brodersen. The simulation
of dynamic voltage scaling algorithms. In Symp. on
Low Power Electronics, 1995.

P. Pillai and K. Shin. Real-time dynamic voltage
scaling for low-power embedded operating systems. In
Symposium on Operating Systems Principles, 2001.

J. Pouwelse, K. Langendoen, and H. Sips. Dynamic
voltage scaling on a low-power microprocessor, 2000.
Lui Sha, Ragunathan Rajkumar, and John P.
Lehoczky. Priority inheritance protocols: An approach
to real-time synchronization. IEEE Trans. Computers,
39(9):1175-1185, September 1990.

Y. Shin, K. Choi, and T. Sakurai. Power optimization
of real-time embedded systems on variable speed
processors. In Int’l Conf. on Computer-Aided Design,
2000.

J. Stankovic, M. Spuri, K. Ramamritham, and

G. Buttazzo. Deadline Scheduling for Real-Time
Systems. Kluwer, 1998.

J. Wegener and F. Mueller. A comparison of static
analysis and evolutionary testing for the verification of
timing constraints. Real-Time Systems, 21(3):241-268,
November 2001.

M. Weiser, B. Welch, A. Demers, and S. Shenker.
Scheduling for reduced cpu energy. In 1st Symp. on
Operating Systems Design and Implementation, Nov
1994.

W. Wolf. Smart cameras and embedded computing.
seminar presentation, January 2002.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

21]

[22]

23]

(24]

[25]

[26]

