
 ToQ Overview
================

ToQ is a standalone or program-callable translator. It accepts
a C-like syntax which may control a series of one or more assert
statements. Enter "toq -a" for an overview of the syntax and
semantics. The asserts act on logical entities (booleans) which
define an optimization problem. The collection of run-time active
asserts are transformed internally and presented to the D-Wave
system, which finds the optimal solution to the input problem,
and the results (values of the booleans) are passed back to the
caller. There are about 300 help topics, which are reachable by
entering "toq -H topic" or enter "toq -H help" for a full list
of the help topics. Comments start with the "#" character and
run to the end of the line.

ToQ accepts five types of statements:

 o Directives - may appear anywhere in the program text.
Use the command "listdirs:" to get the list of directives.
Alternately, enter "toq -d" for a list of the directives, or
"toq -D" for a list of the directives with definitions

 o Declarations - variables must be declared before use, and
all declarations must precede the first executable statement.
Variable types are
 int: 32-bit integer values
 real: 64-bit floating point values
 intp: 32-bit integer values (post processing only)
 realp: 64-bit floating point values (post processing only)
 bool: boolean entities (0,1) for use in assert statements
 mbool: multi-bit logical entities for use in assert

statements
 bmask: multi-bit logical entities for use in assert

statements
 All bool: names start with "@"

 o Asserts - Executable statements that act on bool: variables
They are interpreted at run-time, and the full sets of results
are passed to the D-Wave co-processor for resolution. For
more information about asserts, enter "toq -H assert:"
Here are some samples

bool: @b1, @b2, @b3, @b4
assert: And(@b1, Or(@b2,@b3))
assert: OneOf(@b2,@b4)

 o Control-flow - Executable statements which control the flow
of execution. Here is the valid set

if: elseif: else: endif:

 o Executables - simple assignment and control-flow statements
which are interpreted and determine which assert statements
are active. Executable statements may employ any of the 100+
functions and 60+ constants. Use "listfuncs:" and
"listconsts:" to get lists of the functions and constants.
Alternately, enter

"toq -f" for a list of the functions
"toq -F" for a list of the functions with definitions
"toq -c" for a list of the constants
"toq -C" for a list of the constants with definitions

Here are some samples
bool: @b1, @b2, @b3, @b4, @b5
real: press, temp, dilbert, omega
#~~~
omega = 34.5*PI
press = 744.3
temp = 199.3*Sqrt(press-150)
assert: Xor(@b2,@b5)
assert: NOrMore(1,@b1,@b3,@b5)
if: (temp*Sin(omega*D2RADIANS) > 511) # Very hot

assert: And(@b5, Or(@b2,@b3))
 else: # Temp in normal range

assert: TwoOf(@b1,@b3,@b5)
assert: And(@b2, Or(@b1,@b3))

 endif:
assert: Xor(@b1,@b2)
end:

Incidently, this code snippet would generate two warnings:
("@b4" and "dilbert" are never used). If "press" was less
than 150, a run-time error would have been captured, and
the execution would be terminated with a message back to
the caller

 ToQ syntax/semantics
========================

o Input is case-insensitive (although input case is retained
for output presentation).

o Blanks and tabs are ignored.

o Statements are terminated by the end of line.

o Variable names are 1-12 characters from (a-z, A-Z, 0-9), and the
first character must be alphabetic. The only exception is
that the first character of boolean and other constraint
variables is "@" which is followed by 1-11 characters from
(a-z, A-Z, 0-9).

o Variables may be the arguments to functions. Use "listops:" for
a list of all the functions and their descriptions.

o Use "listconsts:" for a list of all the constants and their
values and descriptions.

o All entities share a single name-space, so a variable may not be
named "sin" or "pi."

o All declaration statements must appear before the first executable
statement. (Asserts are executable.)

o Bool variables (which can take on only the values (0,1)), are not
available for programmer use. They are used only in assert
statements and their values are set by the run-time system
such that all combinations of all the booleans are exercised.
A ToQ program searches for one or more sets of the boolean
values which make all the asserts TRUE.
<> Each ToQ program must contain 2 or more assert statements.
<> Each assert statement must contain 2 or more boolean

variables.
<> Each boolean must appear in 2 or more "contributing"
 asserts. A contributing assert is one that can be
 evaluated as both TRUE and FALSE for different sets of
 boolean values. For example, given bools (@a,@b,@c),
 "assert: @a+@b+@c <= 2" may be either TRUE or FALSE, but
 "assert: @a+@b > 3" is always FALSE (this would be flagged
 as an input error).

o Bool variables (0,1) can be only used in assert statments. But
note that they can utilized both arithmetically via
{+,-,*,...} and logically via {&,|,>,<,...}. Groups of
boolean can also be utilized - e.g.,

assert: (((@a + @b + @c) > 1) || (@x & @y))
See below (or enter "toq -H operator") to see a list of all
the operators and the precedence rules.

o Assert statements can act only on bool: variables. When you use
constraint variables in an assert statement, ToQ silently
converts them to an expression built from hidden boolean
variables. Use "listboolops" for a list of all the functions
which accept bool: variables as arguments.

o The last statement should be "end:" - all statements after that
will be ignored.

o When an error is detected during compile-time (e.g., mismatched
parentheses), a message is generated and the error-scan
continues, but no execution will occur. When an error is
detected during run-time, a message is generated, and the

error scan may continue, but no further execution will occur.
All error conditions are passed back to the caller.

o Enter "limits:" for a listing of the current ToQ limits (e.g.,
Max number of lines, max number of assert: statements, etc.)

o Enter "help: token" for a description of keyword "token,"
where token is a directive name, function name, constant name,
or a keyword. "token" must be at least three characters.

o Enter "print: var1 [,...]" for a list of the current value of
the listed variable name(s).

o Enter "printvars:" for a list of the current values of all the
variables.

o A comment begins with the '#' character, which may appear anywhere
on a line. The rest of the line is ignored (and thus the
comment ends at the end of the line).

o All non-executable statements (except comments) must contain
exactly one ":" character. Note that the assert statement
and control-flow statements also contain exactly one
":" character

o All executable statements (except asserts and control-flow) must
have exactly one replacement operator.

o The replacement operators are
= += -= *= /=
&= |= >>= <<=

Note that the last four of these operators work only on
integers.

o Executable statements, assert statements, and if statements may
use comparison and logical operators.

o The comparison and logical operators are

== != > >= ->
&& || < <= <->

 == Equal && And
 != Not equal || Or
 > Greater than < Less than
 -> Implies <-> If-and-only-if
 >= Greater than <= Less than
 or equal or equal

Note that "&&" and "||" work only on integers.

o The other available operators are
+ - * / ^ **
& | ! ~ % ^^

 + Add & Bitwise AND
 - Subtract | Bitwise OR
 * Multiply ! Unary NOT
 / Divide ~ Bitwise NOT
 ^ Raise to power % Remainder
 ** Raise to power ^^ Bitwise XOR

o The operator precedence rules are:

 Operator Precedence | Operator Precedence
 (1 | > 8
) 1 | < 8
Verb 2 | >= 8
 + (unary) 3 | <= 8
 - (unary) 3 | -> 8
 ! (unyNot) 3 | <-> (iff) 8
** (exp) 4 | & 9
 ^ (exp) 4 | | 9
 * 5 | ^^ (xor) 9
 / 5 | && 10
 + 6 | || 10
 - 6 | != 11
<< 7 | == 11
>> 7 | += -= *= /= 12

 Operators of equal | &= ^= |= %= 12
 precedence resolve | >>= <<= = 12
 left to right | , 13

ToQ manages three levels of error conditions:

Warnings - messages are issued and execution continues

Syntax/Semantic Errors - messages are issued, and an error
scan of the input continues, but execution is
terminated

Run-time Errors - a message is issued, and an error-scan of
the input may continue, but execution is terminated.
A dump of the current values of all variables at the
point of failure is generated.

It is important to note that when a (non-Warning) error condition is
encountered, actual execution is stopped, and thus further error-

checking may be compromised. When reviewing output, one should
always address the first error first, since that error may be
masking or inducing errors further down. You may use the "-1"
option to force ToQ to stop at the first error.

In all cases, ToQ returns the status to the calling program.
When no errors are detected, ToQ returns the optimal solution
to the input problem.

 Constants, Directives, Functions
====================================

ToQ supports a host of everyday and special purpose constants and
functions, as well as a group of directives which control execution.
Enter: "toq -H item" to read about any item.

 65 Constants
 ================

CUBERT2 LOG10E MASK14 MASK27 PLANCK
CUBERT3 MASK02 MASK15 MASK28 PLANCK2PI
D2RADIANS MASK03 MASK16 MASK29 RADIANS2D
ELECTRIC MASK04 MASK17 MASK30 SQRT10
ENAT MASK05 MASK18 MASK31 SQRT2
FOURTHPI MASK06 MASK19 MASK32 SQRT3
HALFPI MASK07 MASK20 MASK3201 SQRT5
JOSEPHSON MASK08 MASK21 MASK3210 SQRT6
LN10 MASK09 MASK22 NUCLMAGN SQRT7
LN2 MASK10 MASK23 PHI SQRT8
LN3 MASK11 MASK24 PHIINV SQRTE
LOG102 MASK12 MASK25 PI SQRTPI
LOG103 MASK13 MASK26 PI43 THIRDPI

 52 ToQ Directives
 =====================

assert1: listboolfuncs: post:
assert2: listbools: postio:
assert: listcode: postm:
assertp: listconstdefs: print:
cladesoff: listconsts: printf:
conffile: listdirdefs: printfn:
dbprintb: listdirs: printsummary:
dbprintf: listfuncdefs: printvars:
dbquit: listfuncs: prototype:
end: listgen: satisfiability:
epilogue: listops: syntax:

errormgmt: listprotos: timing:
flipflop: listsatdefs: varfile:
force: listsats: viewvectors:
help: maximize: warningsoff:
initfile: minimize: whereami:
limits: overview: xrefoff:
listall:

 113 Functions
=================

Abs(x) IsInt(x) Permutations(m,n)
Acos(x) LCM(m1,m2,...) PopCount(n)
Acosh(x) Ln(x) Prime(n)
All(b1,b2,...) Ln1P(x) Rand(a,b)
Amalgam(b1,b2,...) Log(x) RandSeed(n)
And(b1,b2) Log2(x) Round(x)
Antilog(x) Lucas(n) Same(m1,m2,...)
Any(b1,b2,...) MaskN(N) Sat(b1,...)
Asin(x) Max(x1,x2,...) Sat12(b1,b2)
Asinh(x) MaxAbs(x1,x2,...) Sat13(b1,b2,b3)
Atan(x) Min(x1,x2,...) Sat14(b1,b2,b3,b4)
Atan2(x,y) MinAbs(x1,x2,...) Sat15(b1,b2,b3,b4,b5)
Atanh(x) Mod(j,k) Sat2(b1,b2)
Bitcount(n) NAE3Sat(b1,b2,b3) Sat23(b1,b2,b3)
Bitmask(b1,m,n1,n2,...) NAE4Sat(b1,b2,b3,b4) Sat24(b1,b2,b3,b4)
Ceiling(x) NAE5Sat(b1,b2,b3,b4,b5) Sat25(b1,b2,b3,b4,b5)
Combinations(m,n) NAESat(b1,b2,...) Sat3(b1,b2,b3)
Cos(r) NAESat3(b1,b2,b3) Sat34(b1,b2,b3,b4)
Cosh(x) NAESat4(b1,b2,b3,b4) Sat35(b1,b2,b3,b4,b5)
Cubert(x) NAESat5(b1,b2,b3,b4,b5) Sat4(b1,b2,b3,b4)
Diff(m1,m2,...) NAESatN(N,b1,b2,...) Sat45(b1,b2,b3,b4,b5)
Even(n) Nand(b1,b2) Sat5(b1,b2,b3,b4,b5)
Exp(x) NBitHit(b1,m,n1,n2,...) SatN(N,b1,b2,...)
Expm1(x) NDiff(x1,x2,...) Sin(r)
Factorial(n) NearInt(x,eps) Sinh(x)
Fibonacci(n) NOf(N,b1,b2,...) Sqrt(x)
Floor(x) None(b1,b2,...) SqrtAbs(x)
FormalMod(a,b) Nor(b1,b2) Sum(n)
GCD(m1,m2,...) NOrLess(N,b1,b2,...) SumDelta(a,d,n)
GSeries(m1,m2,n) NOrMore(N,b1,b2,...) Tan(r)
IFF(b1,b2) Not(b1) Tanh(r)
Implies(b1,b2) NXor(b1,b2) Trunc(x)
InRangeEq(x,min,max) Odd(n) TwoOf(b1,b2,...)
InRangeNEq(x,min,max) OneOf(b1,b2,...) XNor(b1,b2)
InSet(val,x1,x2,...) Or(b1,b2) Xor(b1,b2)
Inv(x) OutRangeEq(x,min,max) Xor2Sat(b1,b2)
InvMod(j,k) OutRangeNEq(x,min,max) Xor3Sat(b1,b2,b3)
IRand(j,k) OutSet(val,x1,x2,...)

 ToQ commandline
===================

 ToQ - a simple program to (conditionally) build QUBOs and
 execute them on a D-Wave Quantum Computing System.

ToQ implements a simple environment for assessing and
 evaluating assertions about the permissible values for a
 set of binary decision variables. The input "program" may
 be from stdin or a file, and the output goes to stdout or
 a file. Configuration information is available from your
 environment (see the qOp's dw command) or from a file.
 Enter:

toq -H environment -or-
toq -H files

 for details. Users may provide a file with variable/value
 pairs for use at startup and/or a file with configuration
 information. Both files use the -z option (see -Z for
 file formats).

Typical usages:
1) toq -i xyz.toq # PreQuantum Analysis only
2) toq -i xyz.toq -r -z ConfFile -o OutFile
3) toq -i xyz.toq -r -z ConfFile -z VarFile
4) toq -i xyz.toq -q -T
5) toq -i xyz.cnf -r -z ConfFile
6) toq -i xyz.qubo
7) toq -i xyz.qbout

- Case 1 runs only the FrontEnd (parsing, error detection,
 assert report, Xref map, clade analysis, ...), and does
 not solve the problem. Output is written to stdout.
- Case 2 runs the full program, uses ConfFile for
 configuration data, and writes output to OutFile
- Case 3 runs the full program, and reads incoming
 variable/value pairs from VarFile
- Case 4 runs the full program, uses the Qbsolv (-q) program,
 and reports timings (-T) for each step
- Case 5 (with a .cnf file) is a special case with xyz.cnf
 containing a standard DIMACS-format conforming
 satisfiability problem (enter "toq -H cnf" for the format
 of a .cnf file).
- Case 6 accepts a .qubo file and works on a general
 unconstrained binary optimization file (enter "toq -H .qubo"
 for the format of a .qubo file). The default intermediate
 output file for this case is xyz.qbout, and ToQ output is
 presented on stdout.
- Case 7 accepts xyz.qbout as the output file from Case 6 and
 presents the results (produces the same output as Case 6).

 The vast majority of ToQ calls take this form:
toq -r -i xyz.toq

 There are a large variety of special options to meet various needs
 (as the results below show), but beginners and indeed most users
 rarely need to use them.

 Usage: toq [-abBcCdDeEfFg] [-G fmt] [-h] [-H topic] [-i inFile]
[-o outFile] [-O opt(s)] [-Lpq] [-Q opt] [-rRsS]
[-t satType] [-TuvxXZ] [-z varFile|configFile] [-Z]

-a Syntax/semantics overview (no execution)

-b List the bool- and constraint-eligible functions
 (no execution)

-B List the bool- and constraint-eligible functions
 w/ descriptions (no execution)

-c List the constants (no execution)

-C List the constants w/ values, descrs (no execution)

-d List the directives (no execution)

-D List the directives w/ descrs (no execution)

-e List the error handling attributes (no execution)

-E Do not show constraint variable declaration error hints

-f List all the functions (no execution)

-F List all the functions w/ descriptions (no execution)

-g List the generated boolVariables and assertStmts

-G Group result display format for .qubo input files.
 Followed by a string (e.g., toq -i zz.qubo -G 3,ABCDEFGH
 -or- toq -i ww.qubo -G 4). Defines various output
 display formats (enter "toq -QG" for details and examples)

-h Help - print this message (no execution)

-H Help topic - print help message about "topic" (no exec)

-i The input file name (default is stdin)
Typical case: toq -i xyz.toq
Typical case: toq -i pqr
Special Sat(DIMACS) case: toq -i abc.cnf

Special Qubo case: toq -i def.qubo

-L List the input program (after scan)

-n Number of results requested (overrides env, startup files)
Default: 500, Range: (1-2,000) is silently enforced

-o The output file name (default is stdout)

-O Options(s)Print: Show detailed help for one or more
 options. E.g., "toq -Ox" describes the -x option
 (no execution)

-p Print all variable values at completion

-q Use the direct qubo method to solve problem (via qbsolv).
 For input = xyz.toq, 2 files will be generated:

xyzTOQ.qubo and xyzTOQ.qbout

-Q Special options (defined by next argument)
-Q afile - "file" is Quantum Apprentice file, nolist
-Q Afile - "file" is Quantum Apprentice file, list
-Q c - Collect all (cnf) single var msgs into
 1 warning
 (Default behavior is an error msg)
-Q C - Disable all (cnf) single var msgs
 (This option is not recommended)
-Q D - Debug mode
-Q F - Disable Clade (assert/family) Report
 (This option is not recommended)
-Q G - Show details/examples for -G option (no exec)
-Q M - Disable mult bool/assert msg (not recommended)
-Q P - Enable Partitioning
-Q Q - Use the Quantum Simulator Solver
-Q R - Regression testing mode
-Q Se - Synopsis - Embedded ToQ (no execution)
-Q Sm - Synopsis - Programming Model (no execution)
-Q Sp - Synopsis - Partitioning (no execution)
-Q Sq - Synopsis - Full QUBO processing

(no execution)
-Q V - View generated vectors
-Q W - Disable Warning messages (not recommended)
-Q Y - Disable FYI messages

-r Run the BackEnd and display D-Wave stats

-R Run the BackEnd

-s List the Satisfiability functions (no execution)

-S List the Satisfiability functions w/ descriptions
 (no execution)

-t Type of satisfiability clauses (for "cnf" only,
 (not "cnf+")). Valid strings for "satType" are in
 { 1in3, 2in3, 2in4, 2in5, 3in4, 3in5, 4in5, nae, nae3,
 nae4, nae5, naen, sat2, sat3, sat4, sat5, xor2, xor3 }

Simple example: toq -i xyz.cnf -t nae3

-T Show detailed timing data

-u User manual (list options combined - no execution)

-v Print Version information - no execution)

-x Disable the ConstraintVar/AssertId Xref

-X Suppress all output but errors, warnings, Summary
 (Not for new (programs, programmers))

-z AuxFileName - read/process this file. The auxiliary
 files are VariablesIn and Configuration (see -Z)

-Z Format (layout) of the VariablesIn, Configuration,
 and .cnf files (no execution)

-1 Stop at 1st error detected (default: OFF)

 -a Syntax/semantics overview' -o Output file name
 -b List bool/constraint funcs' -O Option(s)Print'
 -B List bool/constr funcs,descr' -p Print var values at end
 -c List constants' -q Use Qbsolv to solve problem
 -C List constants w/ descr' -Q Special options
 -d List directives' -r Run the BackEnd, show stats
 -D List directives w/ descr' -R Run the BackEnd
 -e List error handling attrs' -s List Sat functions'
 -E Don't show constr hints -S List Sat funcs w/ descr'
 -f List functions' -t Type Sat clauses'
 -F List functions w/ descr' -T Show detailed timing
 -g List gen'd bools/asserts -u List user manual'
 -G Group result display format' -v Version info'
 -h Help (show cmdline options) -x Disable Xref
 -H Help topic (help: "topic")' -X Suppress non-error,-warnings
 -i Input file name -z AuxFileNm (vals,config)
 -L List input program -Z Format (layout) of files'
 -n Number of results -1 Stop at 1st error
 -o Output file name

' no execution
~~~\\~~~


