
Pull based Migration of Real-Time Tasks in Multi-Core 
Processors 

 
1. Problem Description 
The complexity of uniprocessor design attempting to extract instruction level parallelism 
has motivated the computer architects to leverage parallelism through multiple simple 
cores on a single chip. Also, with continuous advancement in chip technology chip multi-
processors (CMP) have become a reality. Multicores are becoming ubiquitous, not only 
in general-purpose but also embedded computing. However, on such platforms prediction 
of timing behavior of real-time tasks is becoming increasingly difficult. While real-time 
multicore scheduling approaches help to assure deadlines based on firm theoretical 
properties, their reliance on task migration poses a significant challenge to timing 
predictability in practice. Task migration actually (a) reduces timing predictability for 
contemporary multicores due to cache warm-up overheads while (b) increasing traffic on 
the network-on-chip (NoC) interconnect. 
 
2. Related Work 
Real-time tasks are usually periodic in nature and have to be completed before a 
predefined deadline. Missing a deadline could have serious consequences for hard real 
time systems. Recent work has shown that the impact of task migration could lead to 
increase in the execution time starting from 1% percent to 56% [1]. However, in that 
work a push model has been discussed that modifies the contemporary micro-architecture 
to enable the cache controller of source core, where the task is currently running and will 
stop execution, to migrate valid cache lines of the task to the target core, where the task 
will resume execution. This work overlaps the slack time between subsequent executions 
of the task on two different cores with migration of valid cache lines such that the target 
cache is already warmed up before the task starts executing on the target. This prevents 
the cache warm up from increasing the execution time of the migrated task.The primary 
disadvantage of the push model is that the contemporary architecture is incapable of 
pushing the cache lines from source core to target. Hence, the push model requires 
significant change in the micro-architecture.  
 
3. Pre-fetch Thread based Pull Model  
We propose to develop a pull model to migrate the cache lines of the migrated task 
through memory read requests issued by the target instead of a push request.  
Our experimental model is a SMP based architecture. This choice is made so that the 
design can exhibit properties similar to the contemporary Tile-based [2,6] architecture 
minus interconnects and directory. It then excludes the complexity introduced by 
interconnects and uncovers the predictability challenge caused by cache misses only. So, 
the simulated environment will be a CMP, where each core is a SMT processor[3] that 
can run two contexts simultaneously. Since such cores are already present, a complete 
software solution will be one where the scheduler activates a pre-fetching thread at the 
target as soon as it decides to migrate a task. This pre-fetching thread can run 
independently of the task that is currently executing on target. This pre-fetcher thread 
may get the information about the critical regions of the task from the RTOS which it can 
then use in migrating cache lines. This thread has the lowest priority in the schedule of 



the target core. This allows the prefetcher thread to use the idle time on the target core to 
migrate the cache lines from source to the target. The prefetcher thread is killed as soon 
as the migrated task is invoked at the target. Thus, the prefetching thread overlaps the 
migration of cache lines from source to target with the slack time available at the target 
core. Hence, if the task migration is made predictable, then the scheduler can make an 
optimal judgement on a core’s capacity to admit a task and also, on the task to be 
migrated.   However, the study of increase in execution time experienced by the 
concurrently running tasks due to contention at memory hierarchy is out of scope of this 
work. 
 
4. Design Details 
 
4.1. Push Model Simulator Design 
The thread migration implemented in [1] assumed only a single thread. Each task is a 
function call like in case of a cyclic executable. The thread migration was performed by a 
system call, which stalled the fetch stage and after a designated number of cycles 
switched the thread from one core to another. So, the current implementation of the 
simulator is a cyclic executable. Thus, one of the integral parts of this project work is to 
incorporate capabilities of the SESC simulator to support a scheduler as an independent 
thread. 
 
4.2. Scheduler Design Extension to SESC Simulator 
Following is the design of the scheduler that is being incorporated with SESC simulator 
 
4.2.1. Initialization: The main thread acts as the scheduler. It is pinned on a particular 
core and does not migrate during the lifetime of simulation. Before, introducing any 
scheduling routines, it reads a file which contains the specifications of the tasks, like 
“task name”, “period” and “relative deadline”. The main thread spawns these threads and 
suspends all of them using sesc_suspend() system call before entering the scheduler 
routine. The main thread runs uninterrupted for the whole duration of the simulator. This 
is because of the following reason: 
One might consider that the scheduler can be activated by timer interrupts. However, this 
means that at some point the scheduler is going to sleep. In situations where all the cores 
are idle, the scheduler along with the idle cores will not have any tasks executing. This 
poses an issue with SESC, because the simulations finish executions when there are no 
tasks running on the simulator. This can be solved by guaranteeing that at any time at 
least one of the cores is kept busy. Hence, the choice of allowing the scheduler run 
uninterrupted for the lifetime of simulation was made based upon the simplicity of the 
design. We are not doing any power study, which can be affected by the proposed design. 
 
4.2.2. Scheduler: The scheduler routine makes a decision on the tasks to be invoked and 
resumes their execution on their specified cores. Like in most pre-emptive scheduling 
techniques, the scheduling decisions are made when 
(a) A new job is invoked 
(b) A currently executing job finishes execution.  



The scheduler uses the periodicity information of each task to perform scheduling 
operations for events specified by (a). However, (b) requires the information of the 
completion of jobs. On completion, each job updates a unique control variable in the 
global memory space. This triggers the scheduler to perform scheduling operations. Also, 
the tasks wait on this control variable value to be reverted when a new invocation of the 
task needs to be executed. 
 
4.2.3. Migration of the thread: The migration of the threads is an event that needs to be 
fabricated. The processor cycle when the migration has to take place will be in the input 
file along with other task information. Once, the scheduler notices that the processor 
cycle to have crossed the specified cycle value, it will move the task from the source core 
to target core. 
 
4.2.4. Prefetch thread: Each task has a prefetch routine that contains calls to a tight 
prefetch loop that issues loads to prefetch cache lines. The arguments of the routine are 
the base address and stride of the critical region that needs to be prefetched. This thread is 
spawned at the target core with lesat priority as soon as a thread is migrated. Thus, this 
prefetch thread makes use of idle time it gets before the invocation of the task on target 
core to prefetch the cache lines. However, this prefetch thread is killed by the scheduler 
as soon as it detects the invocation of the migrated task on target core.  
 
5. Infrastructure 
This project involves microarchitectural modifications. Thus, we will use SESC simulator 
[4] to design the system. We will use WCET benchmarks from Malerdalen for testing the 
correctness of our modifications and effectiveness of our model. 
 
6. Contributions to Simulator Design 
The design of the prefetch thread based pull model is the core idea. However, primary 
design component of the work is multi-core Rate Monotone Scheduler on SESC. 
There have been several contributions made by this work to the SESC infrastructure. 
Following are the key design changes made over the existing push model 
 
(1) Each task is a separate thread that allows the design to be independent of a cyclic 
scheduler. 
(2) The scheduler runs on single designated core. Instead of scheduling routine being 
invoked on each core, the scheduler monitors the progress of each thread from that core. 
This avoids caches of the cores running the tasks being polluted by the scheduler’s 
memory contents. 
(3) The execution of threads is stopped by sesc_suspend and resumed by sesc_resume 
system calls. In push model this was done by stalling the fetch stage. Since, the push 
model had only one thread, any suspension of thread would lead the simulator to exit. 
However, in current implementation the scheduler thread is active the whole duration of 
the simulation. Thus is allows us to use sesc_suspend on all the tasks and prevents the 
simulation from exiting even when all cores running tasks become idle. 
(4) The simulator supports thread migration through a moving the task descriptors from 
one core’s queue to another. This allows the scheduler to migrate the task at the time 



instant when the request for migration is being made. In Push model design, the task was 
migrated at the instant when the task is to be invoked at the target. 
(5) The simulator has an added system call that allows one thread to kill another thread. 
This is required when the prefetch thread is needed to be killed at the invocation of the 
migrated task on target. This is also allows the scheduler to kill all the task threads when 
the simulation is deemed to be complete. 
(6) System calls have been added to the simulator which allows a thread to 
activate/deactivate data collection for specific L2 caches as in when required. 
(7) The default scheduling actions of SESC have been disabled such that on any pre-
emption, the scheduler is in complete control of scheduling decisions. Earlier, on any pre-
emption of a task from a core, SESC finds a sleeping thread and schedules it onto the 
core disregarding what is being intended by the scheduler. This posed problems while 
pre-empting tasks and even while killing prefetch thread. 
 
Apart from implementation of multi-core Rate Monotone Scheduler and contributions 
made to the SESC simulator, a tight prefetch thread has been designed which dedicates 
certain registers for prefetching. This allows us to complete the task of prefetching by 
issuing a single load per prefetched cache line. 
 
7. Simulation Results 
 
7.1 Impact of task migration 
It is important to analyze that whether the dilation in WCET of tasks due to their 
migration is significantly high to cause deadline misses. This is shown in Table 1. 

Banchmarks 

No Task 
Migration 
[cycles] 

WCET after 
Migration 
[cycles] 

Increase 
in WCET 
[percent] 

Cnt 2014615 2309191 14.62195
Stats 15192208 16158644 6.361393
Crc 7034 8342 18.59539
Matmult 954190 963272 0.951802

Table 1. Impact of task migration on WCET 
 
Table1. shows the WCET before and after task migration, of benchmarks listed in first 
column, in second and third column, respectively. The third colum shows the percentage 
increase in WCET time of each of the benchmarks. As shown in [1], there is a significant 
increase in WCET of benchmarks that have algorithmic complexity of O(n). Task 
migration has less impact on WCET of matmult because of high reuse of the same 
matrices as it’s algorithmic complexity is of O(n3). However, any increase in one task’s 
execution time can cause the task or subsequent tasks to miss their deadlines. Thus it 
becomes imperative to bring the dilation caused by task migration to minimum and 
thereby predictable range. 
 
 
 
 



 
7.2 Performance Impact of Pull based Cache Migration 
The impact of the prefetch thread is shown in figure1. 

Impact of prefetch scheme

90

95

100

105

110

115

120

cnt stats crc matmult

No
rm

al
iz

ed
 E

xe
cu

tio
n 

Ti
m

e

No Task Migration 
Migration w/o prefetch
Migration with prefetch

 
Figure 1. Performance Impact of Prefetch Thread 

 
Figure1. shows the normalized execution time of the benchmarks in different scenarios. 
It can be inferred that the WCET of all the benchmarks have shown considerable 
performance improvement due to the prefetching. However, performance of CRC is 
relatively poor as compared to WCET of the task without any migration. This is because 
of the following reasons: 
(a) CRC has a very small execution time, thus L1 misses can have considerable impact on 
execution time 
(b) Prefetcher is unable to warm up the L1 Instruction Cache which is the major 
contributor to the dilated WCET of CRC after prefetching. 
 
7.3 Predictability of Prefetch Thread Overhead 

Prefetch Thread Overhead

0

20

40

60

80

100

120

cnt stats crc matmult

Pe
rc

en
ta

ge Prefetch Execution

Prefetch L2 Miss
Overhead

 
Figure2. Breakdown of Prefetch Thread Overhead 

The total overhead is an important statistics since the scheduler can make use of the 
statistics while performing task migration. However, the overhead overlaps the slack time 
before the invocation of task at the target. Hence, it is more important that this overhead 
should be predictable. It can be assumed that the overhead should be a function of the 
number of cache lines being transferred. However, our results showed that this could not 



be held true for crc. This is because there is a significant prefetch thread execution 
overhead experienced by CRC as shown in Figure2. This is because, the critical regions 
are sparse in the memory layout, thus more number of prefetch routine calls are needed to 
perform prefetching for a small number of cache lines. 
 
8. Conclusions 
This work shows that there is a significant impact of task migration on the WCET. This 
may lead to deadline misses which are unacceptable for hard real-time systems. Thus, a 
prefetch thread based cache migration has been designed to minimize the dilation in 
WCET caused by cold cache misses. The results show that prefetch thread does not work 
well for tasks whose WCET can experience significant dilation due to L1 instruction 
cache misses. The overhead of the prefetch thread has an additional execution time 
overhead from the prefetch routine calls. Thus, if the task’s critical regions are sparse, 
then it will have a greater execution time overhead. Thus it can be minimized by laying 
out the critical regions in contiguous memory block. 
 
One key disadvantage that the pull has over push is when a block belonging to a critical 
region does not reside in the source cache, push model can identify it at much lesser cost 
than our prefetch thread based pull model. Prefetch thread based pull model issues an 
unmodified load operation which will incur round trip to the source and even to the 
memory. Even with a specialized load that does not incur a memory request, a round trip 
to the remote cache is unavoidable. While hardware support of push model can identify 
the non-resident block by a lookup into the local cache and does not issue any wasteful 
push requests. 
 
9. References 
[1]  A. Sarkar, F. Mueller, H. Ramaprasad, S. Mohan. Push-Assisted Migration of Real-
Time Tasks in Multi-Core Processors. To appear in Proceedings of the 2009 ACM 
SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded 
Systems (LCTES'09), Dublin, Ireland, June 19-20, 2009. 
[2]  M. Zhang and K. Asanovic. Victim migration: Dynamically adapting between private 
and shared cmp caches. TR 2005-064, MIT CSAIL,2005. 
[3]  Simultaneous Multithreading: Maximizing On-Chip Parallelism, D.M. Tullsen, S.J. 
Eggers, and H.M. Levy, In 22nd Annual International Symposium on Computer 
Architecture, June, 1995 
[4]  J. Renau, B. Fragela, J. Tuck, W. Liu, L. Ceze, S. Sarangi, P. Sack, and a. P. M. K. 
Strauss. Sesc simulator. http://sesc.sourceforge.net, Jan. 2005. 
[5]  Mälardalen benchmarksuite. http://www.mrtc.mdh.se/projects/wcet/benchmarks.html 
[6]  Tilera processor family. http://www.tilera.com/products/processors.php. 
 
Project URL : http://www4.ncsu.edu/~asarkar/CSC714/home.html 
 
Submitted by: Abhik Sarkar  
Unity ID: asarkar 

http://sesc.sourceforge.net/
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://www.tilera.com/products/processors.php
http://www4.ncsu.edu/%7Easarkar/CSC714/home.html

