
CSC714: Real Time Systems Project – Report2

Group Members
BBHAT BALASUBRAMANYA BHAT

SBUDANU SANDEEP BUDANUR RAMANNA

Title

Pre-emptive EDF scheduler implementation on an embedded platform.

Task break-up and schedule

Task Description Assigned Status Completion

Date

1 Setting up the environment

to run the program on the

actual target and the

simulator

Bala/Sandeep Completed 03/23/09

2 Studying the current design

of the RMA scheduler on

MicroC OS II

Sandeep Completed 03/29/09

3 High level architecture for

the EDF scheduler.

Evaluation of different

design options.

Bala/Sandeep Completed 03/29/09

4 Finalizing the APIs to be

provided by the scheduler

Bala/Sandeep Completed 03/29/09

5 Design and implementation

of key data structures

required for the scheduler

Bala Completed 03/31/09

6 Implementation of Task

Management APIs

Bala/Sandeep In Progress 04/05/09

7 Startup routines and

Interrupt handling

Bala/Sandeep Not Started 04/05/09

8 Implementation of primary

scheduling algorithm

Bala/Sandeep Not Started 04/12/09

9 Implementation of

supporting services

(semaphores, profiling APIs

etc)

Bala/Sandeep Not Started 04/12/09

10 Functional Testing Bala/Sandeep Not Started 04/19/09

11 Performance evaluation Bala/Sandeep Not Started 04/21/09

12 Project Report Generation Bala/Sandeep Not Started 04/24/09

Problems

Since the preemptive EDF is a dynamic priority system, we need to change the priority of

the tasks dynamically at runtime. Our original design of implementing the EDF scheduler

on top of MicroC OS II will result in significant overhead. A code analysis of MicroC OS

indicated that the function call to change the priority of tasks results in good amount of

code being executed.

Planned Solution

Multiple design choices were evaluated. Since the call to change the priority of a task at

runtime is significant, we tried another approach where all tasks except for the one with

the earliest deadline will be deactivated. Hence the MicroC will only execute the task

which is active. This way the priority scheme is not used as we choose which single task

should be active. While this should work fine, it still introduces delays for calling activate

and deactivate for all tasks which is still significant. Also in this approach the use of

MicroC is almost only limited to maintaining the task control blocks and nothing else.

We then decided to eliminate the MicroC OS layer altogether and have a very thin kernel

implemented by ourselves. Basically this kernel would provide TCB and Queuing

services to our EDF scheduler. This solution should be very efficient compared to using

MicroC OS layer.

