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• SQUID: Tunable nonlinear inductance
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• Entangled transmons and controlled gates
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(Subset of) Requirements for Quantum Computer

• Physical system with two uniquely addressable states
• Ability to implement arbitrary rotations on the Bloch sphere
• Ability to measure the state of a cubit
• Ability to entangle two qubits



Qubit possibility: LC Resonant Circuits?
• In classical, linear circuit theory, the natural 

solution for the current is

• The current can have any amplitude, independent 
of the frequency

• Energy is stored alternately in the electric field of 
the capacitor and the magnetic field of the 
inductor, and can have any value

• In reality, the stored energy is quantized
• Could we use two of these states for a qubit, say 

n=0 and n=1? 
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Nonlinear LC Circuits
• Problem: energy difference between 0,1 is the 

same as energy difference between all other states 
n,n+1
– No way to address specific states

• Solution: if either L or C were nonlinear (i.e., their 
values depended on the magnitude of the current or 
voltage), then the energy levels would no longer be 
equally spaced!
– If the energy difference between n=0 and n=1 was 

different from the energy difference from all other states, 
we can selectively address this particular transition by 
tuning the frequency of the applied excitation

Graphic: Clarke & Wilhelm

Graphic: http://hyperphysics.phy-
astr.gsu.edu/hbase/quantum/hosc.html 



RF Frequency
• The fact that we are talking about circuits suggests we are 

talking about RF rather than optical frequencies!
• Problem: any physical mass at finite temperature will emit 

electromagnetic radiation that depends on its temperature 
(Black body radiation)
– We want the energy difference between qubit states to be large 

compared to thermal radiation
– Highest frequency for widespread, economical instrumentation ~ 6 

GHz (owing, e.g., to WIFI, etc.)
– From kT=hf, the temperature corresponding to 6 GHz is 0.29K
– Operating temperature must be much less than 0.3K!

• Solution: IBM Q systems operate at a temperature of 
about 15 mK using dilution refrigeration

Graphic: Wikipedia



Superconductivity

• At such low temperatures, metals such as Al and Nb become 
superconductors
– At low temperatures, an attractive force between electrons appears
– When this force gets sufficiently strong compared to thermal vibrations, 

electrons bind together into “Cooper pairs” with spin 1 and charge 2q
– Cooper pairs form a macroscopic quantum state enabling charge to move 

without scattering or loss, resulting in superconductivity
• Makes it possible to make extremely low-loss RF transmission 

lines
• Makes it possible to realize a nonlinear inductor using a 

Josephson junction



A note to Physicists: Cooper Pairs and Superconductivity
• Spin ½ particles are “Fermions”

– Fermions obey the Pauli exclusion principle: no two can be in the same state
– Electrons are Fermions

• Spin 1 particles are “Bosons”
– Bosons do not obey the Pauli exclusion principle: you can have as many in a state as 

you want
– Photons are Bosons

• In a superconductor, an effective attractive interaction between electrons 
causes them to be loosely bound together and act like a single spin 1 
particle: “Cooper Pair”

• Since Cooper pairs are spin 1, they act like Bosons, and you can have 
multiple Cooper pairs in the same state

• All of the Cooper pairs in a macroscopic sample can be in the same 
coherent state



Cooper Pairs are the result of the Electron-Phonon 
interaction in the theory of Bardeen, Cooper, and 
Schreifer (BCS Theory)
• Electrons normally repel one 

another, but are attracted to 
ions in the crystal lattice

• If the ions are pulled slightly 
toward an electron, from a 
distance it can appear as 
though there is a net positive 
charge, attracting another 
electron

Image from Quora



Josephson tunnel junction

• Two superconductors separated by a thin insulating layer
• Wave functions for superconducting Cooper pairs decay exponentially 

in the insulating layer
• If the layer is thin enough to allow appreciable tunneling, then phases 

are no longer independent but are related to each other through the 
size of the tunneling current

Graphic: Ph.D. thesis: Vratislav Michal
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Josephson Junction as nonlinear inductor

• Effective inductance depends on the 
current

• Looks like a non-linear inductor: origin of 
anharmonicity: spacing between energy 
levels is not the same
– Enables the individual addressing of a single 

pair of states
– In contrast, in a linear circuit, all states are 

equally spaced
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Superconducting Quantum Interference Device (SQUID)
• Parallel Josephson Junctions
• Magnetic field induces circulating current
• Simple analysis: neglect inductance of loop, assume both 

JJs are identical

• The second equation comes from integrating the 
canonical momentum around the loop (See e.g., Van 
Duzer & Turner)

• If the total current is zero:
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• Thus applying a magnetic 
field will induce a current, 
and consequently tune the 
inductance



Transmon

• Adds extra capacitance by adding λ/20 
transmission lines to either side of a pair 
of Josephson Junctions forming a SQUID
– Extra capacitance reduces noise from charge 

fluctuations
– Resonant frequency determined by JJ 

inductance and shunting capacitance
– SQUID allows flux tuning

• A Single Josephson Junction can be 
used for a fixed-frequency qubit

Koch, et al (not to scale)



Transmon Designs

Chow, PhD Thesis
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Coupling to a Transmon

• Co-planar microstrip resonator formed 
by gaps in center conductor

• Important to properly choose resonator 
frequency with respect to transmon
frequency (more to come)

• Control is achieved by injecting an RF 
signal from one end

• Readout is achieved by looking at 
either the transmitted or reflected 
signal

Blais, et al



Rabi Oscillations



Rabi Oscillations
• When a two-level system is coupled to a driving field at precisely 

the frequency corresponding to the energy difference between 
the states, the system will oscillate between the two states at the 
Rabi frequency
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Schrodinger Equation

• H is an expression for the total energy of the system (kinetic + 
potential) and is called the Hamiltonian

• For two orthogonal states:

• What if we introduce a perturbation that weakly couples states 1 
& 2?
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Schrodinger Equation for 2x2 coupled system

• This can be written
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Formulations of Quantum Mechanics
• “Schrodinger Picture:” all time dependence is in the wave 

function or state vector
• “Heisenberg Picture:” all time dependence is in the Hamiltonian 

operator
• “Interaction Picture:” hybrid in which some time dependence is in 

both the operator and the state vector
– Particularly useful when considering a small perturbation to a solved 

system: express solution to perturbed system in terms of solutions to the 
unperturbed system



Interaction Picture
• Let us express the Hamiltonian as a sum of two terms, the larger of which is 

time independent and for which solutions are known, and a smaller 
perturbation that contains all of the time dependence:

• In the Schrodinger picture:
• The transformation for the state vector into the Interaction picture:

• Equation of motion:

• Only depends on time-dependent perturbation:
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Solution to Equation of Motion
• Construct an interaction picture solution by adding up eigenstates of the 

unperturbed Hamiltonian but with time-dependent coefficients:

• Substitute into equation of motion:
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Application to 2-Level System
• Recall:
• Choose zero of energy as the average, and V caused by sinusoidal RF 

signal:

• Equations of motion                         become:
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Solution in the Rotating Wave Approximation
• Assume the energy associated with the RF frequency is close to the 

transition energy between the two states:
• Then keep only the low-frequency components to the solution (Rotating 

Wave Approximation):

• Substituting the first equation into the second gives a second-order Diff. 
Equation for c1:

• If the system starts off in state 1, then it is easily verified that the solution is

21 21,    rfω ω ω= + ∆ ∆ 

( )

( )

21

21

0 0
1 2 2

0 0
2 1 1

2 2

2 2

rf

rf

i t i i t i

i t i i t i

V Vi c e c e c

V Vi c e c e c

ω ω φ φ

ω ω φ φ

− + ∆ +

− − − − ∆ −

= =

= =







2
0

1 1 1 0
2
Vc i c c − ∆ + = 

 
 



( )

( ) ( )

/2
1

/2
2

0

( ) cos / 2

2( ) cos / 2 sin / 2
2 2

i

i i

c t Ae t

Ac t i e i t t
V

φ

∆

− ∆ −

= Ω

∆ Ω = Ω − Ω 
 



( )( )

2
2 0

1/22 2 2
1 2 01    1 /

V

c c A V
−

 Ω = ∆ +  
 

+ = ⇒ = + ∆







Driving at Resonance: Rabi Oscillations
• If the RF driving frequency corresponds to the energy difference between the two states, then

• The coefficients then become

• Let state 1 correspond to the ground state, and state 2 to the excited state. The probability of 
finding the system in each state is given by 
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Realizing Gates using Rabi Oscillations
• Recall that when driven at resonance

• “π-pulse”:              inverts the state
• “π/2-pulse”:                creates equal superposition of states 
• Key point: you can flip a state or create a superposition state by 

controlling the pulse length & controlling the phase of the 
excitation

• X gate: pi-pulse with 
• Y gate: pi-pulse with 
• Hadamard gate: pi/2-pulse with
• Z gate: Rotations around the z axis can be accomplished simply 

by resetting the phase reference of the RF drive! Result: zero time 
and zero error
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Coupling to a Transmon

• Co-planar microstrip resonator formed 
by gaps in center conductor

• Important to properly choose resonator 
frequency with respect to transmon
frequency (more to come)

• Control is achieved by injecting an RF 
signal from one end

• Readout is achieved by looking at 
either the transmitted or reflected 
signal

Blais, et al



Control and Read-out
• When the microstrip resonator is detuned from the transmon frequency, interaction with the 

transmon splits the resonator response into two modes, depending on the transmon state
• Sending in a pulse near ωr enables you to read-out the state either from the phase, or the 

amplitude
• Sending in a pulse detuned from the microstrip resonator but tuned to the qubit frequency 

rotates the state, but does not make a measurement (there is no information about the state 
in the reflected signal, the resonator is so far off resonance)

Blais, et al



Control Pulse simulation

• Control signal turned on for 7 
pi pulses then turned off

• The state rotates between 
the excited and ground states

• The cavity photon level is 
small since the cavity is 
detuned from resonance

Blais, et al



RF Electronics

• Cooled attenuators keep room 
temperature noise from the qubit
– But this means you must send a very 

strong signal!
• Similarly, cooled circulators keep 

room temperature noise from the 
qubit without attenuating the signal

Chow, PhD Thesis



Entangling Two Qubits



Entangling two qubits with a quantum bus

Graphic: Chow PhD thesis

• “Dispersive coupling”: coplanar 
waveguide resonator detuned from 
either qubit frequency



Generating a CNOT gate

• We can make a CNOT with two single qubit operations (X and Z) 
along with a single two qubit operation ZX
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Rigetti: PhD Thesis



Hamiltonian for two coupled qubits
• Hamiltonian for two coupled qubits, each with an RF drive perturbation

• If V2=0, and we drive the first qubit at the resonance frequency of the 
second, we have the cross-resonance condition

• After multiple transformations and making the rotating wave approximation, 
this can be expressed

• When                  this implements a ZX gate, and along with two single qubit 
gates this enables the realization of a CNOT
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Cross-resonant coupling
• Frequency switches on coupling
• Amplitude controls the gate speed
• Phase determines the two-qubit gate

Rigetti and Devoret



Example IBM Architecture

Kandala et al.


	Principal Concepts behind IBM Q�D. Stancil, Quantum Computing CSC591/ECE592, 24 Sept. 2018
	Outline
	(Subset of) Requirements for Quantum Computer
	Qubit possibility: LC Resonant Circuits?
	Nonlinear LC Circuits
	RF Frequency
	Superconductivity
	A note to Physicists: Cooper Pairs and Superconductivity
	Cooper Pairs are the result of the Electron-Phonon interaction in the theory of Bardeen, Cooper, and Schreifer (BCS Theory)
	Josephson tunnel junction
	Josephson Junction as nonlinear inductor
	Superconducting Quantum Interference Device (SQUID)
	Transmon
	Transmon Designs
	Coupling to a Transmon
	Rabi Oscillations
	Rabi Oscillations
	Schrodinger Equation
	Schrodinger Equation for 2x2 coupled system
	Formulations of Quantum Mechanics
	Interaction Picture
	Solution to Equation of Motion
	Application to 2-Level System
	Solution in the Rotating Wave Approximation
	Driving at Resonance: Rabi Oscillations
	Realizing Gates using Rabi Oscillations
	Coupling to a Transmon
	Control and Read-out
	Control Pulse simulation
	RF Electronics
	Entangling Two Qubits
	Entangling two qubits with a quantum bus
	Generating a CNOT gate
	Hamiltonian for two coupled qubits
	Cross-resonant coupling
	Example IBM Architecture

