
Project Part 3 – Final Project Report
Christopher Zimmer

04/21/2009

The goal of this project was to implement security methods in cyber physical systems.
This work is a continuation of on going research using static timing analysis and
attributes isolated to real-time systems to create a secure environment. Security in cyber-
physical systems can not be addressed in the same way it is done in general purpose
systems. Cyber-physical systems often lack sophisticated operating systems and powerful
general purpose processors. Predictability in this realm is more important than raw
processing power and thus we have this trade off. Securing our cyber-physical systems is
extremely important. Attacks on unsecured systems are more frequent now making it an
appropriate time to investigate how to secure these systems.

The primary aim of this work was to implement a periodic scheduler based security
check. In this check the scheduler would periodically wake up, and attain the last PC
value of the last running thread. It would then use the PC value to isolate the worst case
execution time that this PC could occur in. To handle this required making several
modifications to an existing real-time simulation framework consisting of the Simple
Scalar Toolset, and a Static Timing Analysis Toolset.

Week 1
In the first part of this work it was necessary to perform background reading to determine
if any work from general purpose could be used to support this proposal. There doesn’t
appear to be any work in general purpose that deals with strict timing requirements to
facilitate security mechanisms, but there is work in securing the stack, using a variety of
methods to protect against code injection. These include stack shield, address space
layout randomization, and compiler based canary values.

Week 2
The Simulator environment I am working in has been modified with a new system call that
allows the scheduler to set up a periodic timer interrupt. This is a programmable interrupt
made from the scheduler. My current scheduler is currently being interrupted every 2 us in
simulation time. The frequency of the scheduler is clocked at 1 Ghz so that’s roughly
equivalent to every 2000 cycles. I feel that interrupts every 2000 cycles will be a good
starting point in evaluation to determine cost and trade-off regarding overhead of this project
vs detecting timing anomalies. After further investigation I reduced the frequency of the
simulator to 100 Mhz and set the interrupt to occur every 20000 cycles which is 200 us.

Week 3
I have modified the scheduler and the simulator to support new system calls that enable the
scheduler to determine the last running PC of the last task in a single processor environment.
A test real-time task set has been configured using two simple clab benchmarks CNT and
SRT. The tasks have been analyzed in both a regular timing analyzer tool set and a
parametric timing analyzer tool set.

Week 4
During this week I created an extension to the proposal that would extend a current security
method and improve upon it using the periodic timer interrupt. In the previous work for this
area I implemented a Scheduler based timer interrupt that used calls made from the running
job at predetermined timed locations to validate that the job was running within bounds. One
of the drawbacks of this method was that if an attack occurred and never returned back to the
running job, this system would only detect it at the occurrence at a deadline miss. For real-
time systems this isn’t desirable. So as an extension to that using this work I implemented a
similar approach using periodic timer interrupts that could detect missed checkpoints at the
next interrupt thus hopefully providing the system with more time to handle the attack than a
deadline miss. In the figure below I show the trade off in detection cycles for scaling the
period up on a 100 Mhz Processor.

Detection Bound On a 100 MHz Processor

0

20000

40000

60000

80000

100000

120000

1 10 100 1000

Period (Microseconds)

D
et

ec
ti

o
n

 C
yc

le
s

Most of the benchmarks that I’ve utilized in embedded real-time systems generally seem
to run between 1 Million and 100 Million cycles. So for this particular set it seems to
make sense to have a larger period and still get a large number of checkpoints occurring
in the application. Of course the observation made above cannot possible encompass all
real-time jobs and thus deciding the period is ultimately a decision based on the real-time
task set, or setting a different period for each job when the scheduler puts it on the
processor. The figure below shows the time after an attack occurred that this method was
able to detect it and put an end to it. In this figure all of the attacks never return back to
the running application.

Week 5
During week 5, I worked on developing the information to provide to the scheduler to
determine pc look ups and costs. The Timing Analyzer tool is great for determining
overall WCET values and WCET values for functions and loops but it is not well suited
for analyzing down to the block level or instruction level. To achieve this; several of the
values had to be derived from the verbose timing analyzer by hand. To facilitate this
work for the class I decided upon using a partition approach instead of trying to feed
every possible PC and it’s WCET into the scheduler. To do this I worked on the object
dump of each of the tasks used to test this work, CNT, FFT and SRT. Below is a
representation of the block contents for the CNT benchmark. These ranges were
computed and then compared against the static analysis data to determine the WCET
values for PC’s occurring within the ranges.

To accomplish this required splitting the blocks into multiple types within the scheduler.
In sequential non-loop code the given WCET is sufficient. However within loops the
WCET must be calculated depending on the cost of each loop. Also depending on the
nesting level the parent’s number of iterations must also be calculated and be compared
with a per loop cost for the parent. This is part of the annotated information that must be
fed into the scheduler to support orthogonal checks.

The last portion of this approach that required modification was loading the structure of
the loops into the scheduler. In order to ascertain the number of loop iterations the
location of the loop control variable must be known to the scheduler, and further for this
implementation of the experiment I required that it be stored in a register value. This
worked well for benchmarks such as CNT that contained only rectangular loops and
automatically used registers to store the counter variable over the entire lifetimes of both
the inner and outer loop. Unfortunately this did not work for FFT a benchmark that
contains 4 non-rectangular loops. To facilitate this FFT was analyzed and it was
determined that there was available register space that could be used as an internal
counter for these loops; unfortunately it just wasn’t being used. So at the assembly level it
was necessary to add counters for each of the loops that had a stride of 1. This
information was loaded into the scheduler to allow it to track the progression of FFT’s
loops.

Utilizing 20 us Periodic Scheduler Timer

1690 Cycles Scheduler Check 2 CNT

869 Cycles LMS Method Return LMS

1660 Cycles FFT Method Return FFT

Time Attack Forced to End Hijack Location Task

Week 6
During week six I continued working on porting the tasks to the scheduler and hand
analyzing them for input into the scheduler. I then ran the real-time task set and took
random samples to get a better understanding of the timing threshold of this approach.

The table below gives a few measured points from each of the tasks running in the set. As
can be seen some of the distances between actual timing and worst case timing are quite
far off. A major contributing factor to this is that in FFT and SRT the primary loops are
non-rectangular and our tool set tends to over estimate these types of loops. Another
contributing factor to the overage is that the polynomial functionality of the timing
analyzer was broken so the cost of a single iteration was hand derived and for non-
rectangular loops can lead to some inaccuracy.

Benchmark Simulator Cycle WCET Distance PC
FFT 20000 327145 307145 0x00400380
FFT 40000 389655 349655 0x00400530
FFT 260000 143109 116891 0x004004d8
FFT 340000 1387523 1047523 0x00400810
CNT 24860 87488 62628 0x00400300
CNT 44860 111219 66359 0x00400300
CNT 64860 135039 70179 0x004002d0
CNT 144860 230370 85510 0x004002d0
SRT 122752 377323 254571 0x004005b0
SRT 142752 395989 253237 0x00400558
SRT 162752 414655 251903 0x00400500
SRT 182752 433321 250569 0x004004a8

4001F0 - 400210

400218 - 400238

400248 - 400258

400268 - 400278

400288 - 400328

4003d0 – 4003d8

4003e0 – 4003e8

400260

4003f0 - 400438

Future Work and Outstanding Problems
One of the primary complaints of this project is the difficulty in pairing the object code
and PC values with WCET. This approach needs to be automated in order to avoid
human mistakes.

Another issue that needs to be taken care of is enabling the Timing Analyzer to provide
more detailed information about the worst case timing of ranges of code. The way this is
currently derived is by analyzing the output of the timing analyzer in verbose mode and
matching blocks of code to the output. This tedious and prone to error and this method
could be improved through modifications to the timing analyzer.

An on going problem in this implementation is the occurrence of some irregular timing
anomalies not caused by attacks. Generally at the end of loops once the counter has been
reset occasionally the system will invoke an interrupt to a PC that was contained in the
loop. In this particular issue the last iteration value is greater than the current iteration
value and being that it is an outermost loop it’s infeasible. My inclination is that this is
occurring due to an incorrect branch prediction. This issue will need more investigation
in order to solve.

Conclusion
During the course of this project two new methodologies for applying security in cyber-
physical systems using Timing Data have been created. The first one is a periodic
extension of method 2 that enables periodic timing checks to occur in synchronization
with instrumented checks throughout the application. This method has tight WCET
binding but is structured in such a way that analysis from an attacker may enable this to
be beat. The second contribution is a completely orthogonal scheduler based approach
that uses PC timing values to validate that the task is running within the constraints. In
the early analysis of this approach this work is feasible but the wide timing bounds are
cause for further analysis. Future work will need to be performed to determine if there
are ways that the data can be structured and organized to reduce inaccuracies due to wide
timing margins and human error.

