
Tools	For	Quantum	and	
Reversible	Circuit	
Compilation
- MARTIN	ROETTELER
- PRESENTED	BY	HARSH	KHETAWAT

- 11/19/2018

Introduction/Motivation
Multistage	compilation	of	QAlgos:
◦ High	 level	description	of	program	àNet	lists	of	circuits	à Pulse	sequences	à Physical	Quantum	
Computer

Key:	Implement	classical	subroutines	(oracles):
◦ Why?
◦ Underlying	problem	often	 involves	classical	data:
◦ factoring	(Shor’s),	
◦ HHL	– for	solving	 linear	equations,	
◦ quantum	walks	
◦ quantum	simulation,	 etc.

◦ How	best	to	implement	on	quantum	computer?

Reversible	Computing
How	best	to	implement	classical	subroutines	(oracles)	on	a	quantum	computer

Deals	with:
◦ Minimize	gate	count	for	a	given	universal	gate	set
◦ Minimize	resources	such	as:
◦ Circuit	depth
◦ Number	of	qubits required,	 etc.

Compiling	irreversible	programs	to	QC:
◦ Hide	classical	subroutines	 in	libraries	– optimized	collection	of	functions	
◦ Tools	to	convert	classical	code	à network	of	Toffoli gates	(Quipper)

LIQU|>	provides	REVS	– tool	to	automatically	convert	Classical	code	à reversible	networks

Idea	behind	REVS
Bennet’smethod	(1973)
◦ Reverse	each	time	step
◦ Perform	forward	computation	using	step-wise	
reversible	processes

◦ Copy	out	the	result
◦ Undo	all	steps	in	the	forward	computation	in	
reverse	order

Solves	reversible	embedding	problem
◦ Cost	– large	memory	 footprint	 as	each	intermediate	
results	has	to	be	stored

◦ Solution	 - Bennet’s new	and	improved	method!!	
(1989)

◦ Pebble	games
◦ Space	vs	Time	tradeoff

Use	dynamic	programming	
to	determine	best	strategy	
for	given	n	(steps)	and	S	
(pebbles)	

Works	for	1-D	chains
More	complex	for	general	
graphs

REVS
Determining	best	strategy		is	program	dependent	and	non-trivial

REVS:
◦ Boolean	functions	 synthesized	using	heuristics	and	optimizations	 (ESOP)
◦ Circuits	made	reversible	using:
◦ Bennet’s method(s)
◦ Uncompute data	that	is	no	longer	needed	 (from	data	dependencies)

For	example	– SHA256
◦ No	branching,	 uses	simple	boolean functions	such	as	XOR,	AND	and	bit	rotations
◦ However,	 it	has	internal	state	between	rounds

REVS
Modeled	using	Mutable	Data	
Dependency	(MDD)	graphs
◦ Tracks	data	flow	during	 classing	
computation

◦ Identify	which	parts	can	be	overwritten	/	
uncomputed (clean-up)

Clean-up	on	QC	≅ Garbage	collection	on	
classic	computers

Outputs	Toffoli network
◦ Imported	 in	LIQU|>	
◦ Used	as	part	of	quantum	communication
◦ Supports	 compilation	for	different	 target	
architectures	/	abstract	QC	machine	
models

SHA-256
Ideal	candidate:
◦ Stores	state	between	rounds
◦ Simple	binary	functions

4x	improvement	in	number	of	qubits required

Can	also	be	applied	to	other	hash	functions
◦ SHA-3	and	MD5

REVS	allows	exploration	of	trade-off	space

Using	Dirty	Ancillas
What	are	dirty	ancillas?
◦ Qubits in	unknown	 state
◦ Might	be	entangled	 in	unknown	way
◦ Available	as	scratch	space

How	can	dirty	ancillas be	useful?	Two	scenarios	currently	known:
◦ Multiply	controlled	NOT	operation
◦ Constant	incrementer |x>	à |x	+	c>

Increment	|x>	by	1	example	using	unknown	|g>:	
◦ g’	is	2’s	complement	of	g	=>	g’	– 1	=	not(g)
◦ g	+	g’	=	0
◦ |x>|g>	à |x	– g>|g>	à |x	– g>|g’	– 1>	à |x	– g	– g’	+	1>|g’	– 1>	à |x	+	1>|g>

Repeat-Until-Success	Circuits
Key	idea:	Use	non-deterministic	circuits	(RUS	circuits)	for	decomposition	(Paetznick&	Svore,	
2014)
◦ Substantial	reduction	 in	T	gates
◦ Shorter	expected	circuit	length	compared	to	purely	unitary	design
◦ Approximating	 to	desired	precision	ℇ

Has	been	shown	to	efficiently	synthesize	any	1-qubit	unitary

Number	of	repetitions	are	provably	finite

Conclusion
REVS:
◦ Translate	classical,	irreversible	programs	à reversible	circuits
◦ Not	required	 to	think	 in	circuit	centric	manner
◦ Capture	data	dependencies/mutations	 using	MDDs
◦ Heuristics	to	find	optimal	pebbling	 strategies

Reuse	of	qubits even	if	state	is	unknown/entangled
◦ Reduce	circuit	sizes

Implement	unitaries probabilistically	using	protocols	such	as	RUS
◦ Constant	factor	improvement	 in	circuit	size

Discussion
Reuse	of	dirty	ancillas only	possible	for	very	specific	situations

RUS	protocol	very	interesting:
◦ Can	we	implement	multi-qubit unitaries using	RUS?

The	paper	doesn’t	discuss	heuristics	used	for	finding	optimal	pebbling	strategy
◦ What	heuristics	are	used?
◦ Can	we	improve	on	it?

