
Proceedmgs of the Third Intemadonal Conference on Machine Learning and Cybernetics, Shanghai, 26-29 August 2004

HYBRID EARLIEST DEADLINE FIRST /PREEMPTION THRESHOLD
SCHEDULING FOR REAL-TIME SYSTEMS

DONG-ZHI HE’, FEI-YUE WANG”*, WE1 LI, XIANG-WEN ZHANG

The Key Laboratory of Complex Systems and Intelligence Science, Institute of Automation, Chinese Academy of

The Department of Systems and Industrial engineering of the University of Arizona, Tucson, Arizona 85721 USA

I

Sciences, Beijing 100080, China

E-MAIL:shedz@sina.com
2

Abstra&
As embedded systems geting increasLogly complex,

preemption overheads b m e a serious load problem for
many miemhipbased application specffic systems, and
s o ” e s may even jeopardize the system schedulabllity.
This paper presents a dynamic preemption threshold
scheduling (DPT) that integrates preemption thmhold
scheduling into the earliest deadline first. The DPT scheduling
can effectively reduce context switching by thresds ssslgnment
and changing task dynamic preemption threshold at runtime.
Meanwhile, because the algorithm is based on dynamic
scheduling, it can achieve higher pmxssar utilizstion with
relatively low cos18 in preemption switching and memory
requirements. The DlT scheduling can also perfectly schedule
a mixed task set with preemptive and non-preemptive tasks,
and subsumes both as special caws.

Keywords:
heemption threshold scheduling; earliest deadline first;

appllcation s i x d k operating systems; &-time system;
dynamic scheduling; threads

1. Introduction
* iir

Real-time systems are a type of systems whose perfect
control depends on not only correct calculating results but
also the completing time of control flows, that is, each
control flow must complete before specified time
constraints. Since Liu & Layand proposed rate-monotonic
(RM) and earliest deadline first (EDF) scheduling in their
classical work [I], the study on preemptive scheduling is
almost equivalent to the study on real-time scheduling
algorithm. Even it is believed that kernel mechanisms of
real-time systems must have preemptive function. Though
preemptive schedulers have more advantages than
non-preemptive schedulers, such as higher CPU utilization,
flexible scheduling, excessive context switching overheads
and more memory requirements and are also increased at
runtime that undermine these advantages.

In the recent decades, there appears a new trend,
application specific operating systems (ASOS), in
embedded systems developing [2,3]. ASOS is oriented
specific application and suits web development, which
often belongs to systems on chip (SOC). One key theme of
ASOS is to provide higher performance and lower cost.
Hence, it demands that resources of both hard and soft ware
of the system are reconfigurable and reusable from design
to runtime.

According to the basic demands of SOC. in this paper
we present a novel scheduling algorithm, named dynamic
preemption threshold (abbreviated DFT) scheduling, which
integrates preemption threshold scheduling (FTS) into the
EDF. The DIT algorithm can perfectly schedule a mixed
task set with preemptive and non-preemptive tasks, and
subsumes both as special cases. Thus .it remains the
scheduling flexibility and higher processor utilization, and
also decreases unnecessary context switching and memory
requirements at runtime.

The rest of the paper is organized as follows. Section 2
introduces some previous related work. Section 3 presents
our scheduling model. Section 4 contains the detail on how
to calculate preemption threshold. Section 5 ends the paper
with some concluding remarks.

2. Related work

433

In applying scheduling theory to practice, Bums &
Wellings observed the impact of context switching to
preemptive scheduling and gave task execution diagram
with overheads (see Figure 1). From Figure 1, it is easy to
see that context switching overheads become significant
when multi-tasking incurs or the task granularity i s small.
These costs may jeopardize the system schedulability.

To decrease the multi-context-switching, a scheduling
with preemption threshold (ITS) was presented in [4,5].

0-7803+W3-2I04&20.00 WOO4 IEEE

Authorized licensed use limited to: North Carolina State University. Downloaded on March 16, 2009 at 11:50 from IEEE Xplore. Restrictions apply.

mailto:E-MAIL:shedz@sina.com

Proceedings of the Third International Conference on Machine Learning and Cybernetics, Shanghai, 26-29 August 2004

Taskl
Task2

According to the FTS, each task T is assigned a fixed

Deadline (bytes)
1 5 5 20
3 9 9 4 0

t t
(mu, -h p k%*Ol ry . . y 1 .

A B C D A'

Figure 1. Task execution time with overheads
basic priority ni by an optimal priority assignment
algorithm and a preemption threshold pi with pi 2 n j .
When task is not executing, its priority is equal to its basic
priority; and when it is under execution, its priority
simultaneously raises to its preemption threshold. In other
words, when a task wants to interrupt another executing
task, its basic priority must be higher than the preemption
threshold of the executing task. This mechanism has been
successful in implementing in the SSX kemel (from
REALOGY) and the ThreadX kernel (from Express Logic).
In essence, the FTS is a dual priority algorithm, which can
automatically generate an implementation model with
multi-thread from a design model [41. It is easy to provides
an effective approach to automatic implementation of
ROOM-based (Real-time Object Oriented Modeling)
designs using PTS [6,7]. Whereas since the PTS is based on
static priority scheduling, the processor utilization can not
be too higher. For example, there is a task set characterized
in Table 1, which utilization is 100%. Under FTS algorithm,
Task3 can not meet its deadline no maner how to raise its
preemption threshold.

Table 1. The definition of a task set
I Name I Execution I Period I Relative I Stack I

Task3 I 3 1 18 1 18 I 40
Task4 I 6 1 20 I 20 I 70
Using EDF scheduling the task set is schedulable, but

the amount of context switching and the memory
requirements are increased [see Figure 2.,4]. However, if
Taskl and Task2 are non-preemptive, the task set is still
schedulable and the overheads and the memory
requirements are accordingly decreased [see Figure 2.B].
Note that the cost at runtime can be further reduced. Our
fundamental motivation is to develop a scheduling
algorithm based EDF, which can achieve higher processor
utilization in comparison with the static scheduling and
meanwhile minimizes the context switching.

Having observed the similarity between the stack
resource policy and FTS, Gai et al. presented stack resource
policy with threshold (SRFT)[8]. The SRFT gives an
approach to transform a static model to dynamic model
seamlessly. From above analysis and Figure 2, it is easy to
see that the reduction of task preemptions accompanies
with the reduction of memory requirements. The goal of
SRFT is just for minimizing RAM memory requirements,
so the overheads may not be minimal.

The scheduling presented here extends FTS and SRFT
at many aspects. First, the DPT scheduling can achieve
greater processor utilization than PTS, theoretically even up
to all of a processor capacity. Second, the mechanism of the
DFT works by the comparison between preemption
threshold and preemption level of various tasks; however,
FTS do it by the difference between preemption threshold
and the basic priority of tasks. Third, in contrast to SRFT,
the main goal of the DPT is to minimize context switching
instead of achieving the smallest stack space in SRFT. The
preemption threshold in the DFT is changeable unlike that
in FTS and SRFT. which is fixed at the whole runtime.

t

Figure 2. The difference between preemptive and non-preemptive scheduling

434

Authorized licensed use limited to: North Carolina State University. Downloaded on March 16, 2009 at 11:50 from IEEE Xplore. Restrictions apply.

Proceedings of the Third International Conference on Machine Learning and Cybernetics, Shanghai, 26-29 August 2004

3. The model

3.1. Basic terminology

The key theme of a scheduling is to provide a group of
rules that determine which task can be executed at each
moment to meet its own time constraints. In essence, a task
is a series of instructions to complete a relative independent
function. A task, Ti, can be characterized by 4-tuple
(S&D,Pi), where Si is the release time, Cj is the maximum
execution time each of its cycles, Djis its relative deadline,
and Pi is a constant interval between requests for periodic
tasks and a minimum interval between request for sporadic
tasks. To distinguish from the relative deadline, di is used
to refer to an absolute deadline. The task set il ,
i l = (T (C ~ : , D ~ , e) : 0 9 i < n ; n ~ N j , consists of n
independent tasks. Tasks of real-time systems are
characterized with stringent timing constraints, that is, each
task must meet its deadline. A system is said schedulable if
all deadlines of tasks requests are met.

A job is an instance of a task, i.e., a request of the task.
We denote the k" request of task T. by Ji ,r , i.e., the

k" job. If tk and tk+, are the release time of jobs
and Jj,k+, respectively, then task is period task when
tt+, = t , +e ; and task T. is sporadic task when
ft+, 2 t, + 2 . A task must be in one of three states at any
runtime of a processor: passive, prepared and executing.
The passive denotes that the task hasn't been released yet,
or it has already completed its current period's workload.
The prepared denotes that the task has been released, and
has not started execution of its current period's workload.
The executing means that the task has captured CPU, that is,
it is under execution. Our task model is periodic or sporadic
and is scheduled on uni-processor.

3.2. Dynamic preemption threshold policy

In this section, we describe the dynamic preemption
threshold policy in terms different from ITS proposed by
Saksena & Wang [6, 111. The dynamic preemption
threshold mechanism changes preemption level, rather than
the basic priority nj in various task states to determine
which task is executed currently. The mechanism is
elaborated as follows:

First, each task I: is given a basic priority ni
online using EDF meanwhile, every task is assigned a
preemption level qj which is inversely proportional tn the

relative deadline D,:, i.e. qi - ; in addition, every task
is assigned preemption threshold p, with pi 2 q j , of
which calculation includes initial and dynamic preemption
thresholds. The various jobs of a same task have the
identical preemption level and identical initial preemption
threshold, but the dynamic preemption thresholds are
different. In our model assume that time is discrete and is
indexed by the natural numbers.

Each task is assigned different basic priority ni at
different run time by EDF. Because EDF is optimal for
synchronous and asynchronous tasks, the dynamic
preemption threshold can optimally assign task priority
online. Unlike the PTS assigns a fixed priority for each task
by another optimal algorithm. If a task is in the passive or
prepared states, the decision whether to be scheduled
depends its preemption level, whereas if it is executing, its
preemption threshold works. For instance, if task Ti
wants to preempt task T , these conditions, ni > ni and
pi > p, , must be satisfied. The FCFS (first come fust

service) breaks the identical deadline tie of tasks.
Theorem Z:Ataskset Q = (T . (C . , P .) : l < i < n) sortedin

non-increasing order by preemption level is schedulable
under dynamic preemption threshold scheduling, if it
satisfies condition'(1) and (2).

I l l

Where

'={:-' ;others
; 3 k , l S k L i ; p j 2 p k

The proof is skipped over for limit of the paper length.

33. Thresholds assignment

The introduction of thread is a useful performance to
create ROOM-based implementation models [6,7]. Now we
describe a definition which is tightly related to the
assignment of thread.
Definition I: Under dynamic preemption threshold, task

T. and T, are mutually non-preemptive if qj < p i and

A thread is a subset of a task set within which all tasks
must be mutually non-preemptive. To find a method to

PjSPi.

435

Authorized licensed use limited to: North Carolina State University. Downloaded on March 16, 2009 at 11:50 from IEEE Xplore. Restrictions apply.

Proceedings of the Third International Conference on Machine Learning and Cybemetics, Shanghai, 26-2!) August 2004

partition mutually non-preemptive tasks into a thread is
called thread assignment. If the numbers of threads are
minimal under a assignment rule, the assignment method is
believed to be optimal. Imitating the assignment of
minimum number of thread in 14.51, we present a thread
assignment for dynamic preemption threshold, named
CreateMinThreadpigure.31. The CreateMinThread
algorithm is different from the thread assignment in PTS:
The latter assigns threads by the comparison between
threshold and basic priority of tasks from low to high
threshold, whereas the former works by the difference
between preemption level and preemption threshold from
high to low preemption level. Thus, it is convenient for
calculating preemption power in dynamic threshold
calculation. The algorithm assumes that all preemption
threshold of the task set are calculated. The task set is
sorted in non- increasing order by the initial preemption
level. From the first task, mutually non-preemptive tasks
itre assigned the same thread until no tasks remain the
sorted list. Algorithm Assign-Thread is optimal (proof is
SU

F

4.

In this section we will describe preemption threshold
calculations that are the key parts for DFT scheduling.

Preemption threshold calculation consists of two partitions:
initial preemption threshold calculation and dynamic
preemption threshold calculation. We will elaborate the
calculations in the following part of this section.

4.1. Initial preemption threshold calculation

The initial preemption threshold belongs static priority
and is calculated "offline" by the systems. The algorithm
for calculating initial preemption threshold works as
follows (see Figure 4):

Step 1 : To sorted all tasks in non-increasing order by
their preemption level and let p, = p, .

Step 2: To test the schedulability of the task set using
condition (1).

Step 3: To raise the task preemption threshold starting
from the last task T , and to test the schedulabilty of the
task'set using condition (2) until the condition is not
satisfied. The final preemption threshold is equal to the last

ure 4. The algorithm of calculating initial preemption
threshold

4.2. Dynamic preemption threshold calculation

Except a 4-tuple description for a task, each job of a

436

Authorized licensed use limited to: North Carolina State University. Downloaded on March 16, 2009 at 11:50 from IEEE Xplore. Restrictions apply.

Pioceedmgs of the Third International Conference on Machine Learning and Cybernetics, Shanghai, 26-29 August 2004

Name

task is defined by 2-tuple where yj,k is .the

release time of job Ji ,x , i.e. the kIh release time of task

T ; is the earliest time, relative to the release time
yi,* , that job Ji,k is scheduled.

In step 3 of calculating initial preemption threshold, if
condition (2) is not satisfied when the preemption threshold
of =do,?* -8,
which is named preemption energy of task T to Th ; If
two mutually non-preemptive tasks are partitioned into
different threads by a thread assignment algorithm, the
preemption energy between them is equal to zero. Only
tasks belonging different threads need to calculate

preemption energy. In the worst case, - numbers of

preemption energies need to be calculated. The preemption
energy acts an important part of applying dynamic
preemption threshold mechanism. The work of calculating
dynamic preemption threshold is elaborated as follow.

Suppose that there are two tasks Tj and T come from
different threads and 9j > p i , that is, Tj may preempt

q . When the k" job of task q., J>,k (yj,x,Oj,x), is

executing, the h" job of Tj , J j ,h (y j ,k ,O j ,k) , is released,

i.e. yj,h >yi,x +8i,t . To test the inequality
7i,h-(7,,+ej., + I) L & , ? If the test of the inequality is true,

the preemption threshold of T is raised to the preemption
level of T, , i.e. p , =qj . In other words, Tj can not

preempt T . Inversely, if the result of the test is false, the
preemption threshold of T is unchanged and until the job

completes. In other words, if a job of task T is

preempt one time, the preemption threshold is unchanged
in the same job.

As is mentioned above, it is easy to see that when the
preemption threshold of each task is always equal to its

is &sed to A , where h < i , let

n(n - 1)
2

q P, t,,,

Task2
Task3
Task4

3 4
' 2 ' 4

1 3 e,,, = 0 54.3 = 0 (4.1 = 1

are Gl={Taskl, Ta&, Task31 G2={Task4). -If the
preemption between tasks is determined purely by initial
preemption thresholds, that is, tasks is mutually
non-preemptive in the same thread, the Task4 can be easily
interrupted by the other tasks in another thread (see Figure
5.A). However, if to add dynamic preemption threshold
factor, Task4 will not be preempted Task2 and Task3, and
whether to be preempted by Taskl by the value of
preemption energy at run time. From the Figure 6 we know

Y ~ . ~ = io, Y ~ , ~ = 8, e,, = o
It follows

Hence, under DPT scheduling, the preemption
threshold of job J4,, is raised to 4, and Taskl can not
preempt it, accordingly reducing a time task switching (see
Figure 5.B).

r .. ,. c . i vj p r
j If U>

A . I. I . ,
(s)

Figure 5. Two different schedules for the same task set: (A) pure thread; (B) dynamic preemption threshold.

437

Authorized licensed use limited to: North Carolina State University. Downloaded on March 16, 2009 at 11:50 from IEEE Xplore. Restrictions apply.

Proceedings of the Third International Conference on Machine Learning and Cybernetic$ Shanghai, 26-;!9 August 2004

5. Conclusions

With the rapidly developing of ASOS based on system
on chip, the preemption overheads that are contributed by
multi-tasking become non-trivial. The DF" scheduling can
reduce the preemption by two way: thread assignment and
threshold re-calculation at runtime. The algorithm also
ensures that mutually non-preemptive tasks that are
partitioned different threads are still mutually
non-preemptive at runtime. The DFT scheduling can
achieve higher utilization with low runtime cost than FTS.
The DFT algorithm also provides a new way to transform
static scheduling to dynamic scheduling seamlessly.

Finally, we note that the study on the algorithm is
needed to go further in the future work. Because many
application specific systems for complex software are
applied to uncontrolled environment, the robust DFT
scheduling should be provided.

Acknowledgements

This paper is supported in part by the Oversea
Outstanding Talent Program from the State Planning
Committee and the Chinese Academy of Sciences (under
grant N0.[1999]0359), the National Outstanding Young
Scientist Research Awards(under grant No. 60125310).

References

111 C.L.Liu and J.W.Layland. Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment.

Journal of the Association for Computing Machinery,
1973,20(1): 46-61.

121 F.Y.Wang, Z.H.Wu. ASOS: A developing trend of
embedded operating systems. The journal of Chinese
Computer World, 2000, (45).

[3] D.Z.He, Z.X.Wang, W.G. A Scheduling Algorithm
for ASOS and its Application to Traftk Control. In
Proceedings of IEEE Intemational Conference on
Intelligent Transportation Systems, 2003:861-866.

[4] Manas Saksena and Yun WangScalable Real-Time
System Design Using Preemption Thresholds. In
Proceedings of the IEEE RTSS, 2000.

[5] Y.Wang, M.Saksena. Scheduling fixed-priority tasks
with preemption threshold. In Proceedings, IEEE
International Conference on Real-Time Computing
Systems and Applications (December 1999).

[6] S.Kim,S.Hong and T.H.Kime. Scenario-based
implementation architecture for Real-Time
Object-Oriented models. In proceedings of
International Workshop on Object-Oriented
Real-Time Dependable Systems, 2002.

171 M.Saksena and P.Karvelas. Designing for
Schedulability Integrating Schedulability Analysis
with Object-Oriented Design. In Proceedings of
Euro-Micro Conference on Real-Time Systems, June
2000.

[SI P.Gai, G.Lipari, M.D.Natale. Minimizing Memory
Utilization of Red-Time Task Sets in Single and
Multi-Processor Systems-on-a-Chip. In Proceedings
of the IEEE RTSS, 2001:73-83.

Authorized licensed use limited to: North Carolina State University. Downloaded on March 16, 2009 at 11:50 from IEEE Xplore. Restrictions apply.

