
1

Installing	and	configuring	qOp	on	OS	X	
Version 2.5.0.1 (October 2017)

This document describes how to install, on the OS X operating system, the qOp package and certain
software packages that are pre-requisites for it. If you do not have the XCode build environment for
C/C++ programs installed, please see the appendices.

This document uses the following typeface conventions:
• Commands for you to enter are shown in a fixed-width font, such as: ps –ef
• File and directory names are shown in a bold fixed-width font, such as: foo.bar
• The shell prompt is indicated via $ and so the cp command would appear as: $ cp

1. Installing	qOp	from	the	installation	file		
The qOp installation file should have been provided to you. The installation file is named:

 qOp.osx_2.5.tar.gz

A. Decide	whether	to	do	a	single-	or	multi-user	installation

The qOp package may be installed for a single user (typically on a laptop or desktop system) or for
multiple users (typically on a shared server). For a single user, it is often simplest to install it in your
home directory. For multiple users, /opt/local/ and /usr/local/ are common choices of install
directory. This document assumes that you choose a directory to which we append “/qOp” and refer to it
as the installation directory or DWAVE_HOME (later in this document that value will be stored in the
environment variable DWAVE_HOME).

B. Move	the	qOp	installation	file	into	the	installation	directory

Move the qOp installation file into the installation directory.

C. Confirm	the	contents	of	the	installation	file

If you have reason to believe the download or transfer of the qOp tar-file may have introduced errors, you
can confirm that it was downloaded correctly with the following steps.

Start a OS X shell window (typically via the Terminal application) and examine the installation file as
follows:

$ shasum -c qOp.osx_2.5.tarGzShasum.txt

o Response	should	be
> qOp.osx_2.5.tar.gz: OK

o If	not	an	OK	response,	there	was	a	problem	with	the	download	

$ gunzip qOp.osx_2.5.tar.gz

$ shasum -c qOp.osx_2.5.tar.shasum

2

o Response	should	be
> qOp.osx_2.5.tar: OK

o If	not	an	OK	response,	there	was	a	problem	with	the	unzip	

Note that the gunzip invocation above is redundant with the gunzip in the next section.

D. Open	the	qOp	installation	file	and	install	the	software

Start a Unix shell window and do the following:

$ gunzip qOp.osx_2.5.tar.gz

This should return to your shell prompt, with no error. This step converts the file from a “GZIPped TAR
file” into a “TAR file.” (The original file was compressed so that it required less space. A TAR file is an
archive file, allowing storing files in a “directory” structure.”)

$ tar xvf qOp.osx_2.5.tar

The screen will print several lines of text quickly. This “untars” the “TAR file”, creating the desired
directory structure, and installs the qOp software. This will create a directory named qOp in the installation
directory.

E. Inspect	the	qOp	software	structure

In your OS X Terminal shell window, type

$ cd qOp

which means “change directory”, and moves you into the qOp directory. Then, do

$ ls -als

which is the Unix command ls, for “list”, which shows the files in the directory. The “-als” options cause
the list to include “dot files” (those starting with “.”, which are normally omitted by ls) and makes the
output more readable.

Here are the top-level contents of the qOp directory:

Name Type Contents
.dwrc Initialization file Connection information for the local simulator
Quantum Apprentice.xlsm Excel Spreadsheet Visualization and simulation tool
bin Directory Executables: toq, dw-exec, qbsolv, qsage,

etc.
doc Directory Documents for C API, man pages for utilities
dwave_qbsolv Python package Enables Python calls to qbsolv
dwave_sapi.h C header file
epqmi.h C header file For use by programs calling functions in

libepqmi.a
examples Directory Example source code for C API, ToQ, dw,

qsage, and qbsolv/QUBOs
libdwave_sapi.dylib C dynamic library SAPI 2.6 library
libepqmi.a C dynamic library Library version of dw functionality

3

licenses Directory Licenses
qOp-version.txt Text file Version information
qOp_2.5_Release_Note.txt Text file Information about the qOp 2.5 release
qOp_osx_INSTALL.pdf PDF file This document
src Directory Source code, namely of qbsolv, for building

dwave_qbsolv
workspace.c4
workspace.dw2x_vfyc
workspace.dw2000q_vfyc

Workspace
directories

QMI and SOL files for the 128-qubit simulator,
and the 1152-qubit and 2048-qubit virtual full
yield solvers

2. Configuring	the	system	for	qOp	

A. [Only	for	El	Capitan	or	later]	Install	the	SAPI	library	into	the	system	
directory

If you are running OS X El Capitan (v. 10.11) or later release, you need to copy the SAPI library into a
protected library directory known to the system. For this you will need to use the sudo command (“super-
user do”), which executes the indicated command as though you were super-user, for which you will need
permissions on your system.

$ sudo cp libdwave_sapi.dylib /usr/local/lib/

If you are not running El Capitan, skip this step.

B. Edit	your	~/.bash_profile	and	~/.bashrc	files

Next you will need to edit your ~/.bash_profile and ~/.bashrc files to include configuration
information for the qOp package. In your OS X shell session, change to your home directory via:

$ cd

Append the following lines to your ~/.bashrc file, using vi or any text editor you prefer:

export DWAVE_HOME=$HOME/qOp # see note below

export DWAVE_HOME=<multiuserInstallDirectory>/qOp

export DWAVE_WORKSPACE=$HOME/qOp # see note below

export PATH=$PATH:$DWAVE_HOME/bin

export DYLD_LIBRARY_PATH=$DWAVE_HOME # see note below

export BASH_ENV=$DWAVE_HOME/bin/dw_setup # see note below

. $BASH_ENV

Note: You should include only one of the two green lines that set the DWAVE_HOME environment
variable. If you’re installing qOp as a single-user installation in your home directory, use the first line. If
qOp was installed for multiple users, you will need to find the name of the directory where it was installed
(i.e., replace “<multiuserInstallDirectory>” with the actual directory name).

4

Note: If you are running a multi-user qOp installation, setting DWAVE_WORKSPACE is the way to control
where in your file structure qOp will store temporary and configuration files. If you are running a single-
user qOp installation, you may omit setting DWAVE_WORKSPACE.

Note: If you are not running El Capitan or later, you need the third line above (in red), in place of the
sudo command. If you are running El Capitan or later, you do not need the third line above and should
omit it.

Note: The name of the dw set-up script changed between qOp 2.3.1 and 2.4. To avoid confusion with
the dw shell command, the set-up script is now called dw_setup. If you are upgrading from qOp 2.3.1 or
earlier release, you will need to change the line above in your ~/.bashrc file.

Now add the lines below to your ~/.bash_profile to assure it calls the ~/.bashrc file. It is not
necessary to have this in your ~/.bash_profile more than once:

if [-f ~/.bashrc]; then

 . ~/.bashrc

fi

Exit your shell and start a new session to test that your configuration is able to correctly locate the
executables by issuing these which commands in your shell:

$ which qbsolv

$ which dw-exec

If you see an “unknown command” or empty response to either of these commands, check your
~/.bashrc file and make sure that the location specified for the qOp executables is correct before
proceeding.

After completing these configuration steps, you should be able to start a new shell and invoke qbsolv as
follows:

$ qbsolv -V

You should see output like the following:

 Version open source 2.5
 Compiled: Sep 18 2017,13:36:05

that indicates qbsolv has executed properly.

Also try

$ dw

You should see output that looks like this:

USAGE: dw {get|set|cd|pwd|embed|bind|exec|val|add|trans|ls|mv|cp|touch|rm|...

If you get an error such as ‘libdwave_sapi.dylib could not be found’ your
DYLD_LIBRARY_PATH environment variable may not be set properly.

C. Make	changes	so	non-Terminal-started	applications	will	run	properly

5

In addition to making these changes to your ~/.profile, you’ll need to apply the following configuration
changes so that applications (such as Microsoft Excel) that are not started from Terminal will have the
correct environment. In your Terminal window, issue these commands:

$ launchctl setenv DWAVE_HOME $DWAVE_HOME

$ launchctl setenv DYLD_LIBRARY_PATH $DYLD_LIBRARY_PATH # see note below

You can check that these two commands have been successful by issuing the following commands:

$ launchctl getenv DWAVE_HOME

$ launchctl getenv DYLD_LIBRARY_PATH

Both the above commands should return a string equal to the value set for the DWAVE_HOME
environment variable.

Note: the two commands in red should be omitted on El Capitan or later OS X versions.

D. Change	the	~/.dwrc	file	to	connect	to	your	D-Wave	system

In the $DWAVE_HOME directory, you will see a file named .dwrc. This contains configuration information
that enables you to quickly point any of the qOp tools to your D-Wave hardware system or to a D-Wave
software simulator included in the D-Wave software. Copy that file to your home directory, for example
via

$ cd
$ cp $DWAVE_HOME/.dwrc .

The released .dwrc file contains a single entry consisting of

laptop|local

where laptop is the name you would use to refer to it and local is a distinguished name indicating to
use the simulator running on the system where qOp is installed. Running in the simulator is the easiest
way to get started, as it eliminates some possible sources of failure.

At some point you will want to run on your D-Wave hardware system, so you will need to add an entry
pointing to that. The format of such an entry is “name|sapiURL,token” or
“name|sapiURL,token,proxyURL” if your D-Wave system is accessed via a proxy server. You’ll
probably want to contact the system administrator for your D-Wave system to get the SAPI URL and
optionally proxy URL. Your token needs to be created via the Qubist interface. You will also want to
learn the name(s) of the solvers on that system to which you have access. An example entry in ~/.dwrc
might be

mydwave|https://qubist.myorg.com/sapi,87e154d397123c40db123c

Once you’ve added this to your ~/.dwrc file, you can direct execution of qOp programs to the simulator
via

$ dw set connection laptop
$ dw set solver c4-sw_sample
$ qbsolv –i program.qubo

or to your D-Wave hardware system named mydwave via

6

$ dw set connection mydwave
$ dw set solver <mysolvername>
$ qbsolv –i program.qubo

At this point you are ready to create programs in any of the qOp tool input formats and execute them
locally on the simulator or on a D-Wave system.

Note: The qOp 2.5 release includes pre-built workspaces for virtual-full-yield (VFY) solvers and depends
on a new manual process for creating a pre-built workspace for a given D-Wave system. If you run on a
D-Wave system and not via VFY solvers, please contact your D-Wave system administrator for access to
the workspace specific to your D-Wave system. Similarly, if there is an error in setting up these pre-built
workspaces, qbsolv may put out a message “No pre-embedding found”, in which case please contact
your D-Wave system administrator.

E. Install	the	Python	wrapper	for	qbsolv

As of qOp 2.5, qbsolv has a Python wrapper (dwave_qbsolv) that is callable as a Python function. The
simplest way of installing dwave_qbsolv is the following, which can be executed independent of the
current directory:

$ pip install dwave_qbsolv

Some platforms or releases may not have pre-built binaries, in which case the method above will not work
and building from source is required, which can be done by the following:

$ cd $DWAVE_HOME/src/qbsolv/python
$ pip install –r requirements.txt
$ python setup.py install

Whichever method you use for installing dwave_qbsolv, to confirm it is properly installed, you can
execute the tryDwaveQbsolv.py example from the examples/qbsolv directory.

F. Run	the	provided	example	programs

In the $DWAVE_HOME/examples directory are several examples intended to be useful, and scripts that
build or execute them. All of the scripts whose names end in .bash are intended to be executed with the
bash shell.

Use the qOp-examples command (alternatively, dw examples) to compile and run all the examples.
The examples illustrate use of qbsolv, dw, ToQ, qsage, and C/SAPI. Run them as follows:

$ qOp-examples

This command will copy the contents of $DWAVE_HOME/examples to a new directory within your current
working directory. After copying the files, the command will compile the various examples as necessary.
You should see a single line of output for each C program compiled by the shell script, e.g.:

**************** C: Compiling sapi_connectingToSolver ****************

Additionally, you should see a few lines for each QUBO embedded into the simulator:

**************** dw: Embedding 1of3 ***************

7

After preparing all examples to run, the command will execute each example. Standard output from each
of these jobs is captured in a file whose name matches the stem of the input file and whose suffix is .out.

The $DWAVE_HOME/doc directory contains “man” pages for the ToQ, Quantum Apprentice, dw, qsage,
qbsolv, and ToQ tools, as well as the .qubo and .q file formats. (The user guides for the C Solver API
are also in that directory.)

G. If	needed,	create	pre-embedding	files	specific	to	your	system

The qbsolv tool uses a pre-embedded file to save time when executing. If you anticipate running on
solvers that are specific to the D-Wave system you use, you may need to create embedding(s) that are
specific to the system you use. If you only use virtual-full-yield (VFY) solvers, you can skip this step. If,
however, you use solvers that are exactly configured to the hardware of the system you use, you need to
run the makefull.sh script that resides in the bin directory in the qOp release. Start with the file
bin/ReadMemakefull.txt for instructions.

H. Copy	toq	configuration	files	into	all	directories	where	toq	programs	will	
be	executed

The simplest way to configure the qOp tools to a particular execution target, such as the software
simulator or your specific D-Wave system, is via dw set, as described just above. If you use that
approach, you can skip this section.

If you do not use the dw set	approach, there are several files in your $DWAVE_HOME/examples
directory that make it more convenient to run toq. If you only run toq in the examples directory, you
need not do anything, but if you want to run in some other directory (say $HOME/mytoq), there is one file
you must copy, and several others that may make it easier to run toq programs. The file you will need is
the toq startup file, .toqrc, which sets the toq configuration by default to run on the simulator. To run
toq in $HOME/mytoq, enter the following commands:

$ cd $DWAVE_HOME/examples

$ cp –p .toqrc $HOME/mytoq

$ cd $HOME/mytoq

$./toq -r -i mypgm.toq

This final command will execute toq on your program mypgm.toq.

You can place the other configuration files into $HOME/mytoq by executing the following commands
(note that these files provide shortcuts, but are not required to execute toq).

$ cd $DWAVE_HOME/examples

$ cp –p toqREADME confSim confHdw15 confHdw22 toqSim toqHdw toqHdw15
 toqHdw22 toqSim2 $HOME/mytoq

(Note that this last command is all on one line.) Review the file toqREADME for background on how to
use these configuration files.

8

 	

9

Appendix	A:		Contents	
qOp contains the following components:

1. Quantum Apprentice: an Excel spreadsheet, which allows the user to manipulate, visualize and
execute problems on the simulator and also quantum hardware.

2. ToQ: compiles and executes problems written in a prototype language-input format which defines
a constraint satisfaction problem.

3. qsage: optimizes a user-provided C-language objective function.
4. qbsolv: executes quadratic unconstrained binary optimization (QUBO) programs, even if they

happen to be bigger than will fit in the D-Wave hardware or simulator being used.
5. dw: provides shell access to many common API functions such as creating a connection,

obtaining a solver, initializing and executing a QMI, and examining samples.
6. Solver API (SAPI) C library: invokes the low-level D-Wave interface routines. It contains a

standard header file and accompanying library file. You can use it to compile and link C programs
that directly use the low-level API. Example code is provided which shows how to do this. A
separate document describes this API in detail.

Before installing qOp, you may need to install and/or configure certain software packages upon which
qOp depends.

Appendix	B:		Prerequisites	for	C/C++-language	programs	

A. Installing	XCode	

You will need to install and configure the Xcode package. This will allow you to compile and link
programs using the D-Wave C language API.

Xcode	
You can read about Xcode here:

 https://developer.apple.com/xcode/

Xcode is a complete developer’s toolkit for the OS X environment. To use the D-Wave qOp package you
will only need the Xcode Command Line Tools. Instructions for obtaining this package can be found
here:

 http://osxdaily.com/2014/02/12/install-command-line-tools-mac-os-x/

Briefly, you will start your Terminal and issue this command:

$ xcode-select –install

Click “Install” in the pop-up dialog box, then agree to the terms of service. The download is around 130
Mbytes.

	

10

B. Confirming	the	C	and	C++	compilers	work	

Open an OS X shell window. At the prompt, type

$ which gcc

$ which g++

If the output from either of these commands is “unknown command” or an empty response, then you will
need to install the compilers.

Let’s also check the version of the gcc and g++ commands as follows:

$ gcc –-version

$ g++ --version

The version results on a sample OS X system look like this:

Configured with: --prefix=/Applications/Xcode.app/Contents/Developer/usr --
with-gxx-include-
dir=/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Deve
loper/SDKs/MacOSX10.11.sdk/usr/include/c++/4.2.1
Apple LLVM version 7.0.2 (clang-700.1.81)
Target: x86_64-apple-darwin15.3.0
Thread model: posix

