DW-LIB(3) Library Functions DW-LIB (1)
NAME

DW_epgmi_ read, DW_epgmi list params, DW _epgmi list vars,
DW_epagmi_bind, DW_epgmi_exec, DW_epgqmi_ sols, DW_epqmi_ sol vars,
DW_epami_sol_occurs, DW_epgmi_sol obj, DW_epgmi_ free

LIBRARY
dw library (libepgmi.a, -lepgmi)
SYNOPSIS

#include <epgmi.h>
DW epgmi *DW epgmi read(char *epgmi file);

int DW epgmi list params (DW epgmi *epgmi, char ***param names,
int *params) ;

int DW epgmi list vars (DW _epgmi *epgmi, char ***var names, int

*vars) ;

int DW epgmi bind(DW epgmi *epgmi, float *param values);
int DW epgmi exec (DW epgmi *epgmi, int num reads);

int DW epgmi sols (DW epgmi *epgmi, int *solutions);

int DW epgmi sol vars(DW epgmi *epgmi, int solnum, char *var, int
*valid) ;

int DW epgmi sol occurs (DW epgmi *epgmi, int solnum, int
*occurrences) ;

int DW epgmi sol obj (DW epgmi *epgmi, int solnum, float
*objective);

int DW epgmi free (DW epgmi *epgmi) ;
OVERVIEW

The DW epgmi library contains functions designed to provide a
simple interface for running pre-embedded parameterized QUBOs on
the D-Wave simulator and hardware. DW epgmi is an opaque type
whose definition contains a single ‘magic’ field. The only valid
way to allocate a DW epgmi object is to use the DW epgmi read

function, which returns a pointer to a properly allocated object
of this type.

When DW epgmi read is called, the environment of the current
process 1is examined for environment variables which contain the
current setting of the dw workspace. The workspace should
contain a pre-embedded parameterized QUBO in the form of a .epgmi
file. For details on this process, see dw(l).

DW epgmi read reads the QUBO and prepares it for execution. The
QUBO is defined over a set of variables, each of which has a
name. Use DW epgmi list vars to retrieve a list of the variable
names from the QUBO. The QUBO may have parameters whose value
must be specified before the QUBO can be executed. Use

DW epgmi list params to retrieve the parameters. Before
execution, assign values to all parameters using DW epgmi bind.
Execute the embedded QUBO using DW epgmi exec. Note that the
library is single threaded - once parameter values have been
assigned, a single generated QMI is ready for execution.

The result of executing the generated QMI can be inspected via

DW epgmi sols which returns the number of distinct solutions,

DW epgmi sol vars which returns values of the variables over
which the QUBO is defined (not qubit values), DW epgmi sol occurs
which returns the number of times a particular solution appeared,
and DW epgmi sol obj which returns the objective value for a
solution.

Multiple executions are possible. If the current set of
parameter values does not need to be updated, repeat the call of
DW epgmi exec without calling DW epgmi bind. If the current set
of parameter values needs to be updated before the next
execution, call DW epgmi bind.

DESCRIPTION
DW_epgmi *DW_epgmi_read(char *epgmi file);

Use DW epgmi read(...) to create a DW epgmi structure by reading
information from the current dw workspace. If the epgmi file
argument is a NULL pointer, assume the epgmi file is named
"default.epgmi". Otherwise, assume that epgmi file names an epgmi
file in the current workspace. This returns NULL if there is a
problem and a non-NULL pointer if all is successful.

int DW_epgmi_list params (DW_epgmi *epgmi, char ***param names, int
*params) ;

Use DW epgmi list params(...) to list the parameters in the
epgmi. The param names argument should be the address of a char
** variable. The variable's value will be overwritten with the
address of an array of pointers to char. The params argument
should be the address of an int which will be overwritten with
the number of parameters in the underlying QUBO. At bind time, a
value must be specified for each parameter and the order of
parameter values must match the order of the parameter names
returned by this function.

int DW_epgmi list vars(DW_epgmi *epgmi, char ***var names, int *vars);

Use DW epgmi list vars(...) to list the variables in the epgmi.
The var names argument should be the address of a char ** so that
the variable’s value can be overwritten with the address of an
array of pointers to char. The vars argument should be the
address of an int, which will be overwritten with the number of
variables in the underlying QUBO. After execution, the

DW epgmi sol vars function reports the value of each variable in
each sample. The ordering of variables reported by that function
matches the ordering of variable names returned by this function.

int DW_epgmi_ bind (DW_epgmi *epgmi, float *param values);

Use DW epgmi bind(...) to assign a value to each parameter in an
epagmi and create a QMI. The parameter values are provided in an
array whose address is the second argument to the function. The
order of parameter values in the array corresponds to the order
of parameter names returned by DW epgmi list params(...).

int DW_epgmi_exec (DW_epgmi *epgmi, int num reads);

Use DW epgmi exec(...) to execute the QMI created by
DW epgmi bind(...). Specify the number of samples via the
num reads argument.

int DW_epgmi_sols (DW_epgmi *epgmi, int *solutions);

Use DW epgmi sols(...) after executing a QMI to determine the
number of unique samples in the distribution. The solutions
argument is a pointer to a variable defined by the calling
program whose value will be overwritten with the number of
distinct samples.

int DW_epgmi_sol_vars (DW_epgmi *epgmi, int solnum, char *var, int
*yvalid) ;

Use DW epgmi sol vars(...) after executing a QMI to determine the
variable values in each variable in a specific solution. Solnum
is the solution number. Var is a pointer to an array allocated
by the calling program whose size in bytes equals the number of
variables. This array will be overwritten with the 0 and 1
values from the specified solution. Additionally, the assertions
associated with the epgmi will be evaluated. If all assertions
are true, the wvalid variable will be overwritten with 1,
otherwise it will be overwritten with O.

int DW_epgmi_sol occurs (DW_epgmi *epgmi, int solnum, int

*occurrences) ;
Use DW epgmi sol occurs(...) after executing a QMI to determine
how many times a specific sample occurs. Solnum names the

solution and the number of occurrences will be overwritten into
the variable whose address is passed in the occurrrences
argument.

int DW_epgmi_sol obj (DW_epgmi *epgmi, int solnum, float *objective);

Use DW epgmi sol obj(...) to get the objective value of a
specific sample. The objective argument should be the address of
a value defined in the calling program which will be overwritten
with the objective of the specified solution.

int DW_epgmi_free (DW_epgmi *epgmi) ;

Use DW epgmi free(...) to free the storage associated with an
egpgmi .

RETURN VALUES

DW epagmi read returns a valid pointer to DW epgmi if successful
and a NULL pointer otherwise. All other functions in the library
return 0 if successful and a non-zero value otherwise. 1In case
of error, an message may be written to stderr. All functions in
the library with the exception of DW epgmi read check their first

argument. If this argument is not a valid pointer to DW epgmi or
is NULL, the function will return 1 and no error message will be
displayed.

EXAMPLE

This C program uses the dw library to open the default epgmi in
the current workspace, list its parameters and variables, assign

random values to the parameters, execute the generated QMI and
examine the generated samples:

#include <stdio.h>
#include <stdlib.h>

#include "epgmi.h"

int main(int argc, char *argvl[])
{
DW epgmi *epgmi;

epgmi = DW epgmi read (NULL) ;

if (epgmi == NULL)
{
printf ("error: epgmi is NULL\n");
return 1;

}

char **param names;
int params;
DW epgmi list params (epgmi, ¶m names, ¶ms);

int 1i;
for (i=0; i<params; ++1i)
printf ("param[%d] is \"%s\"\n", i, param names([i]);

float *param values;
param values = (float *) malloc(params * sizeof (float));
for (i=0; i<params; ++i) param values[i] = (-10 + rand() % 20);

DW epgmi bind(epgmi, param values);

char **var names;
int vars;
DW epgmi list vars(epgmi, &var names, &vars);

for (i=0; i<vars; ++1)
printf ("var[%d] is \"%s\"\n", i, var names([i]);

if (DW _epgmi exec(epgmi, 100))
{
fprintf (stderr, "execution error\n");
return 1;

int solutions;
if (DW_epgmi sols(epgmi, &solutions))
{

fprintf (stderr, "solution error\n");

return 1;

}

printf ("**** num solutions=%d ****", solutions);
char *var = malloc (vars):;

int s;
for (s=0; s<solutions; ++s3)
{
printf ("**** solution=%d ****\n", s);
int valid;
if (DW_epgmi sol vars(epgmi, s, var, &valid))
{
fprintf (stderr, "variable error\n");
return 1;
}
printf (" valid=%d\n", wvalid);
int occurrences;
DW epagmi sol occurs(epgmi, s, &occurrences);
float obj;
DW epagmi sol obj (epgmi, s, &obj);
printf (" occurs=%d\n", occurrences):;
printf (" objective=%g\n", obj);
for (i=0; i<vars; ++1i)
printf ("$10s <== %d\n", var namesl[i], var[i]);

}

return O;

BUGS

Please report bugs to dwsupport@dwavesys.com.

COPYRIGHT
© 2016 D-Wave Systems Inc.
SEE ALSO

dw (1)

mailto:dwsupport@dwavesys.com

