
Abstract 
This  paper  presents  PapaBench,  a  free  real-time 

benchmark and compares it with the existing benchmark  
suites.  It  is  designed  to  be  valuable  for  experimental  
works in WCET computation and may be also useful for 
scheduling  analysis.  This  benchmark  is  based  on  the  
Paparazzi project that represents a real-time application,  
developed to be embedded on different Unmanned Aerial  
Vehicles (UAV). 

In this paper, we explain the transformation process  
of  Paparazzi  applied  to  obtain  the  PapaBench.  We 
provide  a  high  level  AADL  model,  which  reflects  the  
behavior  of  each  system  component  and  their  
interactions. 

As  the  source  project  Paparazzi,  PapaBench  is  
delivered under the GNU license and is freely available  
to all researchers. Unlike other usual benchmarks widely 
used for WCET computation, this one is based on a real  
and complete real-time embedded application. 

1. Introduction
When designing a real-time system, it is mandatory to 

have  a  predictable  timing  of  the  system.  While 
underestimating the execution time of  tasks  may cause 
catastrophic disasters especially in critical hard real-time 
systems,  overestimating  the  execution  time  may  also 
cause an oversizing of the running hardware.

To prove  these  timing  constraints,  it  is  essential  to 
know  the  Worst  Case  Execution  Time  (WCET)  of  a 
program running  on  a  particular  hardware system. The 
real-time  system  designers  use  it  to  check  the  timing 
deadlines satisfaction of the tasks while many real-time 
operating  systems  rely  on  this  information  to  perform 
scheduling.  Moreover,  in  embedded  system  design, 
the WCET of the software is  often required in order to 
decide how to partition hardware / software.

As any piece of  software,  the WCET computation 
needs  to  be  experimented,  evaluated  and  compared. 
To achieve this goal, this paper introduces PapaBench, a 
real  time benchmark,  describing a complete embedded 
system driving a UAV. Designed to be a valuable base 
for  experimental  work  in  the  WCET  computation  by 
static [1, 2, 3, 4, 5] or dynamic [6] analyses, it may be 
also very useful for scheduling analysis of applications 
since it provides concrete tasks and interrupts with their 
timing constraints and precedence rules. This benchmark 
will  make  experimental  results  more  realistic  than 
existing  WCET  benchmarks  [7,  8]  since  the  tasks 
encountered are  close  to  those  running in  real  avionic 

systems.
The  rest  of  this  paper  is  organized  as  follows. 

Section 2 provides a  complete description of  Paparazzi. 
Section 3  presents  our  PapaBench  model  in  AADL [9, 
10], which maps the Paparazzi  C sources into a list  of 
tasks and interrupts.  Section 4 describes the PapaBench 
genesis,  the  adaptation  to  compile  this  benchmark  on 
different architecture and the mapping of the application 
sources  with  the  AADL  model.  We  compare  our 
benchmark with existing real-time benchmarks in section 
5 and section 6 concludes this paper.

2. The Paparazzi Project
The  "Paparazzi"  project,  created  in  2003  by 

P. Brisset and A. Drouin [11, 12], is an attempt to build a 
cheap  fixed-wing  autonomous  UAV  executing  a 
predefined  mission.  It  develops  a  complete  system 
hardware and software that may be installed on a variety 
of aircrafts. Such a system has limited autonomies, a 2-
5 kg  total  aircraft  weight,  a  25 km  maximum  flight 
distance, a one hour flight duration, a 50 km/h maximum 
speed and a 500 g maximum payload.

It  comprises  an  embedded  system  and  a  ground 
station  as  shown  in  Figure  1.  The  embedded  system 

consists of a control card, a GPS receiver (μblox SAM-LS 
with 16 channels), a two-axis differential infrared sensor, 
a radio transmitter and servo-commands controlling gaz 
and  wings.  We  have  also  a  list  of  devices  supplying 
voltage, pressure, heading and so on. 

The  control  card  is  designed  as  a  bi-processor 
architecture,  separating  the  radio / servo  commands 
management from the autopilot task,  holding two RISC, 
ATMEL AVR micro-controllers [13]. MCU1 (ATMega8, 
called  Fly-By-Wire)  features  a  16 Mhz / 16 MIPS 
processor with 1 Kb SRAM, a 8 Kb flash memory and 
512 bytes EEPROM, that manages radio-command orders 
and  servo-commands.  MCU0  (ATMega128,  called 
Autopilot) provides a  16 MHz / 16 MIPS processor with 
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Figure 1: Paparazzi
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4 Kb SRAM, 128 Kb flash memory and 4 Kb EEPROM. 
It  runs  the  navigation  and  stabilization  tasks  of  the 
aircraft.  The micro-controllers  are inter-connected by a 
SPI serial link in a master (MCU0) / slave (MCU1) mode.

The  ground  station  consists  of  a  usual  radio-
command, a radio receiver and a laptop. The audio and 
video channels of the receiver are respectively connected 
to  the  laptop and to  a  video tape recorder.  The  laptop 
receives information about the running mission while a 
variety of interfaces visualize the flight  parameters, the 
flight path and all the messages held by the aircraft. 

Although  the  ground  station  is  largely  developed, 
we are  only  interested  in  the  embedded  system  that 
constitutes the core of our benchmark. Indeed, the ground 
station software does not exhibit any hard real-time code.

The  embedded  system  has  two  basic  operation 
modes:  "manual"  mode  and  "automatic"  mode.  In 
"manual"  mode,  MCU1  receives  the  radio-command 
instructions from the ground station and dispatches them 
to MCU0. MCU0 analyses this information, performs the 
stabilization  and  returns  the  flight  commands  to  the 
MCU1 that transmits them to the servos. 

On  the  other  hand,  in  "automatic"  mode,  MCU0 
manages the aircraft  navigation using the GPS and the 
infrared  sensor  while  MCU1  only  receives  the  flight 
commands and transmits them to the servos. In this mode, 
the aircraft has a specific mission defined in a high level 
language.  Thereby,  there  are  three  control  levels:  the 
mission, the navigation and the stabilization.

If MCU0, possibly crashed, sends no more commands 
and  the  radio-command  is  unreachable,  the system 
switches to the failsafe mode: the engines are stopped and 
the aircraft glides to the ground.

In  conclusion,  Paparazzi  is  a  realistic  real-time 
embedded system exhibiting a  quite  complex behavior. 
Yet,  unlike  most  equivalent  industrial  systems,  the 
sources are freely available.

3. Modeling with AADL
Unlike other WCET benchmarks, PapaBench is close 

to actual running systems, rendering the experimentation 
results  more  realistic  and  making  it  possible  also  to 
handle real effects of task chaining. In order to cope with 
the Paparazzi embedded system, we have first produced 
an  AADL  model  describing  the  whole  system.  Unlike 
other  benchmarks,  PapaBench  is  not  a  collection  of 
independent  programs  but  provides  a  full  application. 
Consequently, we need a way to split it in tasks and to 
model  the  dynamic  behavior  of  the  system:  AADL  is 
widely used in avionics field to achieve this goal.

3.1. About AADL

We have decided to depict this application in AADL 
(Architecture Analysis and Design Language) because it 
is  a  formal  specification  of  real-time  embedded,  fault-
tolerant,  securely-partitioned,  dynamically-configurable 
systems.  It  covers  the  domain  of  distributed  multiple-
processor  hardware  architectures  as  found  in  avionics, 
robotics and automotive.

A  system  modelled  in  AADL  consists  of  an 
application  software  mapped  to  an  execution  platform. 

It describes  how  components  are  combined  into 
subsystems, how they interact and how they are allocated 
to hardware components.

AADL has ten basic component's types divided into 
three categories: software, hardware and composite. Data, 
thread, thread group, process and subprogram constitute 
the  first  category.  The  hardware  category  holds 
processors, memories, buses and devices. The “system” is 
the only composite element. 

3.2. AADL Usage

An AADL model depicts the overall application with 
an accurate  model  of  the  whole  embedded system.  As 
AADL  provides  a  textual  and  graphical  view  of  the 
system,  the  user  can  easily  understand  the  internal 
application work.
Moreover,  the  well-defined  AADL  language  and  its 
openness may be used to perform automatic processing. 
For example, different schedules may be generated from 
the description:  in our  experimentation, we plan to  use 
CHEDDAR [14]  for this task. In particular, we plan to 
use the scheduling results  and the AADL model of the 
application to analyse the WCET of a whole application 
running cycle. This analysis may be used to evaluate the 
full system workload or to handle hardware dependencies 
between tasks in order to improve the WCET accuracy.

Finally,  although  the  model  is  based  on  a  real 
application  and  while  we  do  not  perform  functional 
simulation, we have some freedom to change it according 
to  our  experimentation  needs.  We  may  add / delete 
components, change components properties and / or add 
new properties to evaluate application parameters. As we 
are especially interested in timing constraints in WCET 
and scheduling analysis,  an AADL model  can be  very 
useful  to  evaluate  these  properties  without  having  to 
change the application structure.

3.3. Paparazzi AADL Model

We  found  the  different  control  levels  and  the 
corresponding  timing  constraints  in  the  report  on  the 
Paparazzi project [11].
Based on this reference, and after analyzing the C files of 
the embedded software, we have identified a list of tasks 
executed  in  this  application  as  well  as  their  timing 
constraints  and  their  precedence  rules.  We  have  also 
determined  the  interrupts  used  to  drive  the  hardware. 
Table 1 on next page shows the tasks and the interrupts 
executed  by  MCU1.  Table 2  displays  those  treated  by 
MCU0.  We provide  for  each  task  and  interrupt  an 
identifier used in the following section, a description and 
the appropriate frequency.

The  precedence  rules  that  sets  an  order  on  tasks 
execution are depicted as a graph in Figure 2. This order 
is required by data dependencies (edges marked with 1) 
or  control  dependencies  (edges  marked  with  2).  The 
dashed  arrows  reflect  the  precedence  rules  valid  in 
manual mode, the plain arrows represent the precedence 
rules in automatic mode and the thick ones are valid in 
both modes. The white circles reveal tasks executed only 
in manual mode,  the gray circles are tasks  executed in 
automatic mode and the dark ones are executed in both 
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modes.
In  manual  mode,  MCU1 receives  information  from 

the radio command (T1) and transmit it to MCU0 (T2). 
MCU0  executes  T6,  T7  and  T8  to  analyze  radio-
command  instructions,  to  perform  stabilization  and  to 
return the flight commands. Then T3 and T4 occurs to 
receive data from MCU0 and send it to servos. T4 enables 
the interrupt  I1 to send information to the servos.  This 
scenario persists as long as the system stays in this mode. 

The automatic mode is activated by a radio command 
order or when the radio command is no more reachable. 
AADL provides modes to record the system operational 
mode.  Variation  in  operational  modes  is  triggered  by 
events. 

In automatic mode, T9 analyses the messages held by 
the GPS.  The navigation (T10) is  realized at  the  same 
frequency  as  the  GPS  information  delivery,  it  also 
controls  the  mission  to  consider  exceptional  events.  In 
this mode T10, T11 and T12 occur always in this order 
before  the  stabilization  task  T7.  They  cannot  execute 
separately. They are followed by [T7, T8, T3, T4]. Note 
that the repetition of [T7, T8, T3, T4] is constrained by 
their period which is less than the period of T10, their 

execution  time  and  the  execution  time  of  the  previous 
tasks : these tasks may be viewed as the feedback control 
loop that must satisfy the navigation commands. In both 
modes, MCU0 reports changes in the aircraft path, in the 
operational  mode,  in  the  navigation  and  so  on  to  the 
ground station in a task executed at 10 Hertz. 

At the hardware level, the Paparazzi system has two 
subsystems, one for each micro-controller. Each system 
describes  the  execution  process  as  a  set  of  threads 
defining the tasks and interrupts executed in its context, 
the list of devices and the relations between components. 

3.4. Variable Complexity

In AADL, each component type can be characterized 
by a set of properties. To include the timing constraints in 
our model, we added for each thread the period property 
and  the  dispatch  protocol  that  can  be  either  aperiodic, 
sporadic or periodic. An aperiodic task occurs at arbitrary 
times  but  can  be  delayed  for  a  limited  time,  while  a 
sporadic  one  occurs  at  irregular  intervals  with  a 
maximum or minimum period between two consecutive 
executions. The  properties  of  the  components  can  be 
changed or extended in order to reflect the user demands. 

The  inputs / outputs  in  Paparazzi  are  managed  as 
aperiodic interrupts. Usually, the avionics software does 
not  support  interrupts  because  the  WCET  cannot  be 
accurately  computed  with  the  current  techniques. 
However,  we  are  not  compelled  to  use  the  static 
scheduling provided in the Paparazzi C code. One may 
consider the AADL model, its tasks (including interrupts) 
and  its  matching  code  in  C  sources  but  different 
scheduling  and  timing  properties  may be  experimented 
according to our needs.  This leads us to define several 
models, from the simplest one to the most realistic one.

We can begin to work with the simpler configuration 
of the system, assuming that all tasks and  interrupts are 
periodic.  Then,  we  may  improve  our  analysis  toward 
more complex configurations, close to the real application 
behavior.  In the AADL model,  it  is  easily achieved by 
varying the “Dispatch_Protocol” property value in the set: 
“periodic”, “sporadic” and “aperiodic”.

We can also consider the preemption between tasks. 
For  this  purpose,  we  extended  AADL  with  a  new 
property,  called  “Preemption”,  only  applicable  to  the 
threads. This property indicates the preemption type that 
may  be  one  of  “System_Preemption”, 
“Time_Sharing_Preemption” or  “Non_Preemptive”. We 
must  also choose a  preemptive scheduling protocol  for 
the processor.  This new property offers a framework for 
many kind of studies including WCET computation.

As  an  example  of  use  of  these  different  levels  of 
complexity, we plan to experiment an approach allowing 
the  WCET  computation  for  a  complete  cycle  of  the 
application. We intend to begin our WCET analysis with 
the basic level where we will consider periodic tasks and 
periodic interrupts with no preemption, in order to define 
a possible schedule with the scheduler. 

4. PapaBench Genesis
Source  code,  schematics  and  documentation  of  the 

Paparazzi project [12] are freely released under the GNU 
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Figure 2: Precedence Rules Graph

ID Description Frequency

T6 Managing Radio orders 40Hz

T7 Stabilization 20Hz

T8 Send Data to MCU1 20Hz

T9 Receive GPS Data 4Hz

T10 Navigation 4Hz

T11 Altitude Control 4Hz

T12 Climb Control 4Hz

T13 Reporting Task 10Hz

I4 SPI interrupt of MCU0 -

I5 Modem interrupt -

I6 GPS interrupt -

Table 2: MCU0 tasks and interrupts

ID Description Frequency

T1 Receive Radio-Command orders 40Hz

T2 Send Data to MCU0 40Hz

T3 Receive MCU0 values 20Hz

T4 Transmit Servos 20Hz

T5 Check Failsafe 20Hz

I1 Transmission Servos interrupt -

I2  SPI interrupt of MCU1 -

I3 Radio interrupt -

Table 1: MCU1 tasks and interrupts
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license. This section explains our analysis of Paparazzi, 
the transformation process to obtain PapaBench and the 
changes required to compile the benchmark. 

4.1. System Instantiation and Restriction

The  Paparazzi  distribution  is  only  available  for  a 
Linux  environment  but  may  be  configured  for  several 
aircraft  configurations.  As we are  not  interested  in  the 
details of the hardware control, PapaBench is only bound 
to the default aircraft configuration. It includes a MC3030 
radio-command, a Twinstar3 model-making aircraft, the 
flight  plan used during the  first  European MAV Flight 
Competition held in Braunschweig Germany on July 13 
2004  and  a  classic  ground  station  as  described  in 
section 2. 

The first generation of the embedded system enables 
us to save C header files, generated from XML sources. 
These  XML  files  contain  the  configuration  of  the 
airframe,  the  radio  commands  and  the  flight  plan  that 
constitutes the mission. They make the Paparazzi project 
applicable to many different aircrafts and allow to realize 
different flight plans. After the generation, we saved the 
generated  header  files  and  included  them  in  the 
benchmark without having to preserve the XML sources.

Then we analyzed the static sources and the generated 
headers in order to create PapaBench. We have excluded 
the sources of the ground station in charge of monitoring 
the flight, displaying statistics, programming the mission 
and  generating  the  embedded system sources:  they  are 
composed of a mixture of OCAML and Perl programs not 
really involved in the embedded system.

4.2. Mapping the AADL Model

Using the OTAWA project [15, 16], a framework to 
experiment  WCET  computations  and  binary  static 
analyses,  we have  developed a  program generating the 
Program  Call  Graph  (PCG)  of  an  executable  file  and 
some other statistics about the executed binaries. 
The PCG gives a general idea of the complexity of the 
application and it enables the user to have a clear view of 
the function call chains without reverting to the sources.
They also provide a  map of  the tasks identified in  the 
logical  analysis  of  the  system  to  the  matching 
implementation in the C sources.
The PCG of Fly-By-Wire and Autopilot are represented 
in  Figures  3  and  4  respectively.  The  grey  ellipses 
represent task implementation code. The identifier of this 
task is marked in a dark label.

In  the  Autopilot  PCG,  T10  is  course_pid_run  and 
either  nav_home  if  the  system is  in  failsafe  mode,  or 
nav_update in automatic mode. The dashed ellipses show 
interrupts interfering with the execution of the subsystems 
tasks. One may notice that some subprograms are not part 
of any task: this code is only called at startup time and is 
not involved in the system execution during the flight.

4.3. Compilation Details

Our objective  was  to  enable  a  user  to  compile  the 
benchmark,  without  the  requirement  of  the  whole 
Paparazzi  building  environment,  for  different 
architectures.  Until  now,  we  have  experimented  the 

compilation for PowerPC and x86 architectures using the 
GCC  compiler  suite  but  it  should  be  easy  to  adapt 
PapaBench to other configurations.

To  compile  the  benchmark,  one  must  extract  the 
archive  and  edit  the  default  configuration  files,  in  the 
conf/ directory, to change the top directory path and the 
compiler command according to the target  architecture. 
A simple  call  to  make  in  the  distribution  top  directory 
should compile everything.

It  is  important  to  mention  that  PapaBench includes 
headers  files  from  the  AVR  C  libc  library  project 
containing macros providing access to the AVR hardware 
registers  like  IO  ports,  timers,  and  so  on.  As  the 
benchmark does not target hardware simulation, either the 
hardware  registers  only  matter  by  their  temporal 
properties, or they may be simply considered as simple 
memory accesses.

As they are mapped to low addresses (between 0x20 
and 0x100), this might be impeding for some platforms 
where the addresses of  interrupts vectors appear at this 
location. Fortunately, we can get rid of this problem by 
assigning in the compilation flags a compatible value to 
the  SFR_OFFSET definition,  which  is  the  base  of  the 
hardware register addresses.

5. Comparison with Other Benchmarks
Benchmarking constitutes a critical part of the design 

process.  As real applications are not easily available to 
researchers due to the confidentiality criteria surrounding 
the industrial  estate,  real-time benchmarks are rare and 
often disconnected from the surrounding particularities of 
real-time systems. This section gives an overview of these 
benchmarks and compare them to PapaBench.

5.1. Other Benchmarks

Real-time  benchmarks  are  usually  a  collection  of 
basic algorithms found in real-time systems. 
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Figure 4: Autopilot PCG

Figure 3: Fly-By-Wire PCG
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MiBench [7], for example is a set of 35 embedded 
applications divided into six suites, each one targeting a 
specific area of the embedded market. The six categories 
are:  1) automotive  and  industrial  control,  2) consumer 
devices,  3) office automation, 4) networking, 5) security 
and  6) telecommunications.  All  the  programs  are 
available in standard C source code and are portable to 
any  platform  that  has  compiler  support.  Some 
modifications has been made to the source to promote the 
portability of the benchmark and the extensibility of the 
data set.  Where appropriate,  MiBench provides a small 
and large data set. The small data set represents a light-
weight,  useful  embedded application of the benchmark, 
while the large data set provides a real-world application. 
This  benchmark  has  many  similarities  to  the  EEMBC 
suite as described on their website [17] but MiBench is 
composed  of  freely  available  source  code.  We  only 
compare  the category  (1)  of  MiBench  suite  with 
PapaBench because other categories are not used in hard 
real-time systems.

The SNU Real-Time Benchmarks suite [8], consists 
of  C  sources  collected  from  numerical  calculation 
programs and DSP algorithms as binary search program, 
fast  Fourier  transform,  Fibonacci  series  function, 
insertion  sort,  square  root  calculation,  matrix 
multiplication and many other programs. The benchmarks 
have  the  following  structural  constraints:  no 
unconditional  jumps,  no  exit  from  loop  bodies,  no 
'switch'  statement,  no  'do...while' construct,  no multiple 
expressions joined by 'or', 'and' operations and no library 
calls.  These  restrictions  are  caused  by  the  limited 
capabilities of the compiler involved in the experimental 
analysis environment used by the benchmark creators.

The benchmarks mentioned above are disconnected 
from the surrounding particularities of real time systems. 
Their  functions  found  are  executed  alone  out  of  the 
context  of  a  real  application.  On  the  other  hand, 
PapaBench tasks are embedded in a real system with hard 
timing  constraints.  This  feature  allows  the  analysis  of 
effects  of  tasks  on  the  execution  of  other  ones.  It  is 
worthy  to  use  such  an  application  because  of  its 
similarities with the industrial real-time applications.

5.2. Code Characteristics

We have used the OTAWA framework to characterize 
the PapaBench code as well as MiBench and SNU R-T 
codes. Tables 3 gives, for each benchmark, the branching 
rate,  the  memory access  rate,  the  average  size  and  the 
maximum size  of  basic  blocks.  Figure  5  provides,  for 
each task of the benchmarks, the rate of memory accesses 
(black area), of branching instructions (gray area) and of 
other instructions.

First,  we  can  see  that  PapaBench  has  small  basic 
blocks except for T1 and T9 where the maximum size of 
basic blocks is 137 and 110 respectively: it seems that the 
radio management and GPS data analysis require a lot of 
computations.  SNU RT functions also have small basic 
blocks except for  jdfcint and MiBench_Automotive has 
big basic blocks for the majority of its tasks : MiBench is 
too much oriented toward computations unlike the other 
benchmarks.

We found a high level rate of memory accesses in the 
three  benchmarks which  reflects  the  importance  of  the 
memory hierarchy analyses  in  the WCET computation. 
While,  in  case  of  PapaBench,  it  is  caused  by  lots  of 
hardware  register  accesses,  other  benchmarks  seem  to 
have a too big memory foot print.

To  sum  up,  PapaBench  has  some  similarities  with 
other  real-time  benchmarks  as  they  all  have  close 
memory access and branching rates. This also confirms 
that these benchmarks are close to real applications. Next 
section will show that differences exist and these statistics 
are not enough to characterize a benchmark.

5.3. Loop Complexity

CFG and syntax tree representations are not enough 
for  static  WCET computation  since  they  don't  identify 
bounded  execution  paths.  Hence  these  representations 
have to be completed by some information to restrain the 
number of executable paths to consider in the analysis. In 
this  paragraph,  we  discuss  the  PapaBench  loop 
complexity and compares it with the other benchmarks.

Graph (a) of Figure 6 displays for each benchmark, 
the loops repartition among 5 nested levels. The darker 
column represents top level loops counts and the columns 
get brighter as the level is deeper. Moreover, graph (b) 
reflects the variability level of loops maximum iteration 
numbers.  We  distributed  benchmarks  loops  over  three 
levels:  1)  for  loops with fixed iteration number,  2)  for 
loops  with  little  variation  in  the  iteration  number 
(depending  on  parameters  with  a  constant  during  the 
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MI(Memory instruction rate), BI (Branching Instructions)
Figure 5: Instruction repartition 
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con t rol)

SNU R-T

RB RM ASBB MSBB

PapaBench 0,093 0,383 7,06 137

MiBench
(Automotive & 
industrial control)

0,181 0,275 4,63 150

SNU R-T 0,15 0,341 5,27 89
RB (Branching rate), RM (Memory access rate), ASBB & MSBB (average 

& maximum size of Basic Blocks)
Table 3: Statistics



function call) and 3) for loops with high variability degree 
(induced  by  loops  nesting  with  an  inner  loop  bound 
depending on the outer loop induction variable).

The loops encountered in PapaBench are mostly  for 
loops, we have only two while statements. The for loops 
maximum iteration number is fixed but the  while loops 
analyses  gives a  maximum iteration number of  0 or  1. 
Thus, we mostly do not have variations in loop bounds. 
Moreover, we can notice that PapaBench loops are simple 
with no nesting as shown in graph (a). On the other hand, 
MiBench  and  SNU-RT  benchmarks  contain  different 
nesting levels of  loops with variable iteration numbers. 
A high level of variability makes WCET analyses more 
complicated  or  increases  the  approximation  pessimism 
since the user have to provide an upper bound of loops 
iterations. If the loop bound is not represented in a fine 
way  (as  constants  for  example),  the  real  number  of 
iteration may be over-estimated due to loops nesting and 
the variability of loops bounds. However, the PapaBench 
case and our experience in avionics software show that 
we have more often simple loops with a fixed number of 
iterations.  This  makes  WCET calculation  accurate  and 
closer to the real WCET. In the other hand, it seems that 
other  benchmarks  exhibit  over-complicated  program 
structures.

6. Conclusion
Benchmarking  is  a  critical  problem  in  WCET 

computation  because  real  applications  are  not  easily 
available  due  to  the  confidentiality  criteria  surrounding 
the  industrial  estate.  In  this  paper,  we  introduced 
PapaBench,  a  complete  real-time embedded application 
derived from a real application used to control a UAV. 
This prominent feature makes it mostly useful in WCET 
and  scheduling  analyses  and  unique  among  the  other 
existing benchmarks. We have given a whole description 
from the system point of view, using an AADL model, 
and an instruction level analysis. We have also compared 
it  with  existing  real-time  benchmarks  to  denote 
similarities  and  advantages  that  makes  it  useful  and 
unique in WCET computation domain.

In the near future, we plan, to perform new analyses 
of  the  PapaBench AADL model:  we will  consider  two 
levels  of  complexity,  for  the  periodicity  of  tasks  and 
interrupts.  These  restrictions  will  be  used  to  validate  a 
WCET  computation  approach  based  on  the  whole 
application  cycle.  Note  that  PapaBench  sources  and 
AADL  model  are  available  at 
http://www.irit.fr/recherches/ARCHI/ 
MARCH/rubrique.php3?id_rubrique=22.
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(a) Loops Depth                (b) Loop Bound Variability
Figure 6: Loop Complexity Analysis 
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