
Pull based Migration of Real-Time Tasks in Multi-Core
Processors

1. Problem Description
The complexity of uniprocessor design attempting to extract instruction level parallelism
has pushed the computer architects to leverage parallelism through multiple simple cores
on a single chip. Also, with continuous advancement in chip technology chip multi-
processors (CMP) have become a reality. Multicores are becoming ubiquitous, not only
in general-purpose but also embedded computing. However, on such platforms prediction
of timing behavior of real-time tasks is becoming increasingly difficult. While real-time
multicore scheduling approaches help to assure deadlines based on firm theoretical
properties, their reliance on task migration poses a significant challenge to timing
predictability in practice. Task migration actually (a) reduces timing predictability for
contemporary multicores due to cache warm-up overheads while (b) increasing traffic on
the network-on-chip (NoC) interconnect.

2. Related Work
Real-time tasks are usually periodic in nature and have to be completed before a
predefined deadline. Missing a deadline could have serious consequences for hard real
time systems. Recent work has shown that the impact of task migration could lead to
increase in the execution time starting from 1% percent to 56% [1]. However, in that
work a push model has been discussed that modifies the contemporary micro-architecture
to enable the cache controller of source core, where the task is currently running and will
stop execution, to migrate valid cache lines of the task to the target core, where the task
will resume execution. This work overlaps the slack time between subsequent executions
of the task on two different cores with migration of valid cache lines such that the target
cache is already warmed up before the task starts executing on the target. This prevents
the cache warm up from increasing the execution time of the migrated task.The primary
disadvantage of the push model is that the contemporary architecture is incapable of
pushing the cache lines from source core to target. Hence, the push model requires
significant change in the micro-architecture.

3. Pull Model Design
We propose to develop a pull model to migrate the cache lines of the migrated task
through memory read requests posted the target instead of a push request.
Our experimental model is a SMP based architecture. This choice is made so that the
design can exhibit properties similar to the contemporary Tile-based [2,6] architecture
minus interconnects and directory. It then excludes the complexity introduced by
interconnects and uncovers the predictability challenge caused by cache misses only. So,
the simulated environment will be a CMP, where each core is a SMT processor[3] that
can run two contexts simultaneously. Since such cores are already present, a complete
software solution will be one where the scheduler activates a pre-fetching thread at the
target as soon as it decides to migrate a task. This pre-fetching thread can run
independently of the task that is currently executing on target. This pre-fetcher thread
may get the information about the critical regions of the task from the RTOS which it can
then use to migrate cache lines. However, contexts running on SMTs have been known to

contend for all the critical resources on a core like the fetch stage and load store queues.
Therefore, a pre-fetcher thread may induce unpredictability of execution time of the
concurrent task running on the target. Thus, we propose a microarchitectural design that
includes a dedicated hardware pre-fetcher that gets activated by the scheduler when it
makes the decision of migrating a task. The pre-fetcher gets the information from the
RTOS about the critical regions of the task. This pre-fetcher will not contend for the
resources within the processor pipeline but at the memory hierarchy level. However, the
study of increase in execution time experienced by the concurrently running tasks due to
contention at memory hierarchy is out of scope of this work.

4. Infrastructure
This project involves microarchitectural modifications. Thus, we will use SESC simulator
[4] to design the system. We will use WCET benchmarks from Malerdalen for testing the
correctness of our modifications and effectiveness of our model.

5. Milestones
Week 1 & 2: Modify the Simulator such that it can allow a thread running on a separate
core to migrate a task from on any source core to any target core. This will allow a
scheduler to run on a separate core and cause the migrations to occur.

Week 3 & 4: Implement the hardware prefetcher that gets the information from the
scheduler about the critical regions of a task. It starts pre-fetching the cache lines
sequentially from the specified regions.

Week 5 & 6: Port the WCET benchmarks from Malardalen with the constructed
infrastructure. Obtain the results for Pull migration scheme.

6. References
[1] A. Sarkar, F. Mueller, H. Ramaprasad, S. Mohan. Push-Assisted Migration of Real-
Time Tasks in Multi-Core Processors. To appear in Proceedings of the 2009 ACM
SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded
Systems (LCTES'09), Dublin, Ireland, June 19-20, 2009.
[2] M. Zhang and K. Asanovic. Victim migration: Dynamically adapting between private
and shared cmp caches. TR 2005-064, MIT CSAIL,2005.
[3] Simultaneous Multithreading: Maximizing On-Chip Parallelism, D.M. Tullsen, S.J.
Eggers, and H.M. Levy, In 22nd Annual International Symposium on Computer
Architecture, June, 1995
[4] J. Renau, B. Fragela, J. Tuck, W. Liu, L. Ceze, S. Sarangi, P. Sack, and a. P. M. K.
Strauss. Sesc simulator. http://sesc.sourceforge.net, Jan. 2005.
[5] Mälardalen benchmarksuite. http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
[6] Tilera processor family. http://www.tilera.com/products/processors.php.

Project URL : http://www4.ncsu.edu/~asarkar/CSC714/home.html

Submitted by: Abhik Sarkar
Unity ID: asarkar

http://sesc.sourceforge.net/
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://www.tilera.com/products/processors.php
http://www4.ncsu.edu/%7Easarkar/CSC714/home.html

