
CPU Shielding:
Investigating Real-Time Guarantees via Resource Partitioning

Progress Report 1

John Scott Tillman
jstillma@ncsu.edu

CSC714 Real-Time Computer Systems
North Carolina State University

Instructor: Dr. Frank Mueller

Project URL:
http://www4.ncsu.edu/~jstillma/csc714/

mailto:jstillma@ncsu.edu
mailto:jstillma@ncsu.edu
http://www4.ncsu.edu/~jstillma/csc714/
http://www4.ncsu.edu/~jstillma/csc714/

OVERVIEW

This project seeks to investigate the feasibility and limitations of using CPU
shielding to allow hard real-time operation in commercial, off-the-shelf (COTS)
systems. This is being accomplished by theoretically bounding and
experimentally verifying worst case interrupt response times (CPU contention),
worst case bus reaction times (bus contention), and worst case slowdown
associated with additional cache misses (cache contention). The goal is to verify
the models/predictions and evaluate the predictability that can be achieved using
this co-hosting method.

TIMELINE

Completed March 16th Project proposal submitted
Completed March 22nd Replicated system setup from [1].

Evaluate literature predictions of
interference from known sources (PCI,
Interrupt and Cache induced)

85% March 29th Designed experiments to test latency from
known sources

Completed April 2nd Initial Project Status Report
0% April 5th Gather and evaluate initial test results.

Identify and categorize unknown latency
factors.

0% April 19th Demonstrate mixed (real-time and non-
real-time) mode operation at predicted
highest frequency.

0% April 21st Final Project Status Report

TEST SYSTEM DETAILS

The system being tested contains an AMD Athlon x2 +3800 processor. This dual
core processor contains a 512K L2 cache per core [6]. This limits cache
contention effects under CPU shielding, but should still exhibit FSB contention.
This property places this contention in the same category as all other external
device DMA and can be considered using the techniques from [4].

The PCI bus in the test system contains a variety of devices typical of a
commodity hardware configuration such as:

Device Bus ID Latency
Timer

ATI Technologies Inc RS480 Host Bridge (rev 10) 00:00.0 0x00
ATI Technologies Inc RS480 PCI-X Root Port 00:02.0 0x01

ATI Technologies Inc RS480 PCI Bridge 00:05.0 0x01
ATI Technologies Inc 4379 Serial ATA Controller 00:12.0 0x00
ATI Technologies Inc IXP SB400 USB Host Controller 00:13.0 0x80
ATI Technologies Inc Std. Dual Channel PCI IDE Controller 00:14.0 0x00
ATI Technologies Inc IXP SB400 PCI-PCI Bridge 00:14.4 0x81

This is not an exhaustive list. The Latency Timer in the PCI configuration space
is “a mechanism to constrain a masterʼs tenure on the bus” [7]. Large latency
timer values imply that the given device can take control of the PCI bus for longer
times during master (usually DMA) transfers. Since the latency timer is writable it
should be possible, at a loss of efficiency, to minimize the effects of PCI bus
contention. Since this value is readable (as part of the standard PCI
configuration space) it should provide the means to determine an upper bound to
the worst case delay.

WORST CASE PCI CONTENTION

According the the PCI 2.1 specification [7] the maximum latency of the bus is:

latency_max(clocks) = 32 + 8 * (n – 1) (n is the # of data transfers)

The latency timer defines the number of bus clocks beyond which no further data
transfers can begin. The latency timer is only considered when there is bus
contention.

The other aspect of PCI bus latency has to do with bus access arbitration. Given
the requirement of a “fair” arbitration algorithm it is very likely that a bus with N
masters (including the CPU) could potentially wait latency_max * (N-1) bus
cycles before being granted read or write access to the PCI bus.

There are 17 devices visible on the test platformʼs PCI bus. I have not yet
established which might perform master transfers, but it is reasonable to assume
all may have the capability. Calculating the exact worst case latency yields:

00:00.0, 00 -> 32 latency_max(1) = 32
00:02.0, 01 -> 32 latency_max(2) = 40
00:05.0, 01 -> 32 latency_max(3) = 48
00:12.0, 00 -> 32 latency_max(4) = 56
00:13.0, 80 -> 80 latency_max(5) = 64
00:13.1, 00 -> 32 latency_max(6) = 72
00:13.2, 00 -> 32 latency_max(7) = 80
00:14.0, 80 -> 80 latency_max(8) = 88
00:14.1, 00 -> 32
00:14.3, 80 -> 80
00:14.4, 81 -> 88
00:14.5, 80 -> 80

00:18.0, 80 -> 80
00:18.1, 80 -> 80
00:18.2, 80 -> 80
00:18.3, 80 -> 80
01:00.0, 00 -> 32
02:00.0, 00 -> 32
03:0b.0, 80 -> 80
03:0b.1, 00 -> 32
03:0b.2, 00 -> 32

This gives a total latency count of 1160 bus cycles. At 33 MHz the worst case
bus access latency is 35.2 microseconds. Lowering all latency maximum
numbers to 0 yields 544 cycles (16.5 microseconds). The probability of every
device on the PCI bus requesting its maximum allotment simultaneously is
extremely small. This may prevent latency measurements within even an order
of magnitude of the worst case.

PCI contention will be measured using the CPUʼs TSC register. The unshielded
CPU will be asked to run a series of stress tests. The shielded CPU will perform
timed reads from a single register on a PCI peripheral (the parallel port
hardware).

CACHE CONTENTION

Our CPUʼs non-shared cache should prevent cache access interference between
the two cores. To verify this, a simple test will be performed. The non shielded
CPU will perform sequential reads to bytes of memory to guarantee maximized
cache misses. The shielded CPU will wait (a random time interval) and read
from a memory location (theoretically) guaranteed to be cached. The CPUʼs TSC
register will verify the memory access did not miss.

MEMORY (FSB) CONTENTION

Almost all strategies for bounding cache miss effects on WCET rely on a
structural knowledge of the code and data access patterns inherent in the code
being evaluated. Given the nature and scale of this project it isnʼt feasible to
attempt a general solution to this problem. Also there is nothing specifically
unique to CPU shielding in these calculations. Given that our platform has
separate L1 and L2 caches per core, and that the purpose is to dedicate one
core to real-time processing, we will bring all real time data and instructions into
cache and simply keep it there. Were this not the case the WCET calculation
would still be calculable by using any of the variety of methods in the current
literature (see [8] for a survey of methods).

TEST SYSTEM SETUP

The system setup from [1] is a somewhat standard Linux kernel. While that
report was focused on the 2.4 line of kernel development, almost all of the
system setup is the same. A variety of CPU affinity control methods exist, but for
our purposes the system call set_cpus_allowed is ideal.

One limitation of this method lies in the fact that an interrupt must occur before its
interrupt service routine (in Linux) can be migrated across CPUs. Solving this
requires the kernel be aware of the shielding requirements from the initial
bootstrap time. This is the correct solution for longer term less controlled
environments, but for our environment this should be unneeded. This
assumption must be verified by comparing interrupt dispatches for the shielded
CPU before and after our tests. This comparison will be performed by our test
suite.

The Realfeel timing utility (used by [1]) uses the standard Real-Time Clock
interface and the processorʼs TSC (Time Stamp Counter) to calculate cycle
accurate response times. The existing implementation of Realfeel exhibits
unexpected behavior when used on the test platform. The reason for this has not
yet been established.

RedHat provides a number of stress testing utilities that have been designed
specifically to exert pressure on various systems within our shielded platform:

TTCP Loopback test, high memory
FIFOS_MMAP Alternate IPC using FIFOs and MMAP
P3_FPU Floating point matrix operations
FS A mix of major file system operations
CRASHME Jump to execute in random memory locations
NFS_COMPILE Kernel rebuild over a loopback mounted NFS device

These six stress tests will form the basis of the workload placed onto our
unshielded CPU. The described measurements will be performed under each
load condition to verify the predictability of the Shielded CPU.

WEBSITE

http://www4.ncsu.edu/~jstillma/csc714/

http://www4.ncsu.edu/~jstillma/csc714/
http://www4.ncsu.edu/~jstillma/csc714/

REFERENCE WORKS
[1] S. Brosky. Shielded CPUs: real-time performance in standard Linux. Linux

Journal, May 2004, pg 121
[2] M. Caccamo. Toward the Predictable Integration of Real-Time COTS Based

Systems.
[3] R. Pellizzoni, B. Bui, M. Caccamo, L. Sha. Coscheduling of CPU and I/O

Transactions in COTS-based Embedded Systems. Real Time Systems
Symposium, 2008

[4] T. Huang, J. Lui, J. Chung. Allowing cycle-stealing direct memory access I/O
concurrent with hard-real-time programs. International Conference on Parallel
and Distributed Systems, Tokyo, 1996.

[5] S. Schönberg. Impact of PCI-bus load on applications in a PC architecture.
Proceedings of the 24th IEEE international Real-Time Systems Symposium,
Cancun, Mexico, December 2003

[6]AMD Athlon 64 Processor Product Data Sheet, Revision 3.18, Semptember
2006

[7]PCI Local Bus Specification, Revision 2.1, June 1, 1995
[8]R. Wilhelm, J. Engblohm, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G.

Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P.
Puschner, J. Staschulat, P. Stenström, The Worst-Case Execution Time
Problem - Overview of Methods and Survey of Tools, ACM Transactions on
Embedded Computing Systems, Vol. 7, No. 3, Apr 2008, pages 1-53.

