
CSC714: Real Time Systems Project Proposal

Group Info:
BBHAT BALASUBRAMANYA BHAT
SBUDANU SANDEEP BUDANUR RAMANNA

Title
Pre-emptive EDF scheduler implementation on an embedded platform.

Goals / Motivation
This project aims to create a highly efficient periodic scheduler based on pre-emptive
Earliest Deadline First scheduling algorithm on an actual embedded platform. The
motivation behind this project is to understand the complexities behind implementing a
real-time periodic scheduler on an actual embedded platform as well as the Earliest
Deadline First algorithm for real-time scheduling. Besides these, if this project is
successful in its goal of producing a highly efficient scheduling, we intend to port this
scheduler for task scheduling on the SST Controller board in the FREEDM project.

Introduction
Real Time Operating Systems use specialized scheduling algorithms to provide
predictable behavior in hard real-time systems. The scheduler has to guarantee that all
periodic tasks meet their respective deadlines. Therefore the scheduler forms the core of
any real-time kernel. As part of this project, we intend to implement an Earliest Deadline
First scheduler for periodic tasks and a simple static priority based preemptive scheduling
for aperiodic tasks.

Description
Periodic tasks release their jobs at regular intervals each of which needs to be completed
before their respective deadline. A hard real-time system has to ensure that all deadlines
are met for all the jobs. In a soft real-time system, the deadlines can be missed
occasionally. The deadlines can be earlier/same as/greater than the task period. The EDF
scheduler always executes the job with the next earliest deadline at every scheduling
instant. Aperiodic tasks can be scheduled when no periodic tasks are running (slack
time).

Following are the requirements we intend to support in our scheduler:

- The scheduler shall support periodic tasks with deadlines equal to or less than the
period.

- It shall support EDF based scheduling for periodic tasks.

- If two or more jobs have same deadline, then they are scheduled in the FIFO
manner.

- The schedulability test shall be performed for each periodic task when that task is
created. The task shall be successfully created only if the schedulability test
passes.

- The scheduler shall be capable of creating tasks based on phase, period, execution
time and relative deadlines.

- All time values shall have one micro second resolution.
- The execution time for each job shall be strictly monitored and shall not be

allowed to exceed.
- The scheduler shall also support aperiodic tasks.
- The aperiodic tasks shall have lesser priority than all periodic tasks.
- The aperiodic tasks shall be scheduled using static priority based preemptive

scheduling.
- The scheduler shall be easily portable to different platforms
- The scheduler shall be as efficient as possible (least scheduling overhead).
- The scheduler shall have smallest possible memory footprint.
- The scheduler shall provide method for periodic and aperiodic tasks to sleep for

given amount of time.
- The scheduler shall provide method for tasks to yield to other tasks.
- The scheduler shall provide APIs related to task synchronization like mutex /

semaphores etc.
- The scheduler shall provide an idle task which is executed when there are no tasks

in ready state.
- The scheduler shall also keep track of the current CPU utilization.
- The following set of APIs shall be supported by the scheduler.

o task creation / deletion
o yield / sleep
o Synchronization (semaphore / mutex) APIs.

Implementation
We intend to implement the EDF scheduler on top of some other basic real-time kernel
such as uCOS II [2]. The uCOS II provides static priority based preemptive scheduling.
There is no concept of periodic tasks. Our scheduler provides a wrapper around uCOS II
APIs to support periodic tasks.

We intend to deploy our scheduler on the C6713 DSK kit from Texas Instruments. This
board has a TMS320C6713 DSP processor running at 150MHz.

All the scheduling decisions are made by our EDF scheduler. Only the task determined
by EDF scheduler will be in active state, all other tasks which are not running will be in
suspended state. Our EDF scheduler determines which task should be in active /
suspended state. This makes sure that the underlying RTOS doesn’t waste time in
determining the highest priority tasks again among active tasks. Since the underlying

RTOS sees only one active task, it simply executes this task rather than trying to
determine the highest priority task.

The EDF scheduler will make use of two hardware timers, one for tracking the deadline
of tasks and another for tracking the execution time.

Possible Extensions / Future Work
Based on the availability of time, following improvements can be made.

1. Implement the EDF scheduler on bare hardware without support of another RTOS
for better performance.

2. Implement EDF on multi core systems.

References
[1] Real-Time Systems, Jane W.S. Liu, Pearson Education
[2] uc/os2 web portal, http://www.micrium.com/products/rtos/kernel/rtos.html
[3] Lecture notes

http://www.micrium.com/products/rtos/kernel/rtos.html

	Title
	Goals / Motivation
	Introduction
	Description
	Implementation
	Possible Extensions / Future Work
	References

