Performance Study
of a Whole Genome Comparison Tool
on a Hyper-Threading Multiprocessor*

Juan del Cuvillo', Xinmin Tian?, Guang R. Gao', and Milind Girkar?

! Department of Electrical and Computer Engineering, University of Delaware,
Newark, DE 19716, USA
2 Intel Compiler Laboratory, SSG/EPG, Intel Corporation,
3600 Juliette Lane, Santa Clara, CA 95052, USA

Abstract. We developed a multithreaded parallel implementation of a
sequence alignment algorithm that is able to align whole genomes with
reliable output and reasonable cost. This paper presents a performance
evaluation of the whole genome comparison tool called ATGC — Another
Tool for Genome Comparison, on a Hyper-Threading multiprocessor. We
use our application to determine the system scalability for this partic-
ular type of sequence comparison algorithm and the improvement due
to Hyper-Threading technology. The experimental results show that de-
spite of placing a great demand on the memory system, the multithreaded
code generated by Intel compiler yields to a 3.3 absolute speedup on a
quad-processor machine, with parallelization guided by OpenMP prag-
mas. Additionally, a relatively high 1°* level cache miss rate of 7-8%
and a lack of memory bandwidth prevent logical processors with hyper-
threading technology enabled from achieving further improvement.

1 Introduction

Multithreading with architecture and microarchitecture support is becoming in-
creasingly commonplace: examples include the Intel Pentinum 4 Hyper-Thread-
ing Technology and the IBM Power 4. While using this multithreaded hardware
to improve the throughput of multiple workloads is straightforward, using it to
improve the performance of a single workload requires parallelization. The ideal
solution would be to transform serial programs into parallel programs auto-
matically, but unfortunately this is notoriously difficult. However, the OpenMP
programming model has emerged as the de facto standard of expressing paral-
lelism since it substantially simplifies the complex task of writing multithreaded
programs on shared memory systems. The Intel C++/Fortran compiler sup-
ports OpenMP directive- and pragma-guided parallelization, which significantly
increases the domain of applications amenable to effective parallelization. This

* This work was partially supported by NSF and DOE: NSF through the NGS pro-
gram, grant 0103723; DOE grant DE-FC02-01ER25503.

A. Veidenbaum et al. (Eds.): ISHPC 2003, LNCS 2858, pp. 450—457, 2003.
© Springer-Verlag Berlin Heidelberg 2003

A Whole Genome Comparison Tool on a Hyper-Threading Multiprocessor 451

paper focuses on the parallel implementation and performance study of a whole
genome comparison tool using OpenMP on the Intel architecture.

Over the last decades, as the amount of biological sequence data available
in databases worldwide grows at an exponential rate, researchers continue the
never-ending quest for faster sequence comparison algorithms. This procedure is
the core element of bioinformatic key applications such as database search and
multiple sequence comparison, which can provide hints to predict the structure,
function and evolutionary history of a new sequence. However, it has not been
until recently that whole genomes have been completely sequenced, opening the
door to the challenging task of whole genome comparison. Such an approach
to comparative genomics has a great biological significance. Nonetheless, it can
not be accomplished unless computer programs for pair-wise sequence compari-
son deal efficiently with both execution time and memory requirements for this
large-scale comparison. With these two constraints in mind, a new wave of algo-
rithms have been proposed in the last few years []. Some have showed to achieve
good execution time at the expense of accuracy and they require a large amount
of memory [3]. Others, based on heuristics such as “seed-extension” and hashing
techniques offer a better trade off between execution time and memory con-
sumption, and are the most commonly used nowadays [7]. More recently, the so
called Normalized Local Alignment algorithm has been presented [1]. This iter-
ative method uses the Smith-Waterman algorithm, which provides the accuracy
other methods might not have, and a varying scoring system to determine local
alignments with a maximum degree of similarity. It also solves the shadow and
mosaic effects but increases the algorithm complexity. However, we have showed
that by means of parallelization, the execution time for the Smith-Waterman
algorithm decreases almost linearly, and hence the original algorithm itself as
well as others based on the dynamic programming technique such as the NLA,
become affordable for small and medium size genomes [2, 15, 16].

We developed an OpenMP implementation of the affine gap penalties version
of the Smith-Waterman algorithm [10]. We also plugged our implementation into
the NLA algorithm framework, which consists of an additional few lines of code,
to verify the affordability of this method. The parallelization is achieved by
means of OpenMP pragmas, more specifically, an omp parallel pragma construct
that defines a parallel region, which is a region of the program that is to be
executed by multiple threads in parallel. The algorithm’s recurrence equation
results in a relatively regular application, with data dependencies that easily
fit into a consumer-producer model. Communication among threads under such
a model is performed by shared rotating buffers. At any given time, a buffer is
owned by a single thread. The contents of a buffer are consumed at the beginning
of the computation stage, and once a new result is produced by the current owner,
the buffer is released and its ownership automatically granted to the thread
beneath it. As a consequence, neither locks nor critical sections are needed to
prevent data-race conditions, a limiting factor in many parallel applications. Our
OpenMP implementation runs on a hyper-threading multiprocessor system in

1 A comprehensive study of related work can be found in the author’s Master thesis.

452 Juan del Cuvillo et al.

which shared memory enables the mentioned features, i.e. easy programmability
and minimum interthread communication overhead.

The rest of the paper is organized as follows. Section [2 describes our mul-
tithreaded parallel application. The results from a performance study based on
this implementation are presented in section Bl and our conclusions in section Hl

2 Parallel Computation of a Sequence Alignment

A parallel version of the sequence comparison algorithm using dynamic pro-
gramming must handle the data dependences presented by this method, yet it
should perform as many operations as possible independently. The authors have
showed that the similarity matrix calculation can be efficiently parallelized using
fine-grain multithreading |2, 5, If]. The implementation described in this paper
is based upon that but it exploits parallelism by using OpenMP pragmas.

2.1 Hyper-Threading Technology

Intel’s hyper-threading technology |4] is the first architecture implementation of
the Simultaneous Multi-Threading (SMT) proposed by Tullsen |9]. By making
a single physical processor appears as two logical processors, the operating sys-
tem and user application can schedule processes or threads to be run in parallel
instead of sequentially. Such an implementation of hyper-threading technology
represents less than a 5% increase in die size and maximum power requirements.
Nevertheless, it allows instructions from two independent streams to persist and
execute simultaneously, yielding more efficient use of processor resources, im-
proving performance.

As an example, Figure [[{a) shows a traditional multiprocessor system with
two physical processors that are not hyper-threading technology-capable. Fig-
ure [Q(b) shows a similar multiprocessor system with two physical processors
and hyper-threading support. With two copies of the architectural state on each
physical processor, the second system appears to have four logical processors.

2.2 An OpenMP Parallel Implementation

Our multithreaded implementation divides the scoring matrix into strips and
each of these, in turn, into rectangular blocks. Generally speaking, it assigns

Architectural State Architectural State Arch. State | Arch. State Arch. State | Arch. State
Processor Execution Processor Execution Processor Execution Processor Execution
Resources Resources Resources Resources

(a) Hyper-threading non-capable processors (b) Hyper-threading-enabled processors

Fig. 1. Traditional and HT-capable multiprocessor systems

A Whole Genome Comparison Tool on a Hyper-Threading Multiprocessor 453

the computation of each strip to a thread, having to 2 independent threads per
physical processor, i.e. one thread per logical processor.

A thread iterates over blocks in a strip by means of a for loop. At each itera-
tion, the computation of a block is followed by a communication phase in which
the thread sends the scores and other information from the last row of its block
to the thread beneath. In this way, alignments that cross processors’ boundaries
can be detected. Furthermore, since memory is shared by all processors this task
can be accomplished efficiently without copying data.

Given the sizes of the input sequences, the scoring matrix can not be kept
in memory throughout the computation as it is usually done when comparing
short sequences. Instead, a pool of buffers is allocated at the beginning of the
program execution and these buffers are used repeatedly by all threads to per-
form the computation. Each buffer holds only the scores of a single row of a
block, requiring each thread two of these to compute a block.

Before the computation starts, a single buffer is assigned to each thread but
the first, which gets all that is left in the pool. The first thread is the only with
two buffers available and, based on data dependencies, the only that can start.
When it finishes computing the first block, it makes the buffer containing the
scores for the block’s last row available to the thread below. To achieve this,
it updates a variable that accounts for the number of buffers assigned to the
second thread. Actually, this counter is updated in such a way it tells the thread
that owns it which iteration should be performed with the data it contains. In
other words, a thread just waits B until the producer signals it by updating this
counter that says which iteration the consumer should be starting. Additionally,
since this counter is only written by one thread, the producer, and read by the
thread below, the consumer, no locking mechanism needs to be implemented.

At the end of the communication phase, the first thread starts the next
iteration taking another buffer from the pool and reusing the one left from the
previous iteration. Meanwhile the second thread, which owns two buffers now,
starts computing its first block. When threads get a buffer to work with, it
means that the data dependencies are satisfied. They then can start computing
the corresponding block. Buffers released by the last thread are assigned back
to the first thread so they can be reused.

Since each block does not represent exactly the same amount of work, as
execution proceeds some threads might be idle waiting for the thread above to
release a buffer. Having a pool of buffers allows a thread to work ahead, assuming
a buffer is available, when an iteration is completed earlier. As an example of
this behavior, the first thread can initially work ahead since buffers are available
from the pool. It does not have to wait for a buffer to be used by all threads and
become available again before starting the second iteration. That would have
serialized the computation and made our implementation quite inefficient.

A snapshot of the computation of the similarity matrix using our multi-
threaded implementation on a quad-processor system with hyper-threading sup-
port is illustrated in Figure[2l A thread is assigned to each horizontal strip and

2 To avoid wasting cycles on this spin wait, the PAUSE instruction is used.

454 Juan del Cuvillo et al.

* 2 threads per physical processor
* Event-driven * Implicit communication/synchronization
* Asynchronous within threads

Pll ‘

O buffer free
O active buffer

—. data P2
_-- sync

P3| ‘

Pl

P2

P3

P4

P1

'F

P3 %

B

P4

Fig. 2. Computation of the similarity matrix on a SMP system

the actual computation is done on the buffers labeled B(usy). Data or buffers
assigned to the thread beneath are labeled F(ree). The figure shows the compu-
tation of the main anti-diagonal of the matrix. The arrows indicate data or buffer
availability signals. For example, processor 2 sends data (downward arrows) to
processor 3 and receives data from processor 1 [. Within a thread, that is, be-
tween blocks on the same strip, a synchronization signal is implicit (horizontal
arrows) as results from one iteration are available to the next without explicit
communication.

The number of possible alignments grows exponentially with the length of
the sequences compared. Therefore, we can not simply report all the alignments.
Instead we are interested in selecting only alignments with high scores. On each
node, as each strip of the scoring matrix is calculated, scores above a given
threshold are compared with the previous highest scores stored in an table.
The number of entries in the table corresponds to the maximum number of
alignments that a node can report. Among other information, the table stores
the cells’ position where an alignment starts and ends. This feature allows us
to produce a plot of the alignments found. A point worth noticing is that high
score alignments are selected as the similarity matrix is calculated, row by row,
since the whole matrix is not stored in memory.

3 Actually, threads 1 and 2 have worked faster than thread 3, which has now an
additional F(ree) buffer ready to start working on without delay.

A Whole Genome Comparison Tool on a Hyper-Threading Multiprocessor 455

3 Performance Analysis

3.1 The System Configuration

The experiments described in this paper were carried out on a 4-way Intel Xeon
processor at 1.4GHz with Hyper-Threading support, 2GB memory, a 32KB L1
cache (16KB instruction cache and 16KB two-way write-back data cache), a
256KB L2 cache, and a 512KB L3 cache. All programs were compiled with the
Intel C++/Fortran OpenMP compiler version 7.0 Beta [§].

3.2 Results

Our OpenMP parallel implementation was used to align human and mice mito-
chondrial genomes, human and Drosophila mitochondrial genomes, and human
herpesvirus 1 and human herpesvirus 2 genomes. We run each comparison sev-
eral times to consider the effects of the number of threads, block size, and having
hyper-threading enabled or disabled in the program execution time.

Figure [reports the absolute speedup achieved for the genome comparisons
mentioned above. Each comparison runs under three execution modes: SP, single
processor with a single thread, QP HT off, 4 threads running on 4 processors
with hyper-threading disabled, QP HT on, hyper-threading support enabled and
8 threads running on 8 logical processors. For each execution mode several block

4 T 4 T
50— 50 =3
200 == 200 /3
35 500 E— 351 [V —
|] 1000 = 1000 =3
000 1 0 —1

Absolute Speedup
o - ©
G- o ow
T T T T T T
| | | | |

Absolute Speedup
54 - N
G- e b ow
T T T T T T
| | | | | |

11

sp QP HT off QPHT on sp QP HT off QPHT on
Execution Mode Execution Mode
(a) Human vs. mice (b) Human vs. Drosophila
4 T200 =23
500 =2
35 1000 =1
2000
3L 4
o
5
2 25k B
2
wv 2+ -
&
=
S 151 B
E
< L i
05 q

)

SP QP HT off QPHT on
Execution Mode

(c) HHV1 vs. HHV2

Fig. 3. Absolute speedup for mitochondrial genome comparisons

456 Juan del Cuvillo et al.

Table 1. Workload characteristics for the human vs. mouse and human vs. Drosophila
genome comparisons with block width 1,000

SP| HT off| HT on SP|HT offf HT on
Execution Time (seconds) 30 9 9 28 9 9
Instructions retired (millions) 24,547 42,606| 44,819 24,429| 42,967| 42,347
pops retired (millions) 23,175| 52,376| 54,418|| 20,551| 49,942| 53,134
Trace cache delivery rate 74.40%|102.45%|87.96%|68.08%|98.11%|100.00%
Load accesses (millions) 9,990 17,035| 17,873|| 9,816| 16,658 16,662
L1 cache load misses (millions) 712| 1,365 1,236 758 1,349 1,222
L2 cache load misses (millions) 32 290 27 30 338 29
L1 cache miss rate 7.13%| 8.01%| 7.62%|| 7.72%| 8.09%| 7.33%
L2 cache miss rate 0.32%| 1.70%| 0.15%|| 0.30%| 2.03%| 1.74%
L3 cache miss rate 0.02%| 0.02%| 0.04%|| 0.02%| 0.02%| 0.05%
Branches retired (millions) 3,111 5,255| 5,528|| 3,318 5,823 5,473
Mispredicted branches (millions) 112 220 217 138 335 231
Branch misprediction rate 3.60%| 4.19%| 3.90%|| 4.16%| 5.75%| 4.22%

sizes are tested as well. The first observation we can make from both three
figures is that a 3.3 absolute speedup is achieved for the three test cases. Second,
performance does not improve when hyper-threading support is enabled. Runs
with 8 threads on 8 logical processors report basically the same execution time as
runs with 4 threads on 4 physical processors without hyper-threading support.

Table [l summarizes the workload characteristics for the human and mouse
and human and Drosophila genome comparisons, respectively. The first point
worth noticing is the similarity between both tables. The Drosophila mitochon-
drial genome is longer than mice mitochondrial genome. Therefore, the amount
of computation required to fill a larger similarity matrix is larger as well. How-
ever, the amount of work required by the second comparison to keep track of a
fewer number of alignments seems to compensate the total amount of work re-
quired by each workload. Another issue is the relatively high 1%¢ level cache miss
rate, always between 7% and 8%. Although we try to exploit as much locality as
possible by selecting an appropriate block width, this parameter can not be set to
an arbitrarily small value. When we do so performance decreases because of the
small computation-communication ratio. Execution resources might be shared
efficiently between logical processors running independent threads. However, if
the memory bus can not keep up with the application demands (remember the
high cache miss rate) instructions will not be able to proceed normally through
the pipeline since store and load buffers are waiting for memory accesses initi-
ated by previous instructions to complete. For this application, many of these
instructions represent a memory operation. However, memory operations have
to be queued because the memory bandwidth is limited (the same as what four
threads see in the QP HT off execution mode). Once the load and store buffers
are full, instructions can not be issued faster, regardless of hyper-threading, since
resources are unavailable.

A Whole Genome Comparison Tool on a Hyper-Threading Multiprocessor 457

4 Conclusions

We have developed a multithreaded parallel implementation of a dynamic pro-
gramming based algorithm for whole genome comparison that runs on an SMP
system and meets the requirements for small and medium size genomes.

The experimental results show that despite being a memory bound applica-
tion, which places a great demand on the memory system, the multithreaded
code generated by Intel compiler yields to a 3.3 absolute speedup on a quad-
processor machine, with parallelization guided by OpenMP pragmas. Addition-
ally, a relatively high 1°¢ level cache miss rate of 7-8% and a lack of memory
bandwidth prevent logical processors with hyper-threading technology enabled
from achieving further improvement.

As future work we intend to investigate why the hyper-threading does not
bring additional performance gain. In particular, we will focus on the overhead
caused by the loop with the PAUSE instruction, which accounts for 5% of the
execution time, and four load-store operations that account for more than 90% of
the L2 cache misses. Should we tune our application such that hyper-threading
effectively reduces these two factors, we can expect a significant performance
improvement.

References

1. A. N. Arslan et al. A new approach to sequence comparison: Normalized sequence
alignment. Bioinformatics, 17(4):327-337, 2001.

2. J. del Cuvillo. Whole genome comparison using a multithreaded parallel imple-
mentation. Master’s thesis, U. of Delaware, Newark, Del., Jul. 2001.

3. A. L. Delcher et al. Alignment of whole genomes. Nucleic Acids Res., 27(11):2369—
2376, 1999.

4. D. T. Mar et al. Hyper-threading technology architecture and microarchitecture.
Intel Tech. J., 6(1):4-15, Feb. 2002.

5. W. S. Martins et al. Whole genome alignment using a multithreaded parallel
implementation. In Proc. of the 13th Symp. on Computer Architecture and High
Performance Computing, Piren6épolis, Brazil, Sep.10-12, 2001.

6. W. S. Martins et al. A multithreaded parallel implementation of a dynamic pro-
gramming algorithm for sequence comparison. In Proc. of the Pacific Symp. on
Biocomputing, pages 311-322, Mauna Lani, Haw., Jan. 3—7, 2001.

7. S. Schwartz et al. PipMaker — A web server for aligning two genomic DNA
sequences. Genome Res., 10(4):577-586, April 2000.

8. X. Tian et al. Intel OpenMP C++/Fortran compiler for hyper-threading technol-
ogy: Implementation and performance. Intel Tech. J., 6(1):36-46, Feb. 2002.

9. D. M. Tullsen et al. Simultaneous multithreading: Maximizing on-chip parallelism.
In Proc. of the 22nd Ann. Intl. Symp. on Computer Architecture, pages 392—403,
Santa Margherita Ligure, Italy, Jun. 1995.

10. M. S. Waterman. Introduction to Computational Biology: Maps, Sequences, and
Genomes. Chapman and Hall, 1995.

