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Outline

 How to make qubits with circuits

e Superconductivity

e Josephson junction and nonlinear LC circuits
 SQUID: Tunable nonlinear inductance
 Transmon

« Rabi oscillations

* Implementation of X,Y,Z,H gates

e Entangled transmons and controlled gates

* |IBM examples
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(Subset of) Requirements for Quantum Computer

nysical system with two uniguely addressable states
nility to implement arbitrary rotations on the Bloch sphere
nility to measure the state of a cubit

nility to entangle two qubits

J>J>J>'U
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Qubit possibility: LC Resonant Circuits?

 |n classical, linear circuit theory, the natural
solution for the current Is

i(t)=1,cosampt, @w,=1/~LC
 The current can have any amplitude, independent
of the frequency

* Energy Is stored alternately in the electric field of
the capacitor and the magnetic field of the
inductor, and can have any value U ~I;

 In reality, the stored energy Is quantized U =hwo(”+%j

e Could we use two of these states for a qubit, say
n=0 and n=17
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Nonlinear LC Circuits

* Problem: energy difference between 0,1 is the
same as energy difference between all other states
n,n+1
— No way to address specific states

o Solution: if either L or C were nonlinear (i.e., their
values depended on the magnitude of the current or
voltage), then the energy levels would no longer be
equally spaced!

— If the energy difference between n=0 and n=1 was
different from the energy difference from all other states,
we can selectively address this particular transition by
tuning the frequency of the applied excitation
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RF Frequency

* The fact that we are talking about circuits suggests we are
talking about RF rather than optical frequencies!

* Problem: any physical mass at finite temperature will emit
electromagnetic radiation that depends on its temperature
(Black body radiation)

— We want the energy difference between qubit states to be large
compared to thermal radiation '

T o1z

— Highest frequency for widespread, economical instrumentation ~ 6 E
GHz (owing, e.g., to WIFI, etc.)

— From kT=hf, the temperature corresponding to 6 GHz is 0.29K
— Operating temperature must be much less than 0.3K!

o Solution: IBM Q systems operate at a temperature of
about 15 mK using dilution refrigeration
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Superconductivity

« At such low temperatures, metals such as Al and Nb become

superconductors
— At low temperatures, an attractive force between electrons appears

— When this force gets sufficiently strong compared to thermal vibrations,
electrons bind together into “Cooper pairs” with spin 1 and charge 2q

— Cooper pairs form a macroscopic guantum state enabling charge to move
without scattering or loss, resulting in superconductivity

 Makes it possible to make extremely low-loss RF transmission
lines

 Makes it possible to realize a nonlinear inductor using a
Josephson junction
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A note to Physicists: Cooper Pairs and Superconductivity

e Spin Y2 particles are “Fermions”
— Fermions obey the Pauli exclusion principle: no two can be in the same state
— Electrons are Fermions

e Spin 1 particles are “Bosons”

— Bosons do not obey the Pauli exclusion principle: you can have as many in a state as
you want

— Photons are Bosons

* In a superconductor, an effective attractive interaction between electrons
causes them to be loosely bound together and act like a single spin 1
particle: “Cooper Pair”

e Since Cooper pairs are spin 1, they act like Bosons, and you can have
multiple Cooper pairs in the same state

« All of the Cooper pairs in a macroscopic sample can be in the same
coherent state
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Cooper Pairs are the result of the Electron-Phonon
Interaction in the theory of Bardeen, Cooper, and
Schreifer (BCS Theory)

* Electrons normally repel one

another, but are attracted to @—O Q-
lons in the crystal lattice

* If the lons are pulled slightly {% —@
toward an electron, from a 'h@'m

distance it can appear as
though there is a net positive |
charge, attracting another @ — O {;ﬁ —PD—Q—
electron |

Image from Quora
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Josephson tunnel junction
Circuit Symbols
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 Two superconductors separated by a thin insulating layer

 Wave functions for superconducting Cooper pairs decay exponentially
In the insulating layer

» If the layer is thin enough to allow appreciable tunneling, then phases
are no longer independent but are related to each other through the
size of the tunneling current

Graphic: Ph.D. thesis: Vratislav Michal
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Josephson Junction as nonlinear inductor

P=Q, =P
I =1.sing « Effective inductance depends on the
Y, =%Z—f CI)O:% is the flux quantum current
72- . . . . .
d do * Looks like a non-linear inductor: origin of
ot %P anharmonicity: spacing between energy
-1, cos =2 levels is not the same
0 — Enables the individual addressing of a single
" pair of states
V= > ICDO 31 — In contrast, in a linear circuit, all states are
7l COS9 equally spaced
A @, dI
271 \[1—sin? p dt
gy 2\

dl
B =L, (1)—
27l 1-(1/1,)* dt  ~ N |1|>0>
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Superconducting Quantum Interference Device (SQUID)

o Parallel Josephson Junctions

« Magnetic field induces circulating current l |
« Simple analysis: neglect inductance of loop, assume both Il | ‘ 2
JJs are identical . . - —
I, =1 +1,=1_sIng +1_sIng,
@, =@, +21D | D, Area A
_ + i
© =BA Dy @ B D,
 The second equation comes from integrating the — Ny
canonical momentum around the loop (See e.g., Van
Duzer & Turner) .
« If the total current is zero: _ P2 = & _ l
 Thus applying a magnetic Sin (¢, +270 /@, ) = —sin g,
field will induce a current, 0, + 270 | Dy~ —@, l;
and consequently tune the
d y ¢ =—1D/D; =—g,

iInductance
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Transmon

« Adds extra capacitance by adding A/20 @
transmission lines to either side of a pair -
of Josephson Junctions forming a SQUID Lt = = M KX

| | 9, :
— Extra capacitance reduces noise from charge
fluctuations

— Resonant frequency determined by JJ
Inductance and shunting capacitance

— SQUID allows flux tuning

* A Single Josephson Junction can be
used for a fixed-frequency qubit

QQ -

Koch, et al (not to scale)
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Transmon Designs

. Flux
Fixed Tunable
Frequency. Qubits
Qubits
Coplanar
microwav __ Current
resonator control line

U UL

Figure 5.3: Optical images of different transmon designs. (a) Standard transmon design
employed in cQED157 and on one of the qubits in cQED187. (b) Balanced transmon design
used in one of the qubits in cQED187. (¢) and (d) Transmon designs incorporating flux bias
lines. A slightly different transmon SQUID loop design is necessary to accommodate the
flux bias lines entering from the (c) bottom of the chip or from the (d) top of the chip, while
preserving the same double-angle evaporation procedure.

Chow, PhD Thesis



Coupling to a Transmon

e Co-planar microstrip resonator formed
by gaps in center conductor

e Important to properly choose resonator
frequency with respect to transmon
frequency (more to come)

e Control is achieved by injecting an RF
signal from one end

 Readout is achieved by looking at
either the transmitted or reflected
signal

Blais, et al
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Rabi Oscillations
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Rabi Oscillations

 When a two-level system is coupled to a driving field at precisely
the frequency corresponding to the energy difference between

the states, the system will oscillate between the two states at the
Rabi frequency

lw)=c, (t)|0)+c,(t)|1)
ifc,(0)=1c (O):O, then

P (t)_‘c (t)‘ 1+cosQ :t)

P.(t)=|c (t)\ (1 cosQt)

Figure 51: Time evolution of the probability P,(t¢) and P, (¢) to find the atom in the ground (solid)
Q <1‘ H ‘ O> and excited (dashed) state, respectively. [from D.A. Steck Quantum and Atom Optics|
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Schrodinger Equation
: 0
Ih(?t‘w>: H ‘w>, 0, EE

 His an expression for the total energy of the system (kinetic +
potential) and is called the Hamiltonian

. For two orthogonal states: 170, |1) = H,|1) = E;|1)
ino,|2)=H,|2)=E,|2)
 What if we introduce a perturbation that weakly couples states 1
?
ST o 1) = Hy 1) 4V, [2)
in0,|2) =H,|2)+V,|1)
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Schrodinger Equation for 2x2 coupled system

ino,|1)=H,|1)+V,|2)
in0,|2)=H,|2)+V,|1)
 This can be written
o) D _[E O 0 Ve 1) :H 1)
12) L0 Q2] Va 0]2)) 12
H :%(E1+E2)ao+%(El—E2)aZ +Vo,, assumingV,, =V,,
M0 1 0 0 1
O, = , O, = , O, =
0 1 0 -1 1 0
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Formulations of Quantum Mechanics

e “Schrodinger Picture:” all time dependence is in the wave
function or state vector

* “Heisenberg Picture:” all time dependence is in the Hamiltonian
operator

e “Interaction Picture:” hybrid in which some time dependence is In
both the operator and the state vector
— Particularly useful when considering a small perturbation to a solved

system: express solution to perturbed system in terms of solutions to the
unperturbed system
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Interaction Picture

e Let us express the Hamiltonian as a sum of two terms, the larger of which is
time independent and for which solutions are known, and a smaller
perturbation that contains all of the time dependence: H =H_ +V (t)

* In the Schrodinger picture: ing, |y (t)), = H |y (1)),
* The transformation for the state vector into the Interaction picture:

(), =" |y (1),
e Equation of motion:
ind, |w (1)), =ind, (e |y (1)), ) ind, |y (1)), =™V |y (1))
_ piHot/ (ih@t B Ho)|W(t)>5 _ QiHOt/hVe—iHot/hjeiHot/h |l//(t)>
= g'ol/” (Hy+V - H0)|r,u(t)>S “ \
» Only depends on time-dependent perturbation: |i%nd, |y (t)), =V, (t)|w (1)),

Sj

v (D),
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Solution to Equation of Motion

o Construct an interaction picture solution by adding up eigenstates of the
unperturbed Hamiltonian but with time-dependent coefficients:

v (), =2.c.(®)n)

 Substitute into equation of motion: "

ino, ) c,|n)y=e""ve "N ¢ |n)

Ihzcn n>:eiH0t/hVZCne—?Ent/h n>
n

inY ¢ (min)=_mle" " V> ce ™" n)
AN/ S AR

iEmt/n

(mle

inc, => V. e,
n

Vo, =(mV|n), @, =(E,—E,)/h=-o

m n nm
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Application to 2-Level System

1 1
e Recall: H :E(El"‘Ez)O'o"'E(El_Ez)O'z +Vo,

 Choose zero of energy as the average, and V caused by sinusoidal RF

signal:
J H :—%ha)ﬂaz +V, cos(a)”t+¢)ax

« Equations of motion ix¢, =) V,.e“"'c, become:

in¢, =V, cos( "t +¢)e*'c,
in¢, =V, cos(w"t+¢)e"'c,

inc, = (ei(a’ﬁw)+e_i(wrf”¢))e““’”t02

_Y
2
IhC V?(ei(a)”t+¢) o e—i(a)”t+¢))eiw21tcl



 NCSTATEUNIVERSTYR
Solution in the Rotating Wave Approximation

Assume the energy associated with the RF frequency is close to the
transition energy between the two states: " =w, +A, |Al< oy,

Then keep only the low-frequency components to the solution (Rotating

Wave Approximation): e, = V?oe‘(“’r ey _ \%eiwcz
.y . V —i( " —y |t—ig V ZiAt—i
|hc2:?°e S c, =—2e "¢

Substituting the first equation into the second gives a second-order Diff.

Equation for c,: ?
1 ! Cl—iAC1+(V—°j c, =0
» If the system starts off in state 1, then it is easily verified that the solution is

iA/2 .

c,(t) = Ae* cos(Qt / 2) Q- |A2 J{V_oj
h

c,(t) =1 2Ahe“A’Z“"j(iécos(Qt/2)—95in(£2t/2)j . . 12

: 2 2 cf +lef =1 = A=(1+(an/V,))
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Driving at Resonance: Rabi Oscillations

« If the RF driving frequency corresponds to the energy difference between the two states, then
A=0, 0" =,

» The coefficients then become ¢, (t) = cos(Q,t/2)

C,(t) = —ie™sin(Qgt/2)
Q. =V, /#

« Let state 1 correspond to the ground state, and state 2 to the excited state. The probability of
finding the system in each state is given by

gL (t)‘2 = (cos(Q,t/2)) = %(1+ cos Q,t)

c,(®)] = (sin(Qgt/ 2))2 = %(1—cosQRt)

Figure 51: Time evolution of the probability P,(t) and P.(t) to find the atom in the ground (solid)
and excited (dashed) state, respectively. [from D.A. Steck Quantum and Atom Optics]
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Realizing Gates using Rabi Oscillations

Recall that when driven at resonance ¢, (t) = cos(Qqt/2)
c,(t) = —ie ™ sin(Qgt/2)

“r-pulse”. Qqt =7 inverts the state
“rn/2-pulse”. Q. t=x/2 creates equal superposition of states

« Key point: you can flip a state or create a superposition state by 0)

controlling the pulse length & controlling the phase of the 4 Z | (10)-|1)

excitation e

_ | —(0)-i[1) ﬂ
« X gate: pi-pulse with ¢g=—7/2 V2 , .y
1 :

« Y gate: pi-pulse with ¢=r L (10)+[1))" )
« Hadamard gate: pi/2-pulse with ¢=-7/2 V2

e Z gate: Rotations around the z axis can be accomplished simply
by resetting the phase reference of the RF drive! Result: zero time
and zero error



Coupling to a Transmon

e Co-planar microstrip resonator formed
by gaps in center conductor

e Important to properly choose resonator
frequency with respect to transmon
frequency (more to come)

e Control is achieved by injecting an RF
signal from one end

 Readout is achieved by looking at
either the transmitted or reflected
signal

Blais, et al
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Control and Read-out

When the microstrip resonator is detuned from the transmon frequency, interaction with the
transmon splits the resonator response into two modes, depending on the transmon state

Sending in a pulse near o, enables you to read-out the state either from the phase, or the
amplitude

Sending in a pulse detuned from the microstrip resonator but tuned to the qubit frequency
rotates the state, but does not make a measurement (there is no information about the state
In the reflected signal, the resonator is so far off resonance)

Transmission (arb. units)
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Control Pulse simulation

e Control signal turned on for 7
pI pulses then turned off

* The state rotates between
the excited and ground states

e The cavity photon level is
small since the cavity Is
detuned from resonance
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Blais, et al



nc stateunversovyg

RF Electronics

% cQED222
only
« Cooled attenuators keep room VAN s 2]
temperature noise from the qubit UTgs.ss
— But this means you must send avery 4« g[]-/\ 5 & | &[]
strong signal! T= | i
. . . UT-85-55/SS
o Similarly, cooled circulators keep skt |l -~
room temperature noise from the §] Oz o2l 5
gubit without attenuating the signal R
‘, @’y) By Sy
cavity cavity left right
in out flux bias  flux bias

Chow, PhD Thesis



Nc stAteunversovg

Entangling Two Qubits
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Entangling two qubits with a quantum bus

« “Dispersive coupling™: coplanar
waveguide resonator detuned from

Graphic: Chow PhD thesis



1 —
Generating a CNOT gate

single qubit gate two qubit operation single qubit gate
1 _ 1 —— 1| — .
CNOT:—\/E{ o,®0, +lo,®0, ﬁ o,®0,+1 0,0, \/E( o,®o, +lo,®o,
(i 1 0 0] 0 1[1+i 0 0 0 |
11100 0 0 1+1i O 0
22|00 i1 1 0 0 -1+i 0
0 0 1 1 —I 110 0 0 -1+i
(1 0 0 0]
~1-if0 1. 0 0
V2[00 0 1
0 01 0

 We can make a CNOT with two single qubit operations (X and Z)
along with a single two qubit operation ZX

Rigetti: PhD Thesis
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Hamiltonian for two coupled qubits

« Hamiltonian for two coupled qubits, each with an RF drive perturbation
H = %hwlaf +V, Cos(a)lrft +¢1)01X +%ha)2022 +V, Cos(a);t +¢2)0';‘ +%ha)xxc71x ® o,

 If V,=0, and we drive the first qubit at the resonance frequency of the
second, we have the cross-resonance condition « =,
« After multiple transformations and making the rotating wave approximation,
this can be expressed
off V,o

1 .
H" =Zhw; (cosgol ®c, +singo; ®c)), off = =
2 XX ( ¢1 1 2 ¢1 1 2) XX Zh(a)z—a)l)

« When & t=r/2 this implements a ZX gate, and along with two single qubit
gates this enables the realization of a CNOT



Cross-resonant coupling
* Frequency switches on coupling

« Amplitude controls the gate speed
 Phase determines the two-qubit gate
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Rigetti and Devoret
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Example IBM Architecture

Kandala et al.
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