CS 294-2 CS 294-6, Quantum Computing (Umesh Vazirani)
Fall 2004, University of California, Berkeley.
Lecture \#8 (Quantum Fourier transform) draft Notes by Boris Bukh
30 September 2004
Fall 2004

Fourier transform on \mathbf{Z}_{N}

Let f be a complex-valued function on \mathbf{Z}_{N}. Then its Fourier transform is

$$
\hat{f}(t)=\frac{1}{\sqrt{N}} \sum_{x \in \mathbf{Z}_{N}} f(x) w^{x t}
$$

where $w=\exp (2 \pi i / N)$. Let B_{1} be the standard basis for $\mathscr{C}^{Z_{N}}$ consisting of vectors $f_{i}(j)=\delta_{i, j}$. In the standard basis the matrix for the Fourier transform is

$$
F T_{N}=\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & \cdots & 1 \\
1 & w & w^{2} & w^{3} & \cdots & w^{N-1} \\
1 & w^{2} & w^{4} & w^{6} & \cdots & w^{2 N-2} \\
1 & w^{3} & w^{6} & w^{9} & \cdots & w^{3 N-3} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & w^{N-1} & w^{2 N-2} & w^{3 N-3} & \cdots & w^{(N-1)(N-1)}
\end{array}\right)
$$

where i, j 'th entry of $F T_{N}$ is $w^{i j}$.

Classical fast Fourier transform

Straightforward multiplication of the vector f by $F T_{N}$ would take $\Omega\left(N^{2}\right)$ steps because multiplication of f by each row requires N multiplications. However, there is an algorithm known as fast Fourier transform (FFT) that performs Fourier transform in $O(N \log N)$ operations.
In our presentation of FFT we shall restrict ourselves to the case $N=2^{n}$. Let B_{2} be a basis for $\mathscr{C} \mathbf{Z}_{N}$ consisting of vectors

$$
f_{i}(j)= \begin{cases}\delta_{2 i, j}, & i \in\{0,1, \ldots, N / 2-1\} \\ \delta_{2 i-N+1, j}, & i \in\{N / 2, N / 2+1, \ldots, N-1\}\end{cases}
$$

i.e., the vectors of the standard basis sorted by the least-significant bit. Then as a map from B_{2} to B_{1} the Fourier transform has the matrix representation

$$
\begin{array}{cc|}
\stackrel{\text { bit \# }}{j} & 2 k \\
j+N / 2
\end{array}\left(\begin{array}{c|c}
w^{2 j k}+1 \\
w^{2 j k} w^{j} \\
\hline w^{2 j k} & w^{2 j k} w^{j}
\end{array}\right)=\left(\begin{array}{cc}
F T_{N / 2} & w^{j} F T_{N / 2} \\
F T_{N / 2} & -w^{j} F T_{N / 2}
\end{array}\right) .
$$

Figure 1: A circuit for classical fast Fourier transform
Hence,

$$
\left(\begin{array}{c|c}
w^{2 j k} & w^{2 j k} w^{j} \\
\hline w^{2 j k} & w^{2 j k} w^{j}
\end{array}\right)\binom{v_{0}}{\hline v_{1}}=\binom{F T_{N / 2} v_{0}+w^{j} F T_{N / 2} v_{1}}{F T_{N / 2} v_{0}-w^{j} F T_{N / 2} v_{1}} .
$$

This representation gives a recursive algorithm for computing the Fourier transform in time $T(N)=$ $2 T(N / 2)+O(N)=O(N \log N)$. As a circuit the algorithm can be implemented as

Quantum Fourier transform

Let $N=2^{n}$. Suppose a quantum state α on n qubits is given as $\sum_{j=0}^{N-1} \alpha_{j}|j\rangle$. Let the Fourier transform of ϕ be $F T_{N}|\phi\rangle=\sum_{j=0}^{N-1} \beta_{j}|j\rangle$ where

$$
F T_{N}\left(\begin{array}{c}
\alpha_{0} \\
\alpha_{1} \\
\vdots \\
\alpha_{N-1}
\end{array}\right)=\left(\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\vdots \\
\beta_{N-1}
\end{array}\right) .
$$

The map $F T_{N}=|\alpha\rangle \mapsto|\beta\rangle$ is unitary (see the proof below), and is called the quantum Fourier transform (QFT). A natural question arises whether it can be efficiently implemented quantumly. The answer is that it can be implemented by circuit of size $O\left(\log ^{2} N\right)$. However, this does not constitute an exponential speed-up over the classical algorithm because the result of quantum Fourier transform is a superposition of states which can be observed, and any measurement can extract at most $n=\log N$ bits of information.
A quantum circuit for quantum Fourier transform is where R_{K} is the controlled phase shift by angle

Figure 2: Circuit for quantum Fourier transform
$2 \pi / 2^{K}$ whose matrix is

$$
R_{K}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & e^{2 \pi / 2^{K}}
\end{array}\right)
$$

In the circuity above the quantum Fourier transform on $n-1$ bits corresponds to two Fourier transforms on $n-1$ bits in the figure 1. The controlled phase shifts correspond to multiplications by w^{j} in classical circuit. Finally, the Hadamard gate at the very end corresponds to the summation.

Properties of Fourier transform

- $F T_{N}$ is unitary. Proof: the inner product of the i 'th and j 'th column of $F T_{N}$ where $i \neq j$ is

$$
\frac{1}{N} \sum_{k \in \mathbf{Z}_{N}} w^{i k} \overline{w^{j k}}=\frac{1}{N} \sum_{k \in \mathbf{Z}_{N}} w^{i k-j k}=\frac{1}{N} \sum_{k \in \mathbf{Z}_{N}}\left(w^{i-j}\right)^{k}=\frac{1}{N} \frac{w^{N(i-j)}-1}{w^{i-j}-1}=\frac{1}{N} \frac{1-1}{w^{i-j}-1}
$$

which is zero because $w^{i-j} \neq 1$ due to $i \neq j$. The norm of i 'th column is

$$
\sqrt{\frac{1}{N} \sum_{k \in \mathbf{Z}_{N}} w^{i k} \overline{w^{i k}}}=\sqrt{\frac{1}{N} \sum_{k \in \mathbf{Z}_{N}} 1}=1
$$

- $F T_{N}^{-1}$ is $F T_{N}$ with w replaced by w^{-1}. Proof: since $F T$ is unitary we have $F_{N}^{-1}=F T_{N}^{*}$. Since $F T_{N}$ is symmetric and $\bar{w}=w^{-1}$, the result follows.
- Fourier transform sends translation into phase rotation, and vice versa. More precisely, if we let the translation be $T_{l}:|x\rangle \mapsto|x+l(\bmod N)\rangle$ and rotation by $P_{k}:|x\rangle \mapsto w^{k x}|x\rangle$, then $F T_{N} P_{l} P_{k}=P_{l} T_{-k} F T_{N}$. Proof: by linearity it suffices to prove this for a vector of the form $|x\rangle$. We have

$$
F T_{N} T_{l} P_{k}|x\rangle=F T_{N} w^{k x}|x+l \quad(\bmod N)\rangle=\frac{1}{\sqrt{N}} w^{k x} \sum_{y \in \mathbf{Z}_{N}} w^{y(x+l)}|y\rangle
$$

and by making the substitution $y=y^{\prime}-k$

$$
\begin{aligned}
& =\frac{1}{\sqrt{N}} w^{y^{\prime} x} \sum_{y^{\prime} \in \mathbf{Z}_{N}} w^{\left(y^{\prime}-k\right) l}\left|y^{\prime}-k\right\rangle=\frac{1}{\sqrt{N}} P_{l} T_{-k} \sum_{y^{\prime} \in \mathbf{Z}_{N}} w^{x y}\left|y^{\prime}\right\rangle \\
& =P_{l} T_{-k} F T_{N}|x\rangle .
\end{aligned}
$$

Corollary: $F T_{N}$ followed by Fourier sampling is equivalent to $T_{l} F T_{N}$ followed by Fourier sampling.

- Suppose $r \mid N$. Let $|\phi\rangle=\frac{1}{\sqrt{N / r}} \sum_{j=0}^{N / r-1}|j r\rangle$. Then $F T_{N}|\phi\rangle=\frac{1}{\sqrt{r}} \sum_{i=0}^{r-1}\left|i \frac{N}{r}\right\rangle$. Proof: the amplitude of $\left|i \frac{N}{r}\right\rangle$ is

$$
\frac{1}{\sqrt{N}} \frac{1}{\sqrt{N / r}} \sum_{j=0}^{N / r-1} w^{(j r)(i N / r)}=\frac{\sqrt{r}}{N} \sum_{j=0}^{N / r-1} 1=\frac{1}{\sqrt{r}}
$$

Since $F T_{N}$ is unitary, the norm of $F T_{N}|\phi\rangle$ has to be equal to the norm of $|\phi\rangle$ which is 1 . However the orthogonal projection of $F T_{N}|\phi\rangle$ on the space spanned by vectors of the form $\left|i \frac{N}{r}\right\rangle$ has norm 1. Therefore $F T_{N}|\phi\rangle$ lies in that space.
If we apply the corollary above to $|\phi\rangle$ we conclude that the result of Fourier sampling of $T_{l}|\phi\rangle=\frac{\sqrt{r}}{\sqrt{N}} \sum_{j=0}^{N / r-1}|j r+l\rangle$ is a random multiples of N / r.

