
DW-MACRO(1) User Commands DW-MACRO(1)

NAME

dw set macro macro-name macro-expr – creates a new user-defined

macro for use with subsequent dw set assert commands

DESCRIPTION

The dw constraint compiler allows the user to enter assertions

via the dw set assert command, which are expressions built using

the Bash shell expression syntax. Additionally, dw includes

built-in and user-defined macros which may be invoked as

assertions. The dw set macro subcommand creates new user-defined

macros.

SYNTAX

The dw set macro subcommand has two required arguments. The

first is the macro name and the second is the macro expression.

The macro name is any sequence of letters, digits and the

character ‘_’ (underscore), where the first character is not a

digit. The macro expression is a Bash shell expression using $1,

$2, … for its arguments. Since the Bash shell will interpret $n

as a positional character, the definition of the macro expression

should be enclosed in single quotes to prevent interpretation.

Note that it is not necessary to list the number of arguments

required by the macro – the argument list is inferred from

parsing the $n arguments in the macro expression.

Each invocation of dw set macro appends to the file user-macro.m4

in the current dw workspace. The first invocation of dw set

macro following dw init creates this file. The entire set of

macros available at any point during dw constraint compilation

consists of the built-in macros in $DWAVE_HOME/bin/dw-macro.m4

and any user-defined macros in user-macro.m4 in the current

workspace. Display this list via the dw get macro command.

Both built-in and user-defined macros are maintained internally

using the m4 macro language. Each invocation of dw set macro is

converted into an m4 command appended to the user-macro.m4 file

in the current workspace.

The naming convention for built-in macros consists of three

parts: a type specifier, argument number information and a

textual description. The type specifier is either the letter ‘R’

(Relation) or the letter ‘F’ (Function). The distinction is that

in ‘F’ type macros some arguments have functional dependence on

other macro arguments. An example is the F2_1_and macro, since

the valid states of an assertion built using this macro are those

in which the third argument is the logical AND of the first two

argument. Macros which have no functional dependence use the ‘R’

type specifier. An example is the R2_nand macro, whose valid

states are those in which the logical NAND (Not AND) of its two

input arguments is true.

‘F’-type macros are followed by a pair of numeric arguments. The

first specifies the number of input arguments and the second

specifies the number of output arguments. The two arguments are

separated by the character ‘_’ (underscore). ‘R’-type macros are

followed by a single numeric argument, which is the total number

of arguments to the macro.

The last portion is a textual description of the macro – either

relational or functional. This field is separated from the

argument number information by the character ‘_’ (underscore).

LIST

R1_on – valid state consists of its single argument set to 1

R1_off – valid state consists of its single argument set to 0

R2_eq – valid states are when its two arguments are equal

R2_ne – valid states are when its two arguments are not equal

R2_lt – valid states are when its first argument is less than its

second argument

R2_le – valid states are when its first argument is less than or

equal to its second argument

R2_gt – valid states are when its first argument is greater than

its second argument

R2_ge – valid states are when its first argument is greater than

or equal to its second argument

R2_or – valid states are when the logical OR of its two arguments

is true (1)

R2_nand – valid states are when the logical NAND (Not AND) of its

two arguments is true (1)

F2_1_and – valid states are when the third argument is the

logical AND of the first two arguments

F2_1_or – valid states are when the third argument is the logical

OR of the first two arguments

F2_2_half_adder – valid states are when the third and fourth

arguments are the sum and carry bits of the sum of the first and

second argument

F3_2_full_adder – valid states are when the third and fourth

arguments are the sum and carry bits of the sum of the first

three arguments

R3_one_of_n – valid states are when exactly one of the three

arguments is set to 1

R4_one_of_n – valid states are when exactly one of the four

arguments is set to 1

R5_one_of_n – valid states are when exactly one of the five

arguments is set to 1

R3_two_of_n – valid states are when exactly two of the three

arguments are set to 1

R4_two_of_n – valid states are when exactly two of the four

arguments are set to 1

R5_two_of_n – valid states are when exactly two of the five

arguments are set to 1

EXAMPLE

To turn logical variable x on, use the R1_on macro in a dw set

assert command:

 dw set assert 'R1_on(x)'

The assertion must be enclosed in single quotes so that the shell

does not interpret the parentheses as a control operator or

metacharacter. The invocation of R1_on(x) expands to x-1, which

is a linear expression that is squared by the dw constraint

compiler to form the QUBO term 1-x. This evaluates to 0 and is

hence valid when x is 1 and otherwise evaluates to a positive

value.

Define a new user-defined macro like this:

 dw set macro mymacro '$1 + $2 - $3'

After this command, use the newly defined macro in a dw set

assert command as follows:

 dw set assert 'mymacro(x,y,z)'

This macro defines valid states for the three variables to be

those in which the sum of the x and y variables equals the z

variable.

BUGS

Please report bugs to dwsupport@dwavesys.com.

COPYRIGHT

© 2016 D-Wave Systems Inc.

SEE ALSO

dw(1), m4(1)

mailto:dwsupport@dwavesys.com

