CSC714: Real Time Systems Project – Report2

Group Members BBHAT BALASUBRAMANYA BHAT SBUDANU SANDEEP BUDANUR RAMANNA

Title

Pre-emptive EDF scheduler implementation on an embedded platform.

Task break-up and schedule

Task Description Assigned State	us Completion
	Date
1 Setting up the environment Bala/Sandeep Com	pleted 03/23/09
to run the program on the	
actual target and the	
simulator	1 / 1 02/20/00
2 Studying the current design Sandeep Com	upleted 03/29/09
of the RMA scheduler off MicroC OS II	
3 High level architecture for Bala/Sandeen Com	pleted 03/29/09
the EDF scheduler.	00/20/09
Evaluation of different	
design options.	
4 Finalizing the APIs to be Bala/Sandeep Com	pleted 03/29/09
provided by the scheduler	
5 Design and implementation Bala Com	pleted 03/31/09
of key data structures	
required for the scheduler	04/05/00
6 Implementation of Task Bala/Sandeep In Pr	ogress 04/05/09
7 Startup routines and Bala/Sandeen Not	Started 04/05/09
Interrupt handling	
8 Implementation of primary Bala/Sandeep Not	Started 04/12/09
scheduling algorithm	
9 Implementation of Bala/Sandeep Not	Started 04/12/09
supporting services	
(semaphores, profiling APIs	
	0.1/10/00
10 Functional Testing Bala/Sandeep Not	Started 04/19/09
11 Performance evaluation Bala/Sandeep Not	Started 04/21/09
12 Project Report Generation Bala/Sandeep Not	Started 04/24/09

Problems

Since the preemptive EDF is a dynamic priority system, we need to change the priority of the tasks dynamically at runtime. Our original design of implementing the EDF scheduler on top of MicroC OS II will result in significant overhead. A code analysis of MicroC OS indicated that the function call to change the priority of tasks results in good amount of code being executed.

Planned Solution

Multiple design choices were evaluated. Since the call to change the priority of a task at runtime is significant, we tried another approach where all tasks except for the one with the earliest deadline will be deactivated. Hence the MicroC will only execute the task which is active. This way the priority scheme is not used as we choose which single task should be active. While this should work fine, it still introduces delays for calling activate and deactivate for all tasks which is still significant. Also in this approach the use of MicroC is almost only limited to maintaining the task control blocks and nothing else. We then decided to eliminate the MicroC OS layer altogether and have a very thin kernel implemented by ourselves. Basically this kernel would provide TCB and Queuing services to our EDF scheduler. This solution should be very efficient compared to using MicroC OS layer.