
Power Management In PowerPC 405LP : Front Bus Scaling

FINAL REPORT

Mohamed Nishar Kamaruddin(mkamaru)

Santhosh Selvaraj(sselvar)

Instructor: Dr.Frank Mueller

CSC714
REAL-TIME COMPUTER SYSTEMS

NORTH CAROLINA STATE UNIVERSITY

1. PROBLEM STATEMENT

Power management is an important aspect in embedded real-time systems design. Dynamic Power
Management(DPM) techniques allow power parameters to be changed even while programs are in
execution[1]. Dynamic Volatage Scaling(DVS) and Dynamic Frequency Scaling(DFS) are widely
used DPM strategies to reduce processor power consumption.

Previous research work in NCSU had led to the development of Feedback-EDF scheduling
algorithms which were shown to produce better energy savings in real-time systems with dynamic
workloads[2]. These effectively scale the voltage/frequency of the processor based on feedback
from previous tasks. But Feedback-EDF scheduling algorithms are intended only to reduce power
consumption by the processor. In embedded systems, memory subsystem is also a considerable
contributor to the overall power consumption of the system. In our work, we attempt to study the
power conservation that could be achieved by scaling voltage/frequency of the memory subsystem
in the existing feedback EDF scheduling framework.

2. LEARNINGS & ACCOMPLISHMENTS

The DPM module(DPM405LP.c) defined the various operating points used by the feedback EDF
schedular and exported APIs to change operating points dynamically. The example.c sample
application was available to us. This was used to spawn mutiple threads which were dispatched by
the feedback EDF scheduler defined in my_threads.c. The voltage and current readings were made
through the avg.c program.

2.1 PART I

Feedback EDF scheduler would dynamically select operating points without us able to keep track of
those. Hence our first experiments were to execute example.c sample application without feedback
EDF scheduling. We defined two different operating points(Table 1) with same processor frequency
and with different Processor Local Bus(PLB) frequency. It should be noted that memory subsystem
operated at the PLB frequency.

Existing :{ "200/100/24", {1500, 1, 24, 4, 2, 32, 32, 4, 4, 4, 0, 0, -1, -1} },
Newly added :{ "200/50/24", {1500, 1, 24, 4, 4, 32, 32, 4, 4, 4, 0, 0, -1, -1} }

 Table 1. Defined operating points in dpm405lp.c

2.1.1 RESULTS

The modified sample application(example.c) was executed with each of the operating points
mentioned in Table1. The avg.c was modified to capture current/voltage for the memory subsystem
in addition to the current/voltage of the processor. The results are available in Table2 below.

A: Channel 1 reading
B: Voltage for CPU
C: Channel 2 reading
D: Converted voltage reading from channel 2
E: Current for CPU
F: Channel 3 reading
G: Voltage for I/O subsystem
H: Channel 4 reading

I: Converted voltage reading from channel 4
J: Current for I/O subsystem

Volatile + File Reading application @ PLB 100 MHz:
 Time A B C D E F G H I J
0.000000 2365 1.55067 2079 0.15385 0.05554 2720 3.28449 2086 0.18803 0.06788
0.008260 2368 1.56532 2088 0.19780 0.07141 2720 3.28449 2086 0.18803 0.06788
0.016520 2364 1.54579 2114 0.32479 0.11725 2719 3.27961 2086 0.18803 0.06788
0.024780 2362 1.53602 2083 0.17338 0.06259 2719 3.27961 2086 0.18803 0.06788
0.033040 2367 1.56044 2088 0.19780 0.07141 2719 3.27961 2089 0.20269 0.07317
0.041300 2365 1.55067 2137 0.43712 0.15780 2719 3.27961 2087 0.19292 0.06965
0.049560 2366 1.55556 2077 0.14408 0.05201 2719 3.27961 2086 0.18803 0.06788
0.057820 2365 1.55067 2089 0.20269 0.07317 2719 3.27961 2086 0.18803 0.06788
0.066080 2365 1.55067 2161 0.55433 0.20012 2720 3.28449 2088 0.19780 0.07141
0.074340 2365 1.55067 2092 0.21734 0.07846 2719 3.27961 2087 0.19292 0.06965

Infinite empty Loop @ PLB 100 MHz:
 Time A B C D E F G H I J
0.000000 2367 1.56044 2175 0.62271 0.22481 2720 3.28449 2087 0.19292 0.06965
0.008194 2365 1.55067 2239 0.93529 0.33765 2719 3.27961 2087 0.19292 0.06965
0.016388 2366 1.55556 2160 0.54945 0.19836 2720 3.28449 2086 0.18803 0.06788
0.024582 2365 1.55067 2179 0.64225 0.23186 2720 3.28449 2088 0.19780 0.07141
0.032776 2365 1.55067 2246 0.96947 0.34999 2720 3.28449 2086 0.18803 0.06788
0.040970 2366 1.55556 2161 0.55433 0.20012 2719 3.27961 2087 0.19292 0.06965
0.049164 2367 1.56044 2181 0.65201 0.23538 2720 3.28449 2086 0.18803 0.06788
0.057358 2365 1.55067 2225 0.86691 0.31296 2720 3.28449 2086 0.18803 0.06788
0.065552 2366 1.55556 2163 0.56410 0.20365 2719 3.27961 2087 0.19292 0.06965
0.073746 2365 1.55067 2177 0.63248 0.22833 2720 3.28449 2087 0.19292 0.06965

Infinite empty Loop @ PLB 50 MHz:
 Time A B C D E F G H I J
0.000000 2369 1.57021 2137 0.43712 0.15780 2720 3.28449 2080 0.15873 0.05730
0.008194 2370 1.57509 2143 0.46642 0.16838 2721 3.28938 2079 0.15385 0.05554
0.016388 2371 1.57998 2151 0.50549 0.18249 2720 3.28449 2080 0.15873 0.05730
0.024582 2372 1.58486 2162 0.55922 0.20188 2720 3.28449 2079 0.15385 0.05554
0.032776 2373 1.58974 2190 0.69597 0.25125 2720 3.28449 2078 0.14896 0.05378
0.040970 2368 1.56532 2246 0.96947 0.34999 2720 3.28449 2079 0.15385 0.05554
0.049164 2369 1.57021 2138 0.44200 0.15957 2720 3.28449 2079 0.15385 0.05554
0.057358 2370 1.57509 2144 0.47131 0.17015 2722 3.29426 2079 0.15385 0.05554
0.065552 2371 1.57998 2152 0.51038 0.18425 2720 3.28449 2080 0.15873 0.05730

0.073746 2374 1.59463 2165 0.57387 0.20717 2720 3.28449 2080 0.15873 0.05730

Table 2. Result of initial experiments.

Following are energy measurements for memory subsystem derived from the results from Table 2.

➢ File Reading application @ PLB 100 MHz:
Power 234.820145 mWatt over 8.243480 secs
=> Energy 0.537704 mWatt-hours

➢ Infinite Loop @ PLB 50 Mhz:
Power - 149.464111 mWatt over 8.177612 secs
=> Energy: 0.339517 mWatt-hours

➢ Infinite Loop @ PLB 100 MHz:
Power - 226.028000 mWatt over 8.177612 secs
=> Energy 0.513436 mWatt-hours

Thus if we could detect programs with high memory reference rate and operate them with high PLB

frequency while scaling down the PLB frequency for programs with less or no memory reference
could result in energy saving of nearly 40%. Note that this energy savings was achived by scaling d
FSB frequency from 100MHz to 50Mhz. Other scaling frequencies could produce different energy
savings.

2.2 PART II

It is important to note that the results explained in section 2.1 were without the use of any type of
feedbach DVS algorithms. That is, there was no dynamic reselection of operating points as would
happen in case feedback DVS schemes are used. This section explains the results obtained when
memory scaling was incorporated into the feedback scheduling algorithms.

The feedback DVS-EDF algorithms start with an operating point specified by us. Then after, in
response to PID feedback, and in an attempt to dynamically scale processor frequency choses
various other operating points during the course of execution. Code walkthrough of the PID
schedular showed that PID would always select one of the 5 below listed frequencies(shown in
table4),

{ "266/133/16", {1700, 1, 16, 2, 2, 32, 32, 4, 4, 6, 0, 0, -1, -1} },
{ "133/133/16", {1300, 1, 16, 4, 1, 32, 32, 4, 4, 6, 0, 0, -1, -1} },
 { "66/66/16", {1100, 1, 16, 8, 1, 32, 32, 2, 2, 3, 0, 0, -1, -1} },
 { "44/44/16", {1000, 1, 16, 12, 1, 32, 32, 1, 1, 2, 0, 0, -1, -1} },
 { "33/33/16", {1000, 1, 16, 16, 1, 32, 32, 1, 1, 2, 0, 0, -1, -1} },

Table 4: Originally available operating points

The sample applications executed in the body of the threads scheduled by the PID feedback
scheduler would be executed in any of the operating points defined in Table4. One other parameter
seemed to affect the power readings was the 'max_loop' defined in example.c. So we consider it
along with the operating points and all subsequent results would be discussed in the context of the
operating points and 'max_loop'.

In an attempt to define lower PLB frequecy operating points we edited the PLB divider parameter
from the original operating points as shown in Table5 below,

{ "266/133/16", {1700, 1, 16, 4, 4, 32, 32, 4, 4, 6, 0, 0, -1, -1} },
{ "133/133/16", {1300, 1, 16, 4, 4, 32, 32, 4, 4, 6, 0, 0, -1, -1} },
 { "66/66/16", {1100, 1, 16, 8, 2, 32, 32, 2, 2, 3, 0, 0, -1, -1} },
 { "44/44/16", {1000, 1, 16, 12, 1, 32, 32, 1, 1, 2, 0, 0, -1, -1} },
 { "33/33/16", {1000, 1, 16, 16, 1, 32, 32, 1, 1, 2, 0, 0, -1, -1} },

Table 5: Edited operating points. Note the values in bold.

2.2.1 RESULTS
All experiments were repeated 10 times and the values shown in the section are the averaged out
values over the 10 interations.

✔ For noop application with max_loop = 1000 and operating points(original) as defined in
Table 4: Memory sub-system energy = 1.5413399 mWatts-Hours

✔ For noop application with max_loop = 1000 and operating points as defined in Table5.
Memory sub-system energy = 1.519984 mWatts-Hours

✔ For a memory intensive application(see section 2.3) with max_loop = 1000 and operating

points(Original) as defined in Table4: Memory system energy = 1.5459353 mWatts-Hours

✔ For noop application with max_loop = 5000 and original operating points as defined in
Table4: Memory sub-system energy = 1.691270 mWatt-Hours

✔ For noop application with max_loop = 5000 and operating points as defined in Table5.
Memory sub-system energy = 1.343177

When max_loop(see sec 2.3) is 1000, our PLB frequency-scaled operating points (Table5) produced
energy saving of 1.38% over the unscaled original operating points(Table 4). With max_loop
increased to 5000, the energy savings jumped up to 12.17%.

In conclusion, we could see that considerable energy savings could be achived by scaling down the
FSB frequency for tasks with no or less memory references. But integration of the FSB scaling into
the existing feedback-DVS sceduling mechanisms could be challenging as discussed in section 2.4.

2.3 EXPLANATION ON CHANGES TO PROGRAMS

As we cannot decide on the memory profile of an application/thread, we get this input from the
user, that is whether the test load is memory-intensive or CPU-intensive. Following modifications
were made to incorporate it and to decide on a appropriate operating point based on it.

In example.c, we have added two test cases one with memory-intense file read operation and
another with a dummy loop which is CPU-intensive. We also added one more user parameter for
getting the type of the load. This is then given to the thread package.

In my_threads.c, we modified the logic to select the appropriate operating points - we included
the support to scale down the PLB frequency based on the test load input from the user.

In dpm405lp.c, we have added new operating points with reduced PLB settings.

In avg.c, changes were made to calculate the energy for the memory subsystem.

In beech.c, changes were made to read the channels 3 and 4.

2.4 OPEN ISSUES

* PID feed back scheduling algorithms as explained in [2] and [3] make complex dynamic decisions
on what operating points have to be used at various points duting a task's execution. In order for the
memory scaling to be integrated into a similar dynamic scaling algorithm we might have to do a
through analysis of the memory reference patterns of each task in the system.
* It is not clear how FSB scaling would affect the execution time of the task which would inturn
influence the PID feedbacks and hence the choice of the operating points.

REFERENCES

[1] “A survey of design techniques for system-level dynamic power management”
Benini, L.; Bogliolo, A.; De Micheli, G. Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on Volume 8, Issue 3, Jun 2000 Page(s):299 - 316
[2] “Feedback EDF Scheduling of Real-Time Tasks Exploiting Dynamic Voltage Scaling" by Y. Zhu

and F. Mueller in Real-Time Systems Journal, Vol. 31, No. 1-3, Dec 2005, pages 33-63
[3] Exploiting Synchronous and Asynchronous DVS for Feedback EDF Scheduling on an
Embedded Platform by Y. Zhu and F. Mueller in ACM Transactions on Embedded Computing
Systems, Vol. 7, No. 1, Dec 2007, pages 1-26.
[4] www.research.ibm.com/arl/publications/papers/DPM_V1.1.pdf
[5] “System level power-performance trade-offs in embedded systems using voltage and frequency
scaling of off-chip buses and memory(2002)”. by Kiran Puttaswamy, Kyu-won Choi, Jun Cheol
Park, Vincent J. Mooney Iii, Abhijit Chatterjee, Peeter Ellervee. In Proceedings of International
Symposium on System Synthesis (ISSS’02)
[6] PowerPC 405 User Manual

