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Introduction

Power management for computer systems has traditionally focused on regulating the
power consumption in static modes such as deep and suspend. These are de-activating
states, often requiring a user action to re-activate the system. There are usually
significant latencies and overheads for entering and exiting these states, and in desktop
and server systems afirmware layer typically supports these modes.

Dynamic power management refers to power management schemes implemented while
programs are running [1]. Many architectures provide the equivaent of a halt instruction
that reduces CPU power during idle periods. The operating system and device drivers
may aso manage power of peripheral devices, for example spinning down disks during
periods of inactivity. Highly integrated processors with on-board peripherals often
include software-controlled clock management capabilities to reduce power consumed by
inactive peripherals and periphera controllers. The memory subsystem also provides a
profitable area for dynamic power management, either through the memory controller
implementation or through software-based schemes.

Recent advances in processor design techniques have led to the development of systems
that support very dynamic power management strategies based on dynamic voltage and
frequency scaling. Since CPU power consumption typically decreases with the cube of
voltage while frequencies scale linearly with voltage, significant opportunities exist for
tuning the power-performance tradeoff to the needs of the application. Processors such
asthe Transmeta™ Crusoe™, Intel® StrongARM ™ and XScae™ processors, and the
recently announced IBM® PowerPC™ 405L P alow dynamic voltage and frequency
scaling of the processor core in support of these dynamic power management strategies.
Aside from the Transmeta system, al of the processors named above are highly
integrated system-on-a-chip (SOC) processors designed for embedded applications. The
applications of these processors typically do not include a traditional BIOS, therefore
control of the dynamic power state of the system must be implemented in the operating
system.
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The IBM Low-Power Computing Research Center, IBM Linux® Technology Center and
MontaVista™ Software are currently developing a generd and flexible dynamic power
management architecture for embedded systems. The proposal covered in this paper is
primarily concerned with the power management implications of dynamic scaling.
Several research and production implementations of processor voltage and frequency
scaling exist; however, our proposal augments the capabilities of these systemsin severa
important ways. Dynamic power management is still a very active area of research, and
research efforts have typically been targeted to investigate a particular strategy or
optimization [2, 3, 4]. Production implementations dictate a more or less fixed power
management policy [5]. This proposal attempts to standardize a dynamic power
management and policy framework that will support different power management
strategies, either under control of operating system components or user-level policy
managers. The flexible framework proposed here will help enable the excellent research
being done in this area to find its way into awider range of commercia products.

The concepts developed here should be applicable to a broad class of operating systems.
MontaVista' s primary interest is enabling dynamic power management capabilities for
the Linux operating system. Although the IBM PowerPC 405LP is used extensively as
an example in this paper, both IBM and MontaVista are committed to developing a
dynamic power management architecture whose high-level specification is portable
across a number of hardware platforms.

Requirements

We recognize that the overriding power management god in portable systemsis to
reduce systemwide energy consumption. The current generation of embedded processors
are so power-efficient that the processor may no longer be the major energy-consumer in
systems that include high-performance memories and large color displays. Therefore, a
dynamic power management system that is only concerned with voltage and frequency
scaling the processor core may be of limited use. Instead, we are committed to enabling
aggressive power management strategies that encompass the entire system. For example,
scaling bus frequencies can drive significant reductions in system-wide energy
consumption. Our dynamic power management architecture supports the ability of
processors like the IBM PowerPC 405L P to rapidly scale internal and external bus
frequencies, in concert with or even independent of the CPU frequency. A large part of
this proposal aso deals with the requirement to aggressively manage power consumption
based on the states of peripheral devices.

Another key observation is that the breakdown of systemwide energy consumption as
well as the most effective way to manage energy consumption are highly application®-
dependent. Therefore, a dynamic power management architecture needs to be flexible
enough to support multiple platforms with differing requirements. Part of thisflexibility
is the requirement to support “pluggable” power management policies that allow device
manufacturers to specialize policies for their applications and differentiate their products
based on their own unique approaches to power management. We believe that the
requirements for simplicity and flexibility are best served by leaving the workings of the
dynamic power management system completely transparent to most tasks, and even to

I Throughout this paper we use the terms system and application in the sense of a complete embedded
system, e.g., acellular phone or PDA, and the terms program and task to refer to software.
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the core of the operating system itself. An implementation based on this proposal need
not require any changes to programs. Further, it requires only trivial changesto the well-
understood process management implementation of the operating system to achieve
significant results.

In highly energy-constrained systems such as cellular phones, however, we believe that
task-specific dynamic power management will become a hard requirement. Similar to the
way that real-time scheduling policies are used to guarantee predictability, our
architecture supports the ability of tasksto set their own power-performance
characterigtics for those cases where thisis required.

Finaly, we are aware of the trends in SOC processor design that promise higher levels of
integration, symmetric and asymmetric multiprocessing on a single chip and more
flexible dynamic power management schemes. IBM Microelectronics, IBM Research
and MontaVista Software will take leadership roles in the definition of the hardware and
software architectures of these systems. Our power management architecture is based on
the capabilities of state-of-the art systems and techniques and also |ooks forward to next-
generation technologies.

Architectural Overview

A high-level overview of our proposed architecture isgiven in Figure 1. The low-leve
implementation of the dynamic power management architecture (DPM) isresident in the
kernel of the operating system, and power management strategies come from outside of
the system. Note that DPM is not a self-contained device driver. The low-level
implementation of DPM requires enhancements at afew key placesin the operating

system.
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Figure 1: A high-level view of our dynamic power management proposal.

As shown above, we expect a complete dynamic power management strategy to be
defined in advance for each application, by a system designer familiar with the
characteristics of the embedded system and its special features and requirements. The
strategy is communicated to DPM in two ways:. as a predefined set of policies and as an
application/policy-set specific policy manager that manages them.
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DPM policies are named data structures. As we explain later, policies may be defined

that exert very fine-grained control over the dynamic state of the system. Therefore,
policies must be installed into the operating system kernel for efficiency. Policies specify
the component and device-state transitions that ensure reliable operation in line with the
power management strategy. The structure of DPM policies and the effects of policieson
the system are covered in Policy Architecture onPage 4. A major component of the
policy mechanism deals with the interaction of device states with policies. This feature
of the architecture is covered in Device Constraint Management on Page 9.

DPM policy managers are executable programs that activate policies by name. Policy
managers implement user-defined and/or application-specific power management
strategies. They can execute either as part of the kernel or in user space (or both) as
required by the strategy. Policy managers may be very active, responding in real timeto
changes in application power/performance requirements, or may be more passive, for
example by changing policies on alonger timescale in response to changes in available
battery power. Infact, DPM supports strategies that do not require any policy manager
a al. Effective strategies for some applications may consist of asingle policy installed
at system initiaization, perhaps modified by critical applications that interact directly
with DPM. Some example policy managers and their associated policies are described at
ahigh leve in Example Srategies on Page 17.

Policy Architecture

A DPM policy is a named data structure, installed into the DPM implementation in the
operating system, and managed by a policy manager that may be outside of the operating
system. Once aDPM systemisinitialized and activated, the system will aways be
executing under a particular DPM policy. The structure of a DPM policy is a hierarchy of
abstract objects. In this Section we describe both the policy objects and what they
represent. The discussion begins with the concept of a system operating point and system
operating states, and concludes with a description of how DPM policies are constructed.

Operating Points

At any given point in time, a system is said to be executing at a particular operating
point. The operating point may be described by such parameters as the core voltage,
CPU and bus frequencies and the states of periphera devices. A dynamic power
management system could properly be defined as the set of rules and procedures that
move the system from one operating point to another as events occur. The concept of an
operating point also extends to non-operational deep and hibernate states. The fact that
modern voltage and frequency scalable systems support multiple operating points, and
the fact that the proper selection of an operating point has a critical impact on system
energy consumption are central to this proposal.

The operating point is the lowest-level object in the DPM system hierarchy. An
operating point object encapsulates the minimal set of inter-dependent, physical and
discrete parameters that define a specific system performance level along with an
associated energy cost. A good example of inter-dependency is the relation between
voltage and frequency of a CPU core. The core voltage limits the maximum operating
frequency of a voltage-scalable CPU, and the frequency of the processor cannot be
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considered without also considering the voltage. As discrete parameters we consider
things like SDRAM timing parameters, e.g., “CAS 2, that are critical for correctness and
constrained by other parameters in the operating point, e.g., the SDRAM interface

frequency.

By their nature, operating points for advanced processors will be processor- and system-
dependent. Under our proposal the system designer is responsible for defining as many
operating points as are necessary for the application’s power management needs. Asan
example, operating points for the IBM PowerPC 405L P currently specify a core voltage
level, CPU and bus frequencies, memory timing parameters and other clocking related
data. A detailed description of the operating points for the 405L P appear in Appendix:
Operating Points for PowerPC 405LP on Page 23. Abbreviated details of three 405LP
operating points for a particular evaluation platform appear as Table 1. Further below,
we explain how a DPM system selects an operating point and transitions from one
operating point to another.

Table 1: Three abbreviated operating point descriptions for an IBM Power PC 405LP

reference design.
OPERATING “33/33” “200/100" “266/133"
POINT
Core Voltage 10V 15V 1.8V
PLL VCO 800 MHz 800 MHz 533 MHz
Frequency
CPU Freguency 33 MHz (24:1) 200 MHz (4:2) 266 MHz (2:1)
(VCO:CPU)
PLB Fregquency 33 MHz (1:1) 100 MHz (2:1) 133 MHz (2:1)
(CPU:PLB)
EBC Freguency 33 MHz (1:1) 33 MHz (3:1) 33 MHz (4:1)
(PLB:EBC)
SDRAM Timing CAS2 CAS?2 CAS3

Operating States

Given that a system supports multiple operating points, some rules and mechanisms are
required to move the system from one operating point to another. Current dynamic
control mechanisms may set operating points in response to changes in activity or in
response to the requests of key programs. The fact that advanced processors like the
IBM PowerPC 405L P can scale frequencies with a latency measured in afew
microseconds, voltages with a latency measured in tens of microseconds, and al without
interrupting system operations in the meantime, means that much more aggressive and
finer-grained policies can now be contempl ated.
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Figure 2: Operating states and state transitions that might be recognized by a DPM
implementation.
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More generally, Figure 2 illustrates how the operating system can be thought of as a state
machine moving through different states in response to events: tasks are scheduled, the
system goes idle, interrupts are received and handled, etc. We refer to these system states
as operating states. In an aggressive dynamic power management policy, each operating
state may be associated with an operating point specific to the requirements of that state.

The introduction of the concept of the operating state was first motivated by the
observation that significant systemwide energy savings can be achieved by reducing
CPU and bus frequencies, and core voltage while the system isidle. Thereforea
mechanism is required to specify a different operating point during the time that
programs are executing, and the times that the system isidle. This naturaly leadsto a
distinction between an active sate and an idle state, each with a potentially different
operating point. The transition from the active state operating point to an idle state
operating point and back is smoothly and efficiently managed by the DPM
implementation in the operating system. Others have aso explored the possibilities of
this type of fine-grained control of the operating point [ 6].

The concept of an operating state also provides for task-specific operating points for
power-aware tasks. This requires multiple task-specific active states or task states. The
DPM architecture alows for any number of task states. The default task state is expected
to be used by the large majority of tasks, analogous to the way that most tasks now use
the default scheduling policy of the operating system. Tasks with special requirements
may specify, or be specified to run in different task states, each of which may be
associated with a different operating point. Note that tasks never explicitly specify an
operating point. Instead, the operating point isimplied by the task state and the current
policy. Task states are discussed in more detail in Implementation and Effects of Task-
Foecific Operating Sates on page 15, and illustrated in the examples that appear under
Example Strategies starting on page 17.

Operating states also appear in the DPM policy architecture. Conceptually, a DPM
policy simply associates an operating point with each of the system operating states, and
changing to anew DPM policy simply changes the association. The actua structure of a
DPM policy is much richer in capabilities, however, as explained in the next Section.
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Device Management and Operating Point Congruence Classes

The states of on-board and external periphera devices have a tremendous influence on
systemrwide energy consumption, and on the choice of operating point. For example, the
IBM PowerPC 405L P has an on-board LCD controller which uses aframebuffer stored in
externad SDRAM. If the LCD controller is enabled, then any valid operating point for the
system must specify a memory bus frequency high enough to satisfy the refresh rate of
the display, which in turn is determined by the variable pixel clock frequency aso
specified in the operating point. When the LCD is disabled (for example, when a PDA is
used smply as an MP3 player), significant system-wide energy reductions may be
achieved by reducing these frequencies.

Our power management architecture relieves the policy manager from the responsibility
of managing device states and from having to respond to changes in device states. We
rely on low-level device drivers or other system tasks to aggressively manage the power
consumption of the devices they control. For example, if a PowerPC 405LP system is
not currently producing or consuming audio data, the device driver for the audio CODEC
interface may power-down the externad CODEC chip as well as command the on-board
clock and power manager to remove the clock from the CODEC interface peripheral.
From the perspective of DPM, since the CODEC isa DMA periphera these changes alter
the bandwidth (frequency) requirements for the on-board periphera bus, and it might be
profitable to also trigger a change in the operating point since the system is no longer
constrained by the DMA requirements of the audio subsystem.

No individual device driver has the global view of the system or the power management
strategy required to completely specify the operating point, however. Instead this
information is centralized in the DPM policy structure as a congruence class of operating
points. This object groups together operating points that the system designer considers
equivalent for specific operating states modulo a power management strategy. This
means that any of the operating points in the class would be acceptable as an operating
point for the system in the given operating state, although device constraints might render
some members of the classinvalid, and power considerations might cause one operating
point to be preferred over other valid operating pointsin the class. At any given point in
time avaid DPM policy will designate one member of each congruence class as the
selected operating point for that class. The examples under Device Constraint
Management on Page 9 should help clarify this concept.

Devices specify their requirements as sets of constraints associated with particular device
states. For example, an LCD controller might specify apixel clock in the range of 16 to
25 MHz while active, and no congtraint while inactive. When devices change state, and
hence their requirements for system resources change, these requirements are
communicated to DPM. Simple rules are defined to invalidate inappropriate operating
points and to automatically select one of possibly several valid operating points from the
congruence class under the new constraints.

This mechanism frees the policy manager to focus on hightlevel management, while
ensuring that the system always operates at the best operating point (as defined by the
system designer) consistent with the current policy and device states. This mechanism
also supports systems that include simple policy managers, or that do not implement any
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run-time DPM policy management at all. The system designer may be able to describe a
suitable dynamic power management strategy using only asingle DPM poalicy, based on
operating point congruence classes that anticipate the significant states of periphera
devices with regard to power management.

Policies and Policy Managers

The highest-level abstraction of the DPM architecture is the policy, which maps each
operating state to a congruence class of operating points. A power management strategy
will specify at least one policy, and may specify as many different policies as necessary
for different situations. The policy in effect at any given point in time controls the
operating point of the system in every operating state. The complete DPM system
hierarchy isillustrated in Figure 3.

Task-
Task ldie A class of operating points

is assigned to a systemstate,
e.g. task or idle, and the

sel ected el enent of the

class is used when the systemis
[ in that state.

[ O [
O O O asses of operating points;
O O O O O O the sel ected operating point
in each class is shown highlighted.

A policy maps all systemstates to an operating point selected for that state.

Figure 3: Afully enumerated DPM policy assigning each operating state to a congruence class of
operating points. Only one operating point froma classis selected (shown highlighted) at any
giventime.

Note that the DPM architecture does not require the presence of any operating states
other than asingle task state common to al platforms. The number of task states may
vary from platform to platform; however on al platforms the task states will only be
given ameaning by the policies and the policy manager. The examples used in this paper
(which show three task states, an idle state and an idle-task state) are representative
examples only; DPM does not requirethis system structure.

If multiple policies are needed, then apolicy manager must exist in the system to
coordinate the activation of different policies. The policy manager may collect
information from the operating system, user preferences, running programs,
configuration files and/or physica devices to make its policy decisions. The “location”
of the policy manager (kernel space or user space), the types of information required, and
all of the actions taken in response to that information are not specified. The intention of
this architecture is ssimply to define a consistent way for policy developers to express
policies that are controlled by the policy manager and implemented by DPM. See Policy
Examples on page 17 for severa examples of how policies and policy managers might
work under DPM.
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The DPM hierarchy extends to multiprocessing systems as well. In a symmetric
multiprocessing system where each processor is identical but independently controlled, it
might be advantageous to define an operating point for each processor subsystem. In this
case the active policy on each of the processors could actually be different, although
derived from a common set of policies. In the case of an asymmetric multiprocessor, if
the processors were truly independent then each independent processor subsystem would
by necessity have a different type of operating point with a different set of parameters,
and each subsystem might also recognize different operating states.  This type of
asymmetric multiprocessor would require different types of policies for each processor
subsystem

Device Constraint Management

The automatic selection of operating points as devices change state is a central feature of
DPM. Embedded systems may not have a BIOS or machine abstraction layer to insulate
the operating system from low-level device and power management. Therefore this task
will fal to the operating system and its device drivers. Asthe complexity of embedded
systems increases, and the interrel ationships between clock sources and power
management modes become more complex, this becomes an increasingly difficult task.
Under the DPM abstraction the system designer becomes an “oracle” for the power
management system by pre-selecting sets of meaningful operating points for the
application, and organizing these operating points within power management policies that
are suitable for the application. Note that there is nothing in the architecture that would
restrict avery self-aware system from performing thisrole as well.

The most aggressive power management strategies will also require the system designer
to carefully consider the influence of attached devices on the strategy. This Section uses
an example to illustrate the operation of the DPM architecture with respect to
dynamically varying requirements from peripheral devices. The process being described
in this Section is the automatic mechanism by which the DPM system selects a preferred
operating point from a class of equivaent operating points as system devices change
State.

The following example is based on reference designs for the IBM PowerPC 405LP. As
background, the example design includes a VGA (640 x 480) LCD panel and an externd
security chip for secure key management functions. The LCD controller is on board the
405L P, and receives a variable-speed pixe clock generated by on-chip clock dividers.
The pixel clock frequency determines the LCD refresh rate as well as the Processor Local
Bus” (PLB) bandwidth to the SDRAM framebuffer required to service the LCD. The
security chip requires the 405L P to source a precise 33 MHz clock viaan external clock
port. Variations in this frequency while the security chip is active may be interpreted as
attempts to compromise the system, and cause the security chip to shut down. However,
the security chip does alow the clock to be removed when the device isinactive. System
energy is conserved by only sourcing the 33 MHz clock while the security chip is
performing key management, which is an infrequent occurrence, while correctness
requires that exactly 33 MHz be sourced on this port while the chip is active.

2The PLB isthe on-board system bus in the 405L P, and connects the PowerPC 405 core with the memory
controller and all other on-board peripherals.
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Figure 4 illustrates a smplified example policy for the PowerPC 405LP for this design.
The operating point classes for two operating states, task and idle, are illustrated. In this
smplification®, an operating point is described by a core voltage (in volts), and a CPU,
PLB, pixel clock and externa clock frequency specified in MHz. Thisisahigh
performance policy that specifiesa 1.8 V, 266 MHz operating point for the task state, and
lower voltage and frequency operating points for the idle state.

Task Idl e

Figure4: Asimplified policy for a PowerPC 405LP reference design. Each annotated
circle represents an operating point within the boundaries of congruence classes of
operating points for the task and idle states. Simplified operating points specify a core
voltage in Volts, and CPU, PLB, pixel clock and external clock source frequenciesin
MHz.

Three operating points are specified for each of the two states. In both cases, the leftmost
operating point of each set is the lowest-energy state in which the pixel clock is
effectively disabled (at 16 bpp the VGA display requires apixel clock of at least 17 MHz
for acceptable visual performance), and the external clock is completely disabled. The
other two operating points differ smply in whether the external clock is sourced.

Idl e

Figure5: The policy during “ normal” operation where the LCD controller is enabled
but the security chip remains disabled. The selected operating points are highlighted.

Figure 5 illustrates the situation during the “normal” operation of the application, where
the LCD controller is active but the security chip is offline. In this state the first
operating point of each state isinvalid due to an insufficient pixel clock frequency. The
LCD controller’s pixel clock requirement is communicated to the system whenever the
LCD controller changes state, therefore when the LCD controller is enabled the DPM
system will invalidate the indicated operating points. The next operating points in each
classarevalid, so thisisavalid policy. Here we assume that the DPM implementation

3 The actual operating points for the 405L P system include several other parameters as detailed in Appendix:
Operating Points for Power PC 405LP on Page 23.

Copyright & 2002 IBM and MontaVista Page 10 of 25 v1.111/19/02



Dynamic Power Management for Embedded Systems

uses a pre-defined sorting of the operating points in the class (priority descending left to
right in the figure) to make a determination of which of multiple valid operating points to
select, and the operating system will smoothly transit between these two operating points
(with the associated dynamic voltage and frequency scaling) as the operating system
moves from the task state to the idle state and back

Note that the pixel clock frequency at idle is dightly lower than during the task state. We
observed that this particular display provides adequate performance for static images at
lower frequencies than are required for displaying dynamic images. Since by definition
theimageis static at idle, the idle operating point specifies a dightly lower pixel clock
frequency than the task operating points. Lowering the pixel clock frequency lowers the
SOC power consumption, the SDRAM power consumption (due to decreased memory
bandwidth), and the power consumption of the LCD panel eectronics, and this adds up to
atangible systemwide energy savings with no perceived loss of visua performance.
This type of energy optimization is made possible by the fine-grained structure of DPM
policies coupled with a processor architecture specifically designed for aggressive power
management.

A hidden detail isthe fact that the pixel clock is generated from the PLB clock, therefore
the clock divider ratio changes between the task and idle states. In the task states the
PLB/pixéd ratio is 6:1, moving down to 2:1 at idle. This divider change is aso encoded in
the operating point in order that the operating state changes can occur without involving
the LCD controller device driver. The DPM architecture alows isolation of this and all
other low-level details of the frequency changes from device drivers, and does this
efficiently by using pre-computed operating points.

Weredlizethat in al casesin some systems, and in certain cases in any system, changing
apolicy or operating point may require notification of device drivers for some action,

e.g., reprogramming bus controllers for a new frequency to insure correct and efficient
operation. It isup to the underlying DPM implementation to handle this requirement
during the change in the operating point. In general, the most efficient policies for
flexible systems like the 405LP will minimize operating point changes that require device
driver notification.

Task Idl e

Figure 6: The state of the policy while the LCD controller is active and the security chip
is performing key management.

Figure 6 shows the state of the policy when the security chip isonline. In this situation
only one operating point for each operating state remains valid, namely the operating
point that enables the external clock port at 33 MHz. As soon as the security chip device
driver determines that the security chip can be taken offline, thiswill be communicated to
the power management system and the policy will revert to that shown in Figure 5.
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Figure 7 illustrates the policy when both the LCD controller and the security chip are
disabled. This state might arise if a user were using the device smply as an audio player,
and had disabled the display to conserve energy. In this situation the lowest-energy
operating point from each classis selected. Since the LCD controller is disabled, there
are very limited demands for PLB and memory bandwidth while idle (8 MHz is much
more than adequate to support DMA of CD-qudity audio datato an external CODEC).
Therefore, the idle state operating point specifies an extremely low energy state, with just
enough processing power to register the event that takes the system out of idle and return
to the task state.

Idl e

Figure 7: The state of the policy when both the LCD controller and the security chip are
inactive.

However, note what would happen if any key management activities were initiated while
in this system state. Prior to commencing activity, the security chip driver would
communicate the requirement for the 33 MHz external clocks back up to the power
management system. Thiswould cause the policy to revert back to the situation shown in
Figure 6, which is the only state supporting a 33 MHz externa clock in al operating
states. Again, the 33 MHz external clock is generated by dividing down the PLB clock,
and the low-level code that actuates an operating point handles the divider change during
the operating state changes without requiring any other action of the security chip driver.

Up to this point we have illustrated the classes of operating points assigned to operating
states as an explicit enumeration. Thisis a compromise between smplicity and
flexibility that we have adopted in our prototype implementation. However, the DPM
architecture also allows operating points to be specified as a set of possible values for
each parameter aong with the mechanism for applying device constraints and strategy
rules against the possible range of values to generate the explicit operating points at run
time. Regardless of the method used to arrive at the operating point, the intention of the
architecture is that operating points (either explicit or with well-defined mechanisms to
derive them at run-time), congruence classes and policy mappings are pre-specified, and
changes in device constraints modify the set of operating points available in a policy.
These changes can be made transparent to the core of the underlying operating system,
which is free to move the application from state to state without regard to any particular
operating point or device state.
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Abstract Implementation

The previous Sections presented a high-level design of the DPM architecture. To review,
the architecture is a hierarchy of objects: operating points and congruence classes of
operating points, operating states, and policies composed of mappings from operating
states to congruence classes of operating points. Thisis a straightforward architecture that
could be implemented in an operating system in several ways. This Section gives our
preferred implementation and the rational e behind the choices made in the
implementation.

Although the framework of the power management system described here is smple,
accounting for al of the possible interactions of user-level polices and the influence of
device congtraints is a challenging task. Ultimately, regardless of the implementation, the
system designer who creates the power management policies for the systemis
responsible for understanding al of the constraints imposed by the application with
respect to the power management system.

Two of the challenges with respect to implementing this system include:

Changes in device constraints may invalidate operating points. Automating these
trangitions is the primary mechanism by which the architecture relieves the high-level

power management task from having to deal with device states. This leads to severa
obvious conflicts, however.

Operations on the DPM implementation may block. Blocking could arise at the very
lowest level of the implementation, where power management device drivers use
system 1/O ports to control voltages and frequencies. In some cases, changes in the
operating point will require notification of device drivers that frequencies have
changed or will change, and in some systems preparing the device for these changes
may require temporary blocking. At ahigher level, we recognize that certain critical
tasks may need to lock the power management system against any changein
operating point for periods of time, for example during a user-initiated change in the
DPM palicy.

The following system design recognizes and accounts for these challenges in a consistent
way.

Abstract API

At an abstract level, the power management implementation supports 5 high-level entry
points that that may trigger a change in the operating point, or otherwise change the state
of DPM: assert_congtraint(), remove_constraint(), set_operating_state(), set_policy()
and set_task state(). The firgt three entry points, assert _constraint(),
remove_constraint() and set_operating_state(), are only required to be visible from a
kernel context. Device constraints are asserted and removed by device drivers as devices
change state. The operating system’s process management and event handling code
controls changes in the operating state and notifies DPM as these state changes occur for
potential changes in the operating point. A policy manager outside of DPM sets policies
and the policy manager or the tasks themselves may set task states. Therefore the entry
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points set_policy() and set_task state() are only required to be visible from a user
context, for example via a system call, although they may also be available in akernel
context for the use of in-kernel policy managers.

The system is assumed to be fully operationa at the point where the operating system
activatesthe DPM system. No state transitions caused by the DPM functions are allowed
that would render the system inoperable or incapable of moving to a valid operating
point. A straightforward definition of validity is used: an operating point isvalid if it
satisfies al device constraints, a congruence class of operating pointsisvalid if at least
one of the classisvalid, and a policy isvalid if every operating state in the policy maps a
valid class of operating points. Assuming that the system isinitialy set to avalid policy,
the DPM implementation ensures that the current policy will never become invalid, and
the system is never alowed to move to an invalid policy.

The remainder of this Section goes into more detail on the implications of the abstract
API with respect to an implementation. Specia emphasisis given to the concept of task-
specific operating states.

set_operating_state()

An important principle of the DPM design is the concept that an operating state is
independent of any particular policy, since every valid policy must define an operating
point for every state. Snce the system will always be executing in avalid policy, and
every operating state in any valid policy will have at |east one valid operating point, the
cal to set_operating_state() can be decoupled from its eventual completion, at least to
the extent that the completion of an operating state change requires a change in the
operating point. Thisis critical because set_operating_state() will be caled from process
management code that will not be able to block and may not be able to effectively dedl
with errors. Even if the power management system is temporarily locked by some other
operation, or the implied operating point change requires blocking due to dynamic
scaling constraints, device driver notification or otherwise completes asynchronoudly, the
set_operating_state() call will complete without error to the caller. The system will
continue to execute at the current (vaid) operating point until the DPM implementation is
able to process the request to change the operating point to be consistent with the new the
operating state.

It is possible that in some situations the operating state transitions will occur faster than
the system can set the operating points. Note that in this situation there is no need to
gueue more than one request (the latest request) to set_operating_state(). For situations
where the system cannot proceed until the new operating state is completely activated,
blocking and failing variants of set_operating_state() may aso be provided.

assert_constraint()

The device driver calsto assert_constraint() may always block and/or fail. If the
assertion of a device constraint would invalidate the current policy it cannot be alowed
to complete. Resolving this conflict may require notifying the policy manager that a
change in policy isneeded. Changes in device constraints will typically occur in
response to system calls (open(), close(), etc.) that execute in a process context where a
blocking call is acceptable. Device drivers that change device states in response to
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interrupts will need to be carefully coded to avoid problems with activating their
constraints. Perhaps the best approach will be for system designersto insure that every
policy will be valid regardless of the device constraints, and only use device constraints
to fine-tune the selection of the operating point for optimum power management.

remove_constraint()

The call to remove_constraint() to remove a device congtraint is also decoupled from its
eventual completion. Since removing a constraint will never invalidate a policy, this call
need never block the caller or fail. Again, however, this entry point is expected to be
activated from a system call context (most likely close()) where blocking semantics
would be acceptable (and more straightforward to implement).

set_policy()

Cdlsto set_policy() will fal if the target policy is not vaid. A call to set_policy() may
aso block temporarily if the power management system is locked by another task. Since
policy managers are expected to be implemented as user- or kernel-level daemonsin a
process context, they can easily be coded to handle blocking and failure of the
set_policy() call.

Implementation and Effects of Task-Specific Operating States

One of the key features of DPM is the concept of task-specific operating points,
implemented by assigning different task operating states to different tasks. The
implementation of this feature in the core operating system is straightforward, as it
smply requires the task structure to carry a descriptor of the task operating state to use
when the task is scheduled. In our current Linux prototype the task state of each task is
inherited acrossfork(), beginning from the initial task started at system boot. The task
state of atask is changed by the set_task_state() entry point, which may be exported to
the user level asasystem call. In our current Linux prototype tasks with sufficient
privileges may change their own task states, or the task states of other tasks. Thusa
system could be constructed where a single intelligent policy manager controlled the task
states of critical programs for improved power/performance efficiency, without requiring
any changes to the programs.

The DPM architecture does not require the process scheduler to interpret the task state,
but smply to call set_operating_state() with the new task state descriptor prior to context
switching to anew task. The operating point associated with the task is then implied by
the current policy, which is controlled by the policy manager. It is possible that some
efficiency improvements could be gained by a scheduler that considered operating state
affinity in its scheduling algorithm, since every operating point change involves some
system overhead. It isaso possible that a“hook” in the scheduler would be useful to the
policy manager; however neither of these two enhancements is necessary for aDPM
implementation.

It is generaly believed that critical tasks may need to participate in the selection of an
optimum operating point for their execution [2]. However, we do not believe that tasks
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running in a general-purpose system should explicitly set the system operating point.
Thiswould tie programs to a particular application, and usurp the authority of a policy
manager to implement policies that might, for example, put a cap on power consumption
by limiting the range of allowed operating pointsin a policy, perhaps to conserve battery
life, or perhaps even in critical response to thermal overload conditions. Allowing a
program to set the system operating point might also leave the system in an inappropriate
(high-energy) state between active episodes of a periodic task. Similarly, we do not
believe that a program should set the system DPM policy unless the program is prepared
to act as acomplete DPM policy manager for the system. We arrived at a compromise
between tasks having direct control on operating points (to perform task-dependent
power management) and a power management system completely outside the control of
individual tasks (for global power management and system reliability) with the
set_task_state() entry point being made available to authorized tasks.

We currently propose a set of ordered task states, with a default state and other states
implying more or less power/performance. Our current Linux prototype includes 9 task
states: task-4,...task,...,task+4. We view the assignment of tasksto task states as
somewhat analogous to a process priority scheme. A process priority has no meaning
until it is considered in the context of the entire system, and the process priorities
assigned to competing processes. Similarly, task states are only given meaning by the
DPM policies. Numerous mechanisms are available for tasks and the policy manager to
determine the appropriate task state for atask in those cases where the default state is not
sufficient.

Our Linux prototype also introduces the concept of a no Sate task state. Tasks marked as
no state are simply run at the system’s current operating point. The no date task state is
assigned to system threads that perform small amounts of work on behalf of other tasks
and device drivers (keventd and softirqd_* in Linux), to avoid short-duration changes to
the operating point. It also turns out that changes to the current operating point may
complete asynchronoudly in the context of one of these kernel daemons, and without the
no state concept the activation of the daemon itself might override the change in
operating point it was being caled on to complete! In generd the system design may aso
assign the no state task state to tasks that run periodically for very brief periods, eg., a
DPM policy manager daemon, as away to minimize the impact of operating point
changes that might occur when ephemeral tasks are scheduled and run.

In our current prototype, interrupts are always handled at the then-current operating
point. Thusinterrupt handlers are smilar to no state tasks. We have considered systems
that would include operating states specifically for interrupt handling, but have not yet
found a need for this added complexity in the general case. However the DPM
architecture would easily accommodate a generic interrupt operating state, an interrupt
operating states specific to each task state, or even an interrupt state specific to each
particular interrupt.

Finaly, athough DPM task states are similar to process priorities they are not necessarily
correlated to static or real-time process priority mechanisms, and they must be considered
separately. It istempting to assume that high scheduling priority and high-performance
operating points would go hand-in-hand, but thisis not necessarily the case. Consider for
example an MP3 player task. MP3 playback only requires afraction of the processing
power available at the highest-efficiency, low-voltage operating point of the PowerPC
405LP. Although the MP3 player might be scheduled under areal-time policy to

Copyright & 2002 IBM and MontaVista Page 16 of 25 v1.111/19/02



Dynamic Power Management for Embedded Systems

guarantee predictability in scheduling, the MP3 player by itself would never require a
high-performance operating point to meet its real-time constraints.

Example Strategies

The previous Sections have introduced an architecture for dynamic power management
of embedded systems, given examples of how the architecture handles constraints from
devices, and explored some of the low-level implementation issues. This Section
concludes the technical presentation by exploring three example strategies. In this paper
our intention is only to explore afew of the possibilities of DPM by using smple
examples. More complex interactions between tasks, policy managers and the operating
system are certainly possible and are under consideration.

These examples are based on the current Linux prototype implementation of DPM for the
PowerPC 405LP. In the examples, operating point classes are named by a CPU
frequency, PLB frequency and a core voltage. The prototype implementation currently
includes 9 task states, although for simplicity only 3 task states are used in the examples.
Theidle state is used during system idle periods, more specifically during those periods
where the CPU is halted pending an interrupt. The idle-task state is introduced for the
idle thread itself, and especialy to handle interrupts that occur during idle, allowing the
system to enter a higher-performance state for interrupt handling without necessarily
moving to atask state. When the prototype platform is truly idle, the idle/idle-task/idie
transitions occur approximately 200 times per second in response to the timer interrupt.
Interrupts that occur during task states are handled at the then-current operating point as
previously mentioned.

Static Strategies

The simplest use of this architecture is to base a strategy on asingle, “static” policy.
DPM does not requirearun-time policy manager. A single policy may be installed at
system initiaization and allowed to remain active indefinitely. Figure 8 below isan
example of such astrategy. All task states are assigned to a common class of operating
points and there are also different classes of operating points associated with the idle and
idle-task States.
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Figure 8: A simple, one-policy instantiation of the DPM framework.

For certain systems this may be an effective power management approach, since it
insures that applications have top performance when they are active while the system still
has alow-power idle state to save energy. Researchers are sometimes disappointed that
dynamic scaling strategies do not have as large an effect as had been hoped for, either
because the system has alarge background power consumption that does not scale (e.g., a
big LCD panel), because of the difficulty of devising general-purpose scaling heuristics,
or because alack of rea-time facilities in the OS means that soft real-time tasks are
forced into inefficient polling loops for short delays rather than alowing the system to
return to a more power-efficient idle state [7]. In these systems a simple strategy like that
in Figure 8 might provide close to the best possible energy savings, and effortsto
conserve energy might be better focused on low-power system design, general

application performance tuning, and implementing real-time extensions to the OS rather
than on complex policy managers.

RO,

4266/ 133 @ 1.8V

| $100/50 @1.0V 33/33 @1.0V| |100/50 @1.0V
200/100 @1.5 V

Figure 9: Another complete yet ssimple instantiation of the DPM framework.

Figure 9 above is another example of asimple, one-policy strategy. Here, different
operating points are assigned to the different task states. In this smple system, most
tasks will run at 200 MHz, while those tasks requiring more or less system performance
can also be accommodated by requesting a different task state. It would also be within the
bounds of this proposal to have a single policy like the one shown, and then have a policy
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manager change the task state assignments for tasks dynamically based on whatever
information was required to make that decision.

Simple Dynamic Scaling

As the next example, we consider the implementation of a simple activity-based power
manager for a dynamic voltage and frequency scalable system. Systems like this use
CPU utilization to drive the dynamic power management policy. As system activity
increases, the policy manager increases the system frequency (and the core voltage) in an
attempt to provide adequate performance for the workload while minimizing power
consumption. These simple types of policy managers have been well studied and are in
commercia use[5].

Implemented under DPM, the example policy manager uses the mechanism of setting a
policy to move the system from one voltage and frequency level to another. Note that the
DPM abstraction relieves the policy manager from al of the low-leve details. The
policies describe consistent operating points for the idle states as well as the task states,
regardless of the state of peripheral devices, and if special operating points are required
for non-default task states, these are trangparently encoded by the congruence class
mappings for those states. In fact, the policy manager need not even be aware of the
particular voltages and frequencies associated with the policies. The policy manager
could simply interpret a set of abstract rules, specified by the system designer, that
describe the events that should move the system from one power policy to another.

An example of the policies that might be appropriate for this type of strategy is shown in
Table 2. In this example, policies are associated with CPU core voltages, and no
distinction is made between the task states. The policies use increasingly higher
performance and higher energy operating points as we go from Low to High. The policy
manager operates by periodically querying the system as to the amount of time the
application has been executing in the various operating states. When system activity
increases past a certain threshold, indicated by the ratio of time spent in the task statesvs.
theidle state, arule set would cause the policy manager to move to a higher power-
performance (higher voltage and frequency) policy. Decreasesin system activity would
trigger rules that move to alower power-performance policy. Thisis such ageneraly
useful type of policy trigger that it is reasonable to require a DPM implementation to
maintain these statistics.

Table 2: Example policiesfor a simple dynamic voltage and frequency scaling policy

manager.

POLICY TASK[+/-] IDLE IDLE-TASK
Low (1.0V) 100/50 @ 1.0V 3333@10V 10050 @ 1.0V
Medium (1.5 V) 200/100 @ 1.5V 3BB @15V 200/100 @ 1.5V
High (1.8 V) 266/133 @ 1.8V 333B @18V 266/133 @ 1.8V

Note that the policy manager might a so receive meta-information from the system that
would affect its management algorithm. For example, as available battery energy
decreases, the policy manager might have rules to cap the energy consumption by not
alowing certain policies to be activated.
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The above strategy attempts to reduce latency going in and out of idle by not voltage
scaling at idle, which might have alonger latency than smple frequency scaling. In
practice, a policy manager using the above policy might change from the Lowto the
Medium policy when system activity increased above 50% over sometimeinterval, and
from Mediumto High when system activity increased above 75%.

One of the drawbacks of an activity-based strategy like the one suggested here is that
these strategies impose an energy penalty on the system when the system runs tasks that
are highly active but have no real-time performance constraints, since the policy manager
scales voltage and frequency without any direct information on the performance
requirements. A simple aternative that would obtain higher energy savingsisto assign
the task- state to these busy tasks that have low performance requirements and have the
policy manager ignore activity in the task- state when making scaling decisions. In other
words, the policy manager would never scale frequency and voltage if the mgority of
process activity took place in the task- state. Similarly, tasks with soft real-time
requirements could be placed in the task+ state, and the policy manager could interpret
activity in the task+ state as a hint to scale more aggressively. This would be one way of
using DPM to implement a job classification scheme like that suggested in [8].

Task-State Specific Dynamic Scaling

Classic scaling theory suggests that if there is work to be performed on a CPU, it will be
performed more energy-efficiently at alower voltage and frequency. Consider for
example a simple video decoder that has met a deadline and is prepared to deep until the
beginning of the next frame. If the system is otherwise unloaded, and if the program
could continue to make progress (e.g., begin decoding the next video frame), then another
aternative would be for the decoder to continue to work at a more power-efficient
operating point until the next deadline approaches.

Table 3: Example policies for a task-state specific strategy.

POLICY TASK+ TASK TASK- IDLE-TASK IDLE

Battery Critical | 100/50 @1.0V | 100/50 @ 1.0V | 100/50 @ 1.0V | 100/50 @ 1.0V | 33/33 @1.0V
Battery Low 266/133 @ 1.8V | 100/50 @ 1.0V | 100/50 @ 1.0V | 100/50 @ 1.0V | 33/33 @1.0V
Battery Good | 266/133 @ 1.8V | 200/100 @ 1.5V | 100/50 @ 1.0V | 100/50 @ 1.0V | 33/33 @1.0V

The final example briefly explores this scenario, using the policies detailed above in
Table 3. In this scenario the policy manager does not play much of arole, merely
changing policies in response to changes in the state of the battery as suggested by the
policy names. Aslong as battery power is good, most tasks are allowed to run at 200
MHz, scaling back to 100 MHz as available energy decreases, athough specific tasks can
run in higher energy states while the situation is still not critical.

Under this type of strategy a power-aware video decoder might modulate its scheduling
priority and task state in response to impending deadlines. In this way atask could make
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use of the pre-existing capabilities of the operating system for guaranteed execution,
coupled with the facilities of DPM that allow atask to indirectly set its own operating
point. A simple two-state machine the task might implement is illustrated below.

Deadl i ne net;
Set normal priority,
go to Task- state and
conti nue wor ki ng.

A

\_/v

Deadl i ne approachi ng;
Set real-tine priority
and go to Task+ state.

Note that the above example assumed only minimal changes to the video decoder. This
would be expected to provide some energy savings over smply running the decoder at
full speed dl of thetime. If more extensive changes to the decoder are possible, and if
the decoder is to be delivered in a system with a dedicated policy manager and special-
purpose policies, then very significant reductions in energy may be possible [9].

Discussion

Preliminary versions of this paper have been reviewed, and these reviews brought out
some issues worthy of further discussion. Some of these issues are addressed below.

Portability

One current criticism of this proposal has to do with the fact that DPM operating points
are platform-specific, and the belief therefore that DPM policies will not be portable
across multiple platforms. The question arises as to the possibility of simplifying the
proposal, for example by using a single CPU frequency as a portable operating point, and
defining a pair of min/max frequencies and an activity-based scaling policy as a portable
policy manager.

The above suggestion might make sense for less energy constrained, and less flexible
desktop and server systems. Note that the DPM framework easily accommodates smple
operating points and policy managers for these types of systems. However, we do not see
how we will be able to aggressively manage energy consumption to the extent needed by
coming generations of portable devices unless we are able to fully exploit al of the
energy management capabilities of the underlying hardware. We currently believe that
platform-specific operating points and application-specific policies and policy managers
are the best way to capture this requirement. Note that since DPM policies are based on a
hierarchy of named objects, all levels of the hierarchy above the operating point
definitions are potentially portable.

Copyright & 2002 IBM and MontaVista Page 21 of 25 v1.111/19/02



Dynamic Power Management for Embedded Systems

It isalso difficult to deny that SOC architectures will continue to have more and more
complex power management architectures, whose usewill vary from application to
application. Another benefit of the DPM mode is that many of the platform-/product-
specific details of how the various power and clocking modes of the system are used in
the application has been removed from the code space of the operating system into a
configuration data space, where this information is easier to manage and maintain.

Scope of the Proposal

Another current criticism of this proposd is that we have not developed a single, unified
architecture for dynamic power management of every system component and attached
device. Such aproposa can be found in [10]. Early on in the development of this
proposa we made a conscious decision not to include device states in the operating point
definitions, but instead to restrict operating points to the minimal set of parameters that
needed to be considered together to define a core operating point. Power management
mechanisms for many types of devices aready exist in operating systems, and we do not
see the advantage of taking on the large amount of work required to fit everything into a
unified mechanism, and the representation, maintenance and state explosion problems
that would resullt.

For example, the 405LP has an integrated PCM CIA socket controller that includes away
to control the voltage applied to the card. The state of the socket and the card voltage are
not part of the 405L P operating point. The PCMCIA socket driver system manages
power to socket, card drivers are expected to manage power states of the cards, and the
only interaction with DPM is the constraint that if a card is inserted, then a particular bus
frequency must be sufficient to run transactions to the card.

As another extreme example, the LCD backlight intensity controller widget on a PDA
functions very well as a stand-alone program. Although the use of this program may have
asignificant effect on system energy consumption, it is not clear that there is any benefit
to tightly coupling this user convenience function with a DPM policy manager that may
need to operate on a millisecond timescale, and may vary from product to product.
Instead we tend to favor system-wide power management approaches based on sets of
cooperating power managers. In these types of schemesa DPM policy manager would
be one part of the overal power management solution for the application.

A very smple example of thisideais present in the Linux PDA reference platform being
developed for the 405LP. The “light and power manager” widget controls the backlight
intensity, display off times, etc. Thiswidget has aso been enhanced to alow the user (or
the widget itself) to specify “meta-policies’ to the DPM policy manager for the PDA,
e.g., “full performance’, “low battery”. These meta-policy commands are sent as short
messages whenever conditions warrant, and the DPM policy manager implements the
meta-policies using sets of pre-defined policy management rules.
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Conclusion

This paper has proposed an architecture supporting aggressive dynamic power
management for embedded systems. This architecture is based on the capabilities of
current and next-generation processors and their application requirements. We first
introduced an abstraction based on policies, defined as mappings of operating points to
be used during the operating states of the system. We explained the interaction of
devices and device constraints with the model, briefly explored some implementation
issues and finished with afew examples. IBM and MontaVista are currently working to
implement the system described here under Linux for the IBM PowerPC 405L P and other
embedded processors. The architecture and the implementation will be evaluated by
developing and characterizing dynamic power management strategies and policy
managers for real workloads. Thiswork will undoubtedly lead to further refinements of
this proposal. We welcome comments from interested readers.
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Appendix: Operating Points for PowerPC 405LP

The challenge of building power-optimized systems based on processors like the IBM
PowerPC 405L P is one motivation behind the DPM specification. Table 4 below details
the information contained in the operating points for the 405LP in the current Linux
prototype of the DPM system. The operating points are defined by physica parameters
that may derive other parameters. Each parameter or group of parametersis annotated
with an explanation of how it bears on a power management strategy.
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Copyright & 2002 IBM and MontaVista Page 23 of 25 v1.111/19/02



Dynamic Power Management for Embedded Systems

Table 4: Components of the Power PC 405LP Operating Point under Linux

PHYSICAL
PARAM(S).

DERIVED
PARAM(S).

NOTES

Core Voltage

The operating point specifies the core voltage, rather than deriving it
from frequency constraints, in order to allow policies that use only
frequency scaling in places where voltage scaling would have a
negative impact on latency. Although the 405L P supports voltage
scaling across its full operating range in aslittle as 80 S, the latency of
voltage scaling is ultimately based on the power supply design and the
mechanism used to control it, and only the sy stem designer can make
the necessary tradeoffs for the application’ s power management policy.

System Clock
Source

The clock treeisdriven by the PLL VCO (the normal case), the system
reference clock (PLL bypass during relocking), or the RTC timebase
(for very low-power active standby).

PLL Multiplier
and Divider

CPU
Frequency

The 405L P accepts awide range of system clock frequencies.
Therefore the CPU frequency and most other frequencies are only
uniquely specified based on a PLL multiplier and divider. Although
the PLL divider can be changed at will, changing the multiplier
requires ashort PLL relock interval. Policies requiring minimum
latencies between critical operating states will require acommon PLL
multiplier in the operating pointsin the pdicy.

CPU/PLB
Divider

PLB
Frequency

The Processor Local Bus (PLB) frequency is used as the basis for most
other clocks in the system, and is also the SDRAM frequency.

PLB/[Bus]
Dividers

Bus
Frequencies

Severa bus frequencies are derived from the PLB, as well as the LCD
pixel clock frequency. Bus protocol timings are often optimized for the
particular bus frequency, and bus controller drivers may request to be
notified when bus frequencies change to insure optimal performance.
For minimal latency between transitions, policies can be written such
that bus frequencies never change between operating states, although
the bus dividers will change as the PLB frequency changes.

External Clock
Control

Externa
Clock Sources

The 405L P sources two external clocks with programmable dividers
from system bus frequencies. Clock dividers may change across
operating points even though the policies may ensure that the derived
frequencies do not change.

Bus/SDRAM
Target
Frequencies

In certain cases the system designer may be able to trade critical
latencies against power/performance implications by running the
system in non-optimal states. For example, the lowest-latency
transition from an 8 MHz idle state to a 266 MHz task state will occur
if theidle state is specified to run with 266 MHz memory timings,
which are not optimal for 8 MHz operation. These fields support these
kinds of tradeoffs.

DCR Values

At the SOC level, system timing is controlled by three Device Control
Registers (DCRs) associated with clock distribution and two DCRs
associated with SDRAM timing. The operating point includes pre-
derived values for the DCRs to reduce latencies during transitions
between operating points.
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including the implied warranties of fitness for a particular purpose, merchantability and
noninfringement. All performance data contained in these materials was collected in a
specific environment and is presented for illustration purposes only. Results obtained in
other operating environments may vary.
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