
CPU Shielding:
Investigating Real-Time Guarantees Via Resource Partitioning

John Scott Tillman
jstillma@ncsu.edu

CSC714 Real-Time Computer Systems
North Carolina State University

Instructor: Dr. Frank Mueller

mailto:jstillma@ncsu.edu
mailto:jstillma@ncsu.edu

MOTIVATION

Recent years have seen an explosion in the parallelism available in COTS systems.
Dual core technologies have become commonplace in the typical desktop computing
system. This popularity alongside ever decreasing manufacturing costs has rapidly
lowered the costs associated with these technologies. This type of single chip
parallelism will only become more pervasive as techniques are discovered to ease the
challenge of developing for parallel architectures.

The trend in computing systems is towards larger, more complex, more highly
integrated systems. From aircraft fly-by-wire, to ever more complex medical imaging
and life support, these systems bring together many highly diverse requirements. Only
some of these requirements have real-time characteristics (whether hard or soft), while
others can be considered improvements to quality of service. The ability to leverage
existing applications for and developer knowledge of ʻstandardʼ operating systems
greatly reduces the costs of real-time system development.

Therefore providing real-time operation alongside todayʼs highly complex operating
systems is an idea unlikely to go away. The idea of CPU shielding has been put forward
as a method for co-hosting a standard operating system while still providing for real-time
guarantees. In CPU shielding a subset of a systemʼs CPUs are isolated from all
standard processing, and can be dedicated exclusively to real-time tasks. This isolation
allows the performance and behavior of the real-time subsystem to be evaluated in
(relative) isolation, with minimal, and predictable interference from the non-real-time
portions of the system.

CPU shielding has received relatively little attention as a means to achieve hard real-
time performance while still maintaining interoperation with standard non-real-time
subsystems.

OBJECTIVES

This project seeks to investigate the feasibility and limitations of using CPU shielding to
allow hard real-time operation in commercial, off-the-shelf (COTS) systems. This will be
done by bounding and verifying worst case interrupt response times (CPU contention),
worst case bus reaction times (bus contention), and worst case slowdown associated
with additional cache misses (cache contention). There are existing documents which
discuss various models of these delays. The goal is to verify the models/predictions
and evaluate the predictability that can be achieved using this co-hosting method.

RESOURCES

The target system for this project is an AMD Athlon X2 based system, available in
NCSUʼs operating systems lab. The current Linux install will be replaced as needed to
create a test bed for verifying and measuring the system behavior under CPU shielding.
Measurements will be taken, when possible using the built-in facilities of the processor

and platform. Where needed external timing measurements will be performed using a
logic analyzer. Depending on time constraints some additional PCI based hardware
may be installed to increase bus loads for dynamic testing.

TIMELINE

March 16th Project proposal submission
March 22nd Replicate system setup from [1]. Evaluate literature predictions of

interference from known sources (PCI, Interrupt and Cache induced)
March 29th Design/replicate experiments to test latency from known sources
April 2nd Initial Project Status Report
April 5th Gather and evaluate initial test results. Identify and categorize unknown

latency factors.
April 19th Demonstrate mixed (real-time and non-real-time) mode operation at

predicted highest frequency.
April 21st Final Project Status Report

RISKS

There are quite a few sources of uncertainty in the timeline provided. Very little exists to
show how CPU shielding should be setup. This may lead to difficulties in configuring a
baseline system with which to perform the later evaluations. Once the CPU shielding
can be performed there is a high likelihood of unknown sources of latency. There is
also some question as to how to go about measuring some latency periods given the
time and equipment available. These factors may limit the practicality of using this co-
hosting method.

WEBSITE

http://www4.ncsu.edu/~jstillma/csc714/

REFERENCE WORKS

[1] S. Brosky. Shielded CPUs: real-time performance in standard Linux. Linux Journal,
May 2004, pg 121

[2] M. Caccamo. Toward the Predictable Integration of Real-Time COTS Based
Systems.

[3] R. Pellizzoni, B. Bui, M. Caccamo, L. Sha. Coscheduling of CPU and I/O
Transactions in COTS-based Embedded Systems. Real Time Systems
Symposium, 2008

[4] T. Huang, J. Lui, J. Chung. Allowing cycle-stealing direct memory access I/O
concurrent with hard-real-time programs. International Conference on Parallel
and Distributed Systems, Tokyo, 1996.

[5] S. Schönberg. Impact of PCI-bus load on applications in a PC architecture.
Proceedings of the 24th IEEE international Real-Time Systems Symposium,
Cancun, Mexico, December 2003

http://www4.ncsu.edu/~jstillma/csc714/
http://www4.ncsu.edu/~jstillma/csc714/

