
1/12

A Framework for Parallelizing Load/Stores on Embedded
Processors

Xiaotong Zhuang
Georgia Institute of Technology

College of Computing
801 Atlantic Drive

Atlanta, GA, 30332-0280
xt2000@cc.gatech.edu

Santosh Pande
Georgia Institute of

Technology
College of Computing

801 Atlantic Drive
Atlanta, GA, 30332-0280
santosh@cc.gatech.edu

John S. Greenland Jr.
Green Hills Software, Inc.

Advanced products
30 W. Sola St.

Santa Barbara, CA 93101
jsg@ghs.com

Abstract
Many modern embedded processors (esp. DSPs)

support partitioned memory banks (also called X-Y
memory or dual bank memory) along with parallel
load/store instructions to achieve code density and/or
performance. In order to effectively utilize the parallel
load/store instructions, the compiler must partition the
memory resident values into X or Y bank. This paper gives
a post-register allocation solution to merge the generated
load/store instructions into their parallel counter-parts.
Simultaneously, our framework performs allocation of
values to X or Y memory banks.

We first remove as many load/stores and register-
register moves through an excellent iterated coalescing
based register allocator by Appel and George[14]. We
then attempt to maximally parallelize the generated
load/stores using a multi-pass approach with minimal
growth in terms of memory requirements. The first phase of
our approach attempts the merger of load stores without
replication of values in memory. We model this problem in
terms of a graph coloring problem in which each value is
colored X or Y. We then construct a Motion Scheduling
Graph (MSG) based on the range of motion for each
load/store instruction. MSG reflects potential instructions
which could be merged. We propose a notion of pseudo-
fixed boundaries so that the load/store movement is
minimally affected by register dependencies. We prove that
the coloring problem for MSG is NP-complete. We then
propose a heuristic solution, which minimally replicates
load/stores on different control flow paths if necessary.
Finally, the remaining load/stores are tackled by register
rematerialization and local conflicts are eliminated.
Registers are re-assigned to create motion ranges if
opportunities are found for merger which are hindered by
local assignment of registers. We show that our framework
results in parallelization of a large number of load/stores
without much growth in data and code segments.

1. Introduction
Advances in hardware design have greatly speeded up the

microprocessors, however, low memory bandwidth and high
latency remain major bottlenecks for modern systems. This is
due to the relatively slow progress in memory design
compared to the CPU design. Techniques to bridge this gap
such as larger, faster, multi-level caches, speculative loads,
pre-fetching attempt to keep the processors busy.

Recently, some processor designers (esp. in the DSP area)
have developed special microarchitectural features and
instructions to improve the effective bandwidth and memory
access speed. These instructions can access memory faster by
performing the loads and stores in parallel on partitioned
memory banks using parallel data and address buses.
Designers for embedded DSP chips or network processors
prefer such techniques over more complicated hardware
mechanisms involving, pre-fetching or speculation to simplify
processor design with low cost. Examples of processors
which support partitioned memory architecture with parallel
load/stores include the Motorola DSP56000 series, NEC
77016, SONY pDSP, Analog Devices ADSP-210x, Starcore
SC140 processor core, etc. For example, in Sony pDSP
processor, an instruction such as PLDXY r1, @a, r2, @b can
load variables a and b from memory into registers r1 and r2
simultaneously. To achieve this, the compiler must place a and
b into different memory banks. This is a different architectural
solution than certain SIMD type of instructions which need a
and b to be next to each other in memory as well as r1-r2
needs to be a register pair (and not arbitrary set of registers).
In the above PLDXY instruction, r1, r2 can be any two
registers and the only restriction on variables a and b is that
they must be allocated in different memory partitions (called
X-Y partitions commonly).

To solve the problem of maximally generating parallel
load/stores instructions (such as PLDXY) many approaches
are possible at different stages of compilation. In this work,
we propose a post-pass solution. We attempt to maximally
combine loads and stores to generate parallel load/store
instructions by undertaking a memory placement of register
values after code is generated. We undertake a post-pass

2/12

solution to capture all the load/stores; on an embedded
processor with limited number of registers, a number of
load/stores result due to spill values which we need to capture
after physical registers are allocated. We first remove as many
spills and register-register moves as possible by using an
excellent iterated register coalescing allocator due to Appel
and George[14] and then invoke our phase. Generation of
parallel load/stores could be driven either by a desire to
improve code density and reduce code size or by a desire to
improve performance. In our case, we take a view of the
problem that attempts to maximally improve performance by
minimally increasing the sizes of data and code segments. In
order to improve the effectiveness of our post-pass approach,
our framework undertakes the following: First, in order to
circumvent the limitation on motion of load/stores involved in
any post-pass approach due to register dependencies we
introduce a concept of pseudo-fixed boundaries which
maximize the range of motion. We also perform local register
re-materialization to remove certain limitations on motion to
enable better motion. Secondly, in order to minimize the
growth of data and code segments, we undertake a systematic
approach. We first merge load/stores without any instruction
replication; only the remaining load/stores are then considered
for replication without replicating any value (ie, each value
remains assigned only to X or Y memory but not both). For
the remaining load/stores then we iteratively perform value
replication followed by instruction replication stopping when
no more load/stores can be merged. We thus pay for code and
data segment growth on a demand driven basis. Our results
show the code-size increase is within tolerable range.

Our solution also deals with irregularities of the DSP
processors. The Instruction Set Architecture of our target
chip—the SONY pDSP is non-orthogonal, which means only
certain registers could be used within certain instructions. We
summarize them as the following 3 ISA restrictions:
• Only register d0 to d3 can be used in the parallel

load/store instructions. Other registers can not be used
due to encoding constraints (only 2 bits are available for
designating a register). This prompts us to perform re-
assignment at the point of generation of parallel
load/store. We use re-materilization as illustrated later to
free the desired register.

• Registers in a parallel load/store instruction cannot be the
same.

• Only PLDST (load/store), PSTLD (Store/Load),
PLDLD(Load/Load) are available. No PSTST
(Store/Store) is avalailable.
This paper is organized as follows. Section 2 describes

the overview of the approach, section 3 presents the details of
the framework. In section 4 we show performance evaluation
results. Section 5 talks about related work, and section 6
concludes our paper.

2. Overview
Our framework for maximally parallelizing load/stores with

minimal data and code segment growth consists of multiple
phases. Figure 1 shows the overall approach.

Determine the range of motion

Merge without replication

LD/ST replication

variable duplication

Conflict elimination

Merge

Conflict elimination

Merge

B

C

A

Figure 1. Post-pass phases
We first determine the range of motion of each load/store

instructions and determine movable boundaries. We then
attempt to parallelize the load/stores without any value or
instruction duplication. The third stage attempts to perform
duplication only when there is a benefit – that it examines the
remaining load/stores and determines those which when
duplicated could be combined. After a load/store is duplicated,
first conflicts are resolved and then a merger is attempted. To
capture the secondary effects of load/store duplication, we
iterate until no more opportunities left. In the last stage, we
merge the remaining load/store through the duplication of
variables. Variable duplication inserts extra stores to put
variables in both banks, however it creates new opportunities
to merge the loads since the variable is available from both
banks. In an iterative manner, such opportunities are
exhausted. Finally, value duplication might open opportunities
for instruction duplication. We then go back and do
instruction duplication and repeat until convergence. The
phase ordering of first attempting instruction duplication and
then value duplication is motivated by the fact that instruction
duplication leads to growth only in code segment as compared
to value duplication which leads to growth in both data and
code segments and is more expensive.

2.1 Assumptions
We make the following assumptions before the analysis

of the problem.
• This is a post-pass approach and captures full spills.

However, it does not have access to higher level
information about arrays subscripts and therefore can not
do intra-array data layout. Such tradeoffs are quite
common and in fact a post-pass approach to capture all
the spills was in fact also followed in [19]. We use one
of the best allocators to remove as much spill code as
possible first and then optimize the rest.

• Our goal is to minimize execution time, even at the
expense of larger code size. We carefully control code
growth by first doing instruction duplication and then
value duplication.

• We account for ISA constraints due to encoding of
parallel load/stores specializing our framework to a

3/12

particular ISA during coloring pass of the framework.
These ISA restrictions are discussed earlier.

• We perform cloning of functions followed by inlining for
allowing more opportunities to separately optimize each
call. Currently we only handle non-recursive calls.

• Our framework is global (intra-procedural) and is not just
limited to basic blocks unlike [20].

2.2 Basic concepts
2.2.1 Classification of memory access instructions

If we identify the memory location as a variable, then the
Store instruction identifies a definition of the variable (memory
location) and the Load instruction identifies a use of the variable
(memory location). For example:

ST [addr], r identifies the definition of a memory address
pointed by register addr.

LD [main.x], r identifies the use of a memory address at
main.x, which is an immediate operand.

We classify the memory access operations into two
categories: when only one operand is used in the address
expression, we call it Simple load/store or Type I load/store,
like LD [main.x], r and ST [addr], r. In the latter case, alias
(actual symbol) analysis will be performed in an attempt to
determine the actual symbol addr points to.

Base-Offset load/store or Type II load/store is written as
load/store [rbase+roffset], r. The token rbase and roffset can be either
immediate operand or register operand, but at least one of
them should be register operand. So, Type II load/store
instructions contain at least 2 register operands. Normally, it
is used to access an array or a structure.

DSP instruction sets only contain very limited number of
memory addressing modes. For our experiments on SONY
pDSP processor, all the memory operations are either Type I
or Type II load/store. Our framework can also be applied to
other type of load/store instructions as long as the
dependencies between registers are considered.
2.2.2 Dependencies

There are two possible dependence conflicts for
load/store instructions.

Address Conflicts or Addr Conflicts. Assuming the
memory location is a variable, then LD instructions (use of the
variable) can not be moved before the ST instructions (the
definition of the variable). Address Conflicts only happen
among memory access instructions targeting the same memory
location.

Register Conflicts or r Conflicts. The dependencies for
each register operands in the instruction should not be violated.
Register conflicts can happen between memory access
instructions and non-memory access instructions.

For example, in Figure 2, the LD instruction cannot be
moved beyond the ST instruction due to the Address Conflict.
It also cannot be moved below x=r1 due to the Register
Conflict.

1 ST [addr1], r2
2
3 LD [addr1], r1
4 x=r1

Figure 2. Two types of conflicts.

We introduce a notion of movable boundaries to make
motion ranges unconstrained as explained in section 5.
2.2.3 Webs and Value Separation

In order to separate memory references which can be
independently considered for allocation purposes, we use a
concept of web of definitions and uses. web [9] is defined as
the maximal union of du-chains such that, for each definition
d and use u, either u is in the du-chain of d or there exist
d=d0,u0…..,dn,un=u, such that, for each i, ui is in the du-chains
of both di and di+1. Each web builds up a separate symbol
group, i.e one must bind all the definitions and uses within a
web to a single memory location. In this manner, we are able
to achieve effective value separation at different program
points even for a given temporary. In short, variables in
different symbol groups can be put in different banks—they
are treated as different values or variables.

Webs are assumed to be inseparable. Splitting a web
could intuitively remove the restriction that variables on the
web must be put into the same bank; however, additional
load/store must be inserted in the join points of the web so
that the contents of different parts of the web can be consistent.
Web splitting may be profitable when the combined
load/stores outnumber newly inserted load/stores. However,
from our observation as illustrated in section 8, the size of the
web (number of nodes on the web) is generally too small to
meet this requirement and splitting only degrades performance.
2.2.4 Motion range

Motion range is defined as the interval between program
points where a load/store instruction can be legally moved. A
load/store instruction can move up and down obeying
dependencies. In our framework, non-load/store instructions
are assumed to be unmovable, while load/store instructions
can be moved. When non-load/store instruction defines the
boundary of motion range, it defines a fixed boundary which
is not movable. Difficulty comes when the boundary is
another load/store instruction. Since this kind of boundary will
be moving too, we call it a Movable Boundary, in contrast to
the boundary of non-load/store instruction, which is assumed
to be stationary. Special techniques are introduced in section 3
to solve the Movable Boundary Problem.
2.2.5 Motion Schedule Graph (MSG)

After the determination of motion range, a MSG (Motion
Schedule Graph) is built. It is an undirected graph with special
meanings for nodes and edges. MSG is defines as follows:
• Each load/store instance is a node of the MSG.
• An edge between two nodes tells us that they can be

possibly combined, i.e. they have overlapped motion
ranges where they could be moved and merged.

• load/stores (nodes) that belong to the same web form a
symbol group which is our unit of memory placement
(i.e., each symbol group is allocated either in X or Y
memory by our algorithm).

• Each symbol group is designated by a symbol node. A
symbol node can only be colored with two colors, which
is equivalent to the bank assignment of the memory
location associated with it.

4/12

• All the loads and stores within a given symbol node must
take place from the assigned memory bank and location.
load/store nodes in the same symbol group assume the
same color given to a symbol node.
Solving the MSG graph is to decide which edges should

be included for combining load/stores and to determine
coloring of the corresponding symbol node. Edge pruning is
done to decide on which load/stores should be combined
(please note that a given load could be potentially combined
with more than one other load or a store but eventually has to
be combined only with one – edge pruning allows us to
remove multiple edges incident on a given load or store
leaving only one which will be used for combining it). Note
that, all the edges left should be disjoint to each other and two
nodes on each edge should have different colors, which means
they are in different banks. These are the restrictions which
define the problem of combining load/stores and of placement
of values in memory banks.

The graph algorithm should thus give out a scheme of
node coloring and edge selection and try to maximize the
number of load/store pairs. The algorithm will also attempt to
replicate load/store instructions and/or underlying values to
maximize parallelization under the constraint of minimal code
and data segment growth.

3. Framework
An outline of our framework is as follows.

Input: the flowgraph of the generated code
Output: the flowgraph with merged LD/ST instructions.
Algorithm:
Load_store_identification();
Alias_analysis();
Build_webs();
Range_determination();
Graph_construction();
Graph_solving();
Conflict_resolution();

While(have_changes){
While (Ldst_duplication_profitable()){

Duplicate_Ldst();
Find_and_remove_conflicts();
Merge_ldst();

}
While (Var_duplication_profitable()){

Duplicate_var();
Find_and_remove_conflicts();
Merge_ldst();

}
}

Figure 3. Top-level procedures of the algorithm.
We now describe these phases in details.

3.1 Alias Analysis
We first identify load/stores and then perform alias

analysis to determine the association of a load/store with
memory location(s). If a load/store is aliased with multiple
memory locations, then we exclude the given load/store from
potentially combining it with other load/store. This is done
due to the following reason. If a multiply aliased load/store
were to be included, all the aliased memory locations must be
allocated to the same bank which would eliminate any
opportunities to optimize their load/stores through XY
placement. This is too much of a penalty over excluding that
specific load/store. We must however determine load/store
aliases to check if any other load/stores can be moved across.

For determining aliases of load/stores we use a simple
algorithm from [8].

3.2 Building webs
Once we select the load/stores to be included in our

analysis, we build webs to determine the value separation. As
pointed out earlier, the value separation gives us more control
over placement of values in memory than working on the
variables themselves. This is especially true for temporaries
which are recycled. Each web is found by undertaking a
transitive closure of du/ud chains [9]. One of the important
properties of the webs is that any motion of load/stores within
a web does not have any impact on the load/stores belonging
to another web. In other words, the web provides a safe
boundary for motion of load/stores within which obviates the
need for any analysis during motion.

3.3 Range Determination
Once webs are built, we determine the motion range for

all load/store instructions. If two load/store have overlapped
motion ranges, they will be linked by an edge in the graph
which means they can be combined. However, here we are
faced with an issue of fixed versus moving boundaries –
motion of a load/store could impact motion of others. Here is
an example.

1 MOV r1, 3
2 MOV r2, 2
3 ST [addr2], r1 (1)
4 ST [addr1], r2 (2)
5
6
7
8 LD [addr1], r1 (3)
9 MOV r1, 0

1 MOV r1, 3
2 MOV r2, 2
3
4
5 LD [addr1], r1 (3)
6 ST [addr2], r1 (1)
7 ST [addr1], r2 (2)
8
9 MOV r1,0

A B

Figure 4. The movable boundary problem.
In the figure above, instruction (1) has boundary of <2,7>

which signifies that the instruction can not be moved before
label 2 (register conflict) and can not be moved beyond label 7
(register conflict). Here label 2 is a fixed boundary since
instruction at label 1 is not a load/store and optimizer will not
attempt to move it; however, instruction at label 8 is a load
and might be moved by the optimizer. Thus, the boundary at
label 7 is a moving boundary. Similarly, instruction (2) has
boundaries <3,7> of which boundary at label 3 is fixed
(register conflict due to instruction at label 2) and boundary at
label 7 is moving (address conflict due to instruction at label
8). Instruction (3) has boundary <5,8> in which boundary at
label 5 is movable (address conflict) and one at label 8 is fixed
(register conflict). After motion of load/stores, in Fig.4.B, the
fixed boundaries remain unmodified but movable boundaries
could assume different values and thus one must update
boundaries and ranges for load/stores else illegal code (such as
shown in Fig.4.B) might result. However, updating boundaries
and edges might lead to non-convergence of the algorithm. In
our case, we solve the problem as explained in the following
section.
3.3.1 Simple load/store (Type I)

Consider the Type I load/store as explained in section 2.3.
We move all the Store instructions to the earliest places

5/12

(boundaries) without conflicts. Similarly, all Load instructions
are moved to the latest places without conflicts. Our first step
is to convert the moving boundary problem to a pseudo fixed-
boundary problem with constraints, so it can be solved as a
fixed boundary problem. Then we try to resolve the conflicts
after graph coloring. Noticeably, due to the constraints we put
on the graph, the solution we get from the graph is always
feasible and close to ideal solution of the problem. We show
in section 8 that the constraints only causes a loss of very few
merges.

We now define pseudo fixed boundaries for both loads
and stores as follows.
Pseudo fixed-boundary for store (ST)

We move a store (ST) as early as possible assuming other
instructions to be fixed. The pseudo fixed upper boundary is
the current program point of the store (ST) which has been
moved earliest. The stores (STs) can therefore be only moved
down until we run into a conflict.
Pseudo fixed-boundary for load (LD)

We move a load (LD) as late as possible assuming other
instructions to be fixed. The pseudo fixed upper boundary is
the current program point of the load (LD) which has been
moved latest. The loads (LDs) can therefore be only moved
up until we run into a conflict.

These pseudo boundaries only put constraints on motion
of load/stores. Note that, in this step, only the motion range is
determined. No actual move of the load/store happens. MSG
is constructed after the motion ranges are determined for all
load/stores. As discussed earlier, in a MSG, each load/store
instruction is represented by a node and nodes in the same
symbol group (accessing the same memory location) are
encompassed as a group. The graph below shows a typical
MSG.

Figure 5. A typical MSG.
Although pseudo fixed boundaries decide the range of

motion, they can not preclude certain types of conflicts which
must be resolved. In other words, motion within these
boundaries could lead to conflicts as discussed below.

In the following graphs, the notation addr D denotes the
definition of address addr. Similarly, the addr U denotes the
use of address addr. The notation r D denotes the definition
of register r and r U denotes the use of register r.

Due to the motion of load/stores, sometimes address
conflicts can occur. The address conflicts are always
resolvable as shown below.

Figure 6.A shows an address conflict where the use of
Addr1 is moved above the definition of Addr1, so it could be
combined with Addr2. The definition of Addr1 is supposed to
be combined with Addr3. This results in use of Addr1 before
the definition of Addr1, violating the semantics. However, as

Addr1 U

Addr1 D

Addr2 D/U

Addr3 D/U

Addr1 D

Addr1 U

A B

Addr1 D

Addr1 U

Addr2 D/U

Addr3 D/U

Addr1 D

Addr1 U

Figure 6. Address conflicts and resolution.
shown in figure 6.B, one could always exchange the Addr2
and Addr3 parts and combine Addr1 D with Addr2 and Addr1
U with Addr3.

r1 D

r1 U r4 D/U

r3 D/U

A B

r1 U

r1 D

r1 U

r1 D r4 D/U

r3 D/U

r1 U

r1 D

X

YX

XY

X

Y

Y

Figure 7. Register conflicts and resolution.
Some other problems might happen due to register

conflicts. There are two cases for register conflicts.
Figure 7 illustrates a kind of register conflict, if the

memory bank of both instructions using r1 happen to be X.
We can resolve the conflict in a way similar to the address
conflict earlier, by exchanging the position of the two
instructions.

We now discuss another case of register conflicts. In this
case (Figure 8), due to the attempt to combine r1 U and r4
D/U, r1 D and r3 D/U, r1 D might be moved before r1 U
causing the conflict. However, in this case, we cannot
combine r1 D with r4 D/U, because they are in the same bank.
Same is the case of r1 U and r3 D/U. Thus, we cannot resolve
the conflict as in the first case. Similarly, we cannot combine
r1 U and r1 D. The only option in this case is to combine r4
D/U and R3 D/U and this is possible only if they have
overlapping motion ranges. If this doesn’t hold, we have to
give up the merge. r1 U and r1 D always share part of the
motion range, however, they cannot be merged because of the
same register (r1)used. We first try to get a free register at the
point we want to merge r1 U and r1 D so that one of the r1 can
be replaced by the free register and then we do a copy to
return the value to r1. In case of no free register is available,
our algorithm will check all the live registers to find one that
can be rematerialized. We temporally use this register and
reconstruct its contents after the parallel load/store instruction.

r1 D

r1 U r4 D/U

r3 D/U

A B

r1 Dr1 U

r4 D/U r3 D/U

X X Y

Y

Y

X Y X

Figure 8. Another kind of register conflict
Our experiments show the address resolution happens

rarely and almost all of them can be resolved easily.
We give an example as follows to illustrate the address

and register resolution.

6/12

A B

(1) ST a, r1

(2) ST c, r3

(3) ST d, r5

(4) Mov r1,1

(5) Mov r2,2

(6) Mov r5,3

(7) LD d, r6

(8) LD b, r3

(9) LD e, r2

(1) (2) (3) (7) (8) (9)

Motion range

(2) ST c, r3---(9)LD e,r2

(1) ST a, r1---(7)LD d,r6

(8) LD b,r3---(3)ST d,r5

(4) Mov r1,1

(5) Mov r2,2

(6) Mov r5,3

Bank assignments:
a—x, b—x, c—x, d—y, e—y

(2) ST c, r3---(9)LD e,r2

(1) ST a, r1---(3)ST d,r5

(8) LD b,r3---(7)ST d,r6

(4) Mov r1,1

(5) Mov r2,2

(6) Mov r5,3

C D
(8) LD b, r3---(9)LD e,r2

(1) ST a, r1---(3)ST d,r5

(2) ST c,r3---(7)ST d,r6

(4) Mov r1,1

(5) Mov r2,2

(6) Mov r5,3

Figure 9. Example for address/register resolution.
The example shows a 9-instruction assembly code

segment. In figure 9.A, we list the motion range of each
memory instruction. As noted earlier the motion ranges put
constraints on motion and thus obeying these constraints we
could move and merge the instructions as in figure 9.B
without any violation of the motion ranges of the instructions.
However, due to the movable boundary problem, instruction
(7) has been moved above instruction (3), which is an address
conflict and instruction (8) has been moved above instruction
(2), which is a register conflict. In figure 9.C, the address
conflict is resolved by exchanging instruction (3) and (7). In
figure 9.D, the register conflict is resolved by exchanging
instruction (2) and (8). The resulting code is now legal.
3.3.2 Base-offset registers

Base-offset load/store instructions have more registers,
however, we only need to consider more register conflicts
with the same approaches applicable as stated in section 3.3.1.
3.3.3 Solving the two-coloring problem on MSG

After the previous procedures, we now have MSG ready
for coloring. To solve the problem, both the colors (bank) of
each symbol group and the maximal node pairs should be
decided. In other words, our goal is to find the maximal node
pairs by assigning proper colors to each symbol group. Note
that, after assigning color to each symbol group (node), we
must give out a schedule of which edges should be used for
merging.

We have proved the MSG solving is a NP-complete
problem. Please refer to Appendix A for the full proof.
3.3.4 Heuristic Solution

To get an approximate solution, only heuristic algorithms
can be used. Several different approaches will be considered
in this section.

First, we want to show that, if bank assignments are
confined to the symbol groups without splitting, the optimal
solution of finding maximal number of pairs can be obtained
in polynomial time. Suppose that, there are N symbol groups.
Some symbol groups are assigned memory bank X and others
are in memory bank Y.

Symbol Group 1

Symbol Group 3

Source node
Sink node

n11

n12

n13

n31

n32

n33

n21

n22

n23

n41

n42

n43

np1

np2

np3

nq1

nq2

nq3

Symbol Group p

Symbol Group 2

Symbol Group 4

Symbol Group q

Figure 10. Convert MSG to maximal flow graph after
bank assignment.

We prove that the problem of selecting maximal number
of combinable edges given the colored graph is polynomial
time solvable due to its reduction to the maximal flow
problem as shown below.

The solution can be found by connecting each node in a
symbol group assigned X bank to the source node and each
node in a symbol group assigned Y bank to the sink node. An
original edge remains if it connects two nodes in different
banks, otherwise the edge will be deleted. Besides, all the
edges in the graph are given a capacity of 1. An example
graph is shown in figure 10. After determining the maximal
flow on the graph, part of the edges will be occupied. We can
see the edges in the middle that have flow are disjoint,
because the nodes on the left only have one input edge and the
nodes on the right only have one output edge. On the other
hand, the overall flow is maximal in a sense that the number
of pairs is maximized.

The complexity of solving the maximal flow problem is
|V|3[7], however, as a special case, this problem can be solved
in |V|2 time, where |V| is the number of nodes in the graph.

Obviously, a O(|V|22n) exhaustive searching algorithm can
get the optimal solution, where n is the number of symbol
groups (we do the coloring on n symbol groups first and then
do the maximal flow on the colored graph, which leads to this
complexity. Compared to [16], our complexity is greatly
reduced. Actually, for all the DSPstone programs, the
exhaustive searching can finish the compilation within an
affordable time period. However, it fails for large-sized
programs prompting heuristic solutions.

Our implementation picks simulated annealing algorithm
[6] to find the optimal bank assignments. It has been used in
various combinatorial optimization problems. Normally, the
longer time it runs, the better solution will come out. In the
worst case, finding the optimal value requires the same
amount of time as the exhaustive searching.

7/12

The heuristic algorithm searches the solution by gradually
adding the nodes to two determined sets (for X bank and Y
bank). During each step, we pick the symbol group with
maximal connectivity for the purposes of coloring and
therefore uses a greedy strategy to do coloring. This algorithm
is quite fast. Figure 11 gives the complete algorithm. In the
results section we show that our heuristic approach gives a
comparable solution to exhaustive approach with far superior
compilation times. Moreoever, by performing some of the
optimizations of code and data duplication discussed below,
we are able to outperform the exhaustive approach which do
not perform duplication in some cases.

Denote E as the set of all symbol groups
Let Set DETX={Sx} where Sx is the symbol group with all the nodes
that must be put in X bank memory.
Let Set DETY={Sy} where Sy is the symbol group with all the nodes
that must be put in Y bank memory.
Define the Cij as the number of edges between two symbol groups

While (E<>DETX ∪ DETY) do
For each Sk ∈ E-DETX ∪ DETY

Calculate �
∈

=
DETXS

kik

i

CCX and �
∈

=
DETXS

kik

i

CCY

End for
CX_max=max(CXk| Sk ∈ E-DETX ∪ DETY),
CY_max=max(CYk| Sk ∈ E-DETX ∪ DETY),

If (CX_max>CY_max)
Add the symbol group with CX_max to DETY

Else
Add the symbol group with CY_max to DETX

Endif
End while

Figure 11. Heuristic algorithm to determine the bank for
each symbol group.

3.4 Merge with duplication
Duplicating load/store across basic blocks can create new

opportunities of mergers. The load/stores should only be
moved to the successors/predecessors, where the reference is
live.

We further require that: (1) The motion range of ST
instruction is the EBB (Extended Basic Block) rooted from the
original basic block. (2) The motion range of LD instruction is
the reverse EBB rooted from the original place.

Basic Block 1

Basic Block 3

Basic Block 2

ST main.a, r6
Mov r3,r4
Mult r2,r3,r5

Add r1,r2,r3
Mov r1, r3
Mult r4,r2,r3

LD [addr0], r7

Figure 12. Merge with duplication.
Figure 12 shows that if the ST main.a, r6 instruction is

moved from Basic Block 1 to Basic Block 3, it will be
unnecessarily executed for the control flow going from Basic
Block 2 to Basic Block 3. Even if no side-effect occurs after
this kind of moving, control flow may frequently go from
Basic Block 2 to Basic Block 3. So, it’s potentially not

profitable to push ST outside EBB. Similarly, LD instructions
should only be moved within the reverse EBB.

To assure the motion is profitable, we make sure that for
each uncombined load/store, if pushed to at least one of its
live predecessors/successors (inside the EBB/reverse EBB)
allows it to be combined with some other instructions. In other
words, at least on one of the execution paths, the program
executes faster, while no slowdown occurs on the other paths.
In the above figure, we may choose to move the LD [addr0],r7
instruction upward to basic block 1 and also duplicate it at the
end of basic block 2.

3.5 Merge with variable duplication
Variable duplication is done to intentionally store some

variables into both memory banks so the LD instructions of
these variables can be combined with other load/store
instruction regardless their bank assignments. We must notice,
the duplication is not always profitable, because additional ST
instructions must be added to every ST on the web. Hopefully,
the extra ST instructions can be combined with other un-
combined instructions to reduce the cost. Our algorithm runs a
profitability determination procedure to decide whether the
variable duplication should be performed.

As a simple example, we illustrate how the variable
duplication is done in the following figure.

Basic Block 1

Basic Block 3

Basic Block 2

Basic Block 4A

LD main.b, r3
ST main.a, r2

ST main.a, r3

LD main.a, r4
ST main.d, r2

LD main.a, r5
ST main.c, r1

Basic Block 1

Basic Block 3

Basic Block 2

Basic Block 4
B

LD main.b, r3---ST main.ay,r2
ST main.ax, r2

ST main.ax, r3
ST main.ay, r3

LD main.ay, r4---ST main.d, r2LD main.ay, r5---ST main.c, r1

Figure 13. Variable duplication.
In figure 13.a, if all variables are in bank X after the

previous procedures, we will have no zero merger
opportunities for load/stores. Variable duplication will look at
the web of variable main.a. We can store main.a to bank Y as
well as to bank X (we should still keep the copy of main.a in
bank X, since it is preferred by the previous optimizations). In
this figure, we have two store instructions of main.a, so we
will add two store instructions which store main.a to a place in
Y bank memory. For distinction, we write main.ax and
main.ay as the two memory locations for the variable main.a.
This duplication is profitable, because the two instructions in
basic block 3 and 4 can now be merged. Although we must
introduce two stores in basic block 1 and 2, one of them can
be merged as well. Figure 13.b shows the resulting flow graph.

8/12

3.6 Local conflict elimination
If the register allocator tends to assign the same register

to the neighboring disjoint ranges, it could lead to a lot of
register conflicts hampering motion. To eliminate such
conflicts locally, we find those instructions with the
conflicting registers and check if they are rematerializable.
When a register can be freed and reconstructed after the merge,
the instruction is removed to increase motion ranges and
therefore more chances are created for the load/store
instructions around it. The following graph shows a simple
example doing local conflicts elimination.

Add r3, r1, r4
ST main.a, r2
Mov r2, r3
Mov r3, r5
LD main.b, r5

Mov r3, r5
LD main.b, r5-- ST main.a, r2
Add r2, r1, r4

Figure 14. Local conflict elimination.
The original code is listed on the left-side of figure 14.

The ST and LD instructions cannot be merged due to the
blocking Mov instructions. However, the value of r2 can be
rematerialized by adding r1 and r4 again. On the right side, the
assignment to r2 is delayed to the end so that the two
load/store instructions can be combined.

3.7 Global optimizations
We now discuss some enabling compiler optimizations to

increase the effectiveness of our approach.

3.8 Global and fixed-bank variables
For global variables, their banks can only be determined

once. After the bank is decided in one procedure, other
procedures will treat it as a fixed-bank variable. There are
other reasons we encounter fixed-bank variables, like pointers
passed as arguments, where the pointed data have already
been put in a memory bank.

Fixed-bank variables are easily incorporated into our
algorithm. In MSG, two special symbol groups are created.
One contains all the fixed-X-bank variables and the other
contains all the fixed-Y-bank variables and are excluded from
reassignment. The other parts of the algorithm remain
unchanged.

3.9 Global optimization through procedure
cloning

Our implementation does global optimization by cloning
procedures called by other procedures. When the parameters
passed to the callee are different for several callers, different
copies are created for each caller. This allows more
opportunities for combining load/stores for cloned copies of
procedures for different parameters passed at different call
sites. To speed up the MSG generation, we also inline these
procedure so that global optimization can be fulfilled at the
price of code growth.

4. Performance evaluation

4.1 Implementation
The algorithm has been implemented with the

SUIF/MACHSUIF compiler targeted to the SONY pDSP

architecture. A separate pass called xymerge is added after the
raga pass—a standard pass in machsuif which runs Appel &
George’s iterated register allocation algorithm [14]. Figure 15
shows the passes in Machsuif. The pass il2cfg changes the
instruction list to control flow graph, then we do the register
allocation and xymerge, the cfg is changed back to instruction
list and finally translate to assembly code.

il2cfg raga xymerge cfg2il fin m2a

Figure 15. Processing pipeline.
The SONY pDSP has two banks of memories which are

accessible through separate buses. Both X bus and Y bus are
all 24 bit wide. Indirect memory access must go through
address registers adr0 to adr7. As mentioned earlier, SONY
pDSP has three parallel memory instructions, namely pldld,
pldst, pstld. No pstst exists, so we cannot write to the two
banks at the same time. Two parallel memory operations can
work on different data register and arbitrary memory locations
as long as they are in separate banks. The pDSP ISA also
forbid the use of register d4 to d7 in parallel memory
instructions due to the bit limit in those instructions. We will
mark such kind of merge failure as “due to ISA limitations”.

We have tried both simulated annealing (SA) and the
other heuristic algorithms at point A (in figure1) to color the
MSG. We also report the results at point B and C. Test
programs are selected from DSPStone, Mediabench and
SPEC2000 (bzip2 and vpr) benchmark. These benchmark
programs contain lots of array operations; thus, a simple alias
analysis pass is performed in order to determine the symbols
associated with the memory locations pointed by the address
registers.

Table 1 lists the results for 10 benchmark programs after
the alias analysis pass. The first column shows the total
number of load/store instructions in the program, which is
after procedure cloning and inlining. We can see the register
allocation pass does a very good job by keeping the number of
load/stores small. For the SPEC vpr program, the number of
memory operation instructions is about 3000. Column 2 to 5
lists the distribution of those load/store instructions. The
address symbols are those actual variable symbols which need
to be determined through alias analysis. Column 6 shows the
determined symbols (the symbols which do not have multiple
aliases) after alias analysis and column 7 shows the percentage
of determined symbols over total number of load/store. On
average, about 94 percent of load/store can be determined
after alias analysis. In this version, we have implemented a
flow-sensitive alias analysis pass [8] on the generated code. It
works very effectively. Former experience with a poor alias
analysis pass (that only determined 63% of load/stores) shows
that the ratio of determined alias versus total load/stores has
great impacts on the performance of the xymerge pass,
because undecided load/store instruction not only reduce the
merge-rate of compiler, but also creates obstacle for the
motion of other load/store instructions since it is unsafe to
move other load/stores across those instructions whose aliases
are unknown.

Table 2 gives us some insights into where the merges
happen and several reasons for the merge failure. The results

9/12

are taken from point B. We classify the merges in two ways—
without-duplication versus with-duplication and LDLD versus
LDST. We can see most merges happen without duplication.
The distribution of LDLD instruction and LDST instruction is
justified by the fact that in most cases the LDs and STs are
close to each other, so LDST should outnumber LDLD. All
ST instructions must be combined in the form of LDST due to
the lack of STST instruction. Column 5 to 6 list the reasons
for failed merge. ISA failure is specific for the pDSP
architecture due to the address register limitation in parallel
memory instructions. Some of the failure happens when two
ST instructions need to be combined. This kind of failure
takes a big share among all the failures. It’s understandable
because STST instructions should occur as often as LDLD
instructions on average. The last column shows the frequency
of resolution invoked during the compilation. This number is
very low comparing to the number of load/store and merged
pairs.

Table 3 provides statistics for the MSG at point A. The
group number is the number of symbol groups, and multiple
nodes exist for each group. As shown by the edge number, the
MSG seems to be very sparse given the large number of nodes
in the graph. Interestingly, the number of edges is not quite
related to the number of nodes in the graph, and it also varies
greatly among different programs. Thus, largely, we can
conclude MSG is application specific. We also notice that
only a small amount of edges are finally selected to serve for
the parallel load/store instructions. Column 4 is the average
size of web in each program. They are typically small which
justifies our conclusion that splitting the web is generally not
profitable.

Table 4 lists the execution time for 9 of the benchmarks
(due to lack of needed library, we are unable to link and
execute the vpr benchmark) in different optimizing stages. The
first column is the number of cycles to execute the un-
modified program. Column 2 and 3 are the performance at
point A with the heuristic and SA algorithm. Column 4 and 5
separately show the cycles at point B and point C. The
speedup is in column 6. On average we achieve a 17%
speedup over the original one ranging from 5% to 43%. In fact,
in 4 out of 9 benchmarks we have a speedup over simulated
annealing which gives optimal solution. In one case the
performance is almost comparable. In other 4 cases, there’s a
slowdown (the positive numbers show speedup and the
negative numbers show slowdown).

Table 5 shows the compilation time of the various
methods. One can see that our method performs significantly
faster. Speedups range from 8 to 163 times with an average of
44 for the case of only instruction replication. For the case of
both value and instruction duplication, the speedups range
from 5 to 103 times with an average value of 28.

Table 6 shows the growth in code and data segments.
With only instruction replication, the code growth ranges from
1.5 to 14 percent with an average of 6.47 percent. In the case
of duplication with value and instructions, the growth in the
data and code segment ranges from 7.3 to 25.4 percent with an
average of 14.2 percent. This shows that significant growth in
data and code segment is incurred when value and instructions

are both replicated. This justifies our phase ordering of
attempting instruction replication first followed by instruction
and value duplication.

We would like to compare our approach first with
[17][18]. Their approach uses simulated annealing. As shown
in the above discussion, we achieve a performance
comparable or better than simulated annealing with far
superior compilation times and with minimal code growth.
This is achieved by our framework which systematically
attempts to parallelize load/stores by enhancing range of
motion followed by duplication of instructions followed by
duplication of values.

[20] shows a speedup in the range of 13 to 49 percent on
kernel benchmarks which are individual loops. Comparing to
them, we achieve a performance gain from 5 percent to 43
percent on full benchmarks with an average gain of 17 percent.
Moreover, their method attempts to undertake only a partial or
full data replication without attempting instruction replication
and suffers a rather large memory requirement growth. In our
approach, one can see that the minimal code growth happens
due to instruction replication and larger code growth happens
through value replication. Therefore, an approach relying only
on data replication suffers from the problem of memory
requirement growth. In short, our approach of first attempting
instruction replication and then data replication significantly
boosts performance with a limited code growth.

5. Related work
The work on storage allocation to optimize the load/stores

can be classified into SIMD type instructions which allow
fetching adjacent memory values into register pair and into
memory bank architectures which allow parallel load/stores
from different memory banks.

[1] talks about the coalescence of narrow loads into wide
loads by proper organization and alignment of the data. It
works on loop unrolling--reordering the loop body. Safety and
profitability are analyzed before memory access coalescence.
They also introduce dynamic analyses to handle aliasing and
alignment at runtime. Results show fairly good improvements
on some of the Motorola chips.

[2] proposes a hardware solution to add compiler-
controlled memory (CCM), which can be thought as the on-
chip memories on some new DSP chips. Their focus is to spill
value quickly to the on-chip memory area instead of cache.
This architecture can improve predictability of the program
behavior and reduce register pressure. Their compiler-
controlled memory is a separate memory from the main
memory. The CCM mechanism can be thought of providing a
fast temporary store under compiler control.

The memory bank model due to X-Y memories offers an
interesting architecture wherein restrictions of register pairs
and layouts in adjacent memory locations do not exist. Thus, it
allows more load/stores to be combined. There has been some
work on doing compiler optimizations for such architectures.
[18] discusses this problem and attempts to combine register
allocation and bank assignment. They have built a rather
complex model to incorporate many different constraints of
register allocation and memory placement. The resulting

10/12

model subsumes at least three NP-hard problems [18]. The
compilation time of their approach is very high making it
infeasible for a practical system. Their main goal is to reduce
code size in contrast to ours which is to maximize the speed.
We separate the register allocation and value placement
phases so that we can optimize them separately giving us more
control over optimizations for each of them. Combining
register allocation with X-Y merge increases the complexity of
problem. Moreover, it may not get good results compared to a
post-pass approach, which benefits a lot from an excellent
register allocator, which only generates very few spills.
Especially, for DSP chip with limited number of registers, a
substantial part of the load/store instructions are spill code. In
our approach, we focus on eliminating as many as load/stores
as possible through an excellent allocator built in Machsuif
[14], then concentrate on placement of values. In contrast with
them, we perform several optimizations such as increase in
range of motion, conflict resolution and finally minimal code
growth through instruction and value duplication.

R.Leuper and D.Kotte [17] proposed a two-pass approach.
The first pass determines the exact set of memory access, then
the IR is annotated with partitioning information and passed to
the backend again. Variable partitioning is modeled as ILP
based on an interference graph. However, they do not
consider the movable boundaries for load/stores which un-
constraints the range of motion. In any post-pass approach,
the biggest constraint is the range of motion because of
register dependencies. However, the post-pass solution is
attractive because it captures the complete sets of spills. In our
framework, we develop a resolution technique to relax the
motion constraints as much as possible to maximize
opportunities for combination of load/stores. Another
difference is that they use ILP approach to solve their problem
whereas in our case, we show that a greedy heuristic does a
great job by reducing the problem to maximal flow. Their ILP
solution is again quite slow to incorporate into a practical
compiler. The greedy heuristic is extremely fast and can be
built as a standard pass in any compiler. Moreover, it gives
comparable quality of solution as the exhaustive methods.
Also, they do not perform value or instruction duplication.

Saghir, Chow and Lee [20] present compaction based
data partitioning and partial data duplication approaches.
Theirs is also a post-pass approach. However, their approach
is limited only to basic blocks. Unlike us, they do not explore
instruction duplication since they are limited only to a basic
block. In order to create more opportunities, they attempt
partial or full duplication of data. We believe that load/store
motion and duplication expose a lot more opportunities than
value duplication. Also value duplication results in higher
memory requirements for both code and data segments which
is undesirable. That is why we phase order instruction motion
and duplication before value duplication. We also capture the
secondary effects of value duplication on instruction
duplication and vice versa using an iterative approach.
Moreover, we propose the notion of pseudo-fixed boundaries
that allow a large range of motion to tackle the problem of
register dependencies encountered in post-pass approaches.
We do a conflict resolution to maintain legality after motion

takes place without degrading the merged load/store pairs.
Therefore our approach results in minimal code growth we
believe (in their paper [20] raw performance or code growth
numbers are absent to do any quantitative comparison).

Recently, J. Cho, Y. Paek, D. Whalley [21] study memory
and register assignment for non-orthogonal architectures. They
have used different approaches like MST and graph coloring
to assign memory banks to variables. Also, a register class
allocation phase is inserted to assign register class before the
register allocation, so the register allocation phase can meet
those requirements. Therefore, their main contribution is to
formulate and solve the heterogeneity model for both register
and memory assignments unlike ours in which we attempt
iterative solution of first instruction replication followed by
value replication which minimizes code growth while
maximizing the parallel load/stores.

Other earlier work [16] on this problem adopts very
simplistic approach of allocating X/Y memory on an
alternating basis without any analysis.

6. Conclusion
This paper proposes a framework for analyzing

load/stores stores and for moving them to combine them into
parallel load stores maximally. An important contribution of
this paper is to propose the notion of pseudo-fixed boundaries
to enhance the range of motion and then perform conflict
resolution to preserve legality of code while keeping maximal
number of load/store pairs. We also undertake
rematerialization to free registers to enhance boundary of
motion. We minimally first replicate the instructions and then
values and iterate until no profitable mergers result. We show
that by undertaking such an approach, our solution comes
close to exhaustive one with much lesser compilation time.
We use the freed time to perform optimizations which leads
to solution better than an exhaustive brute force solution
(without optimization) in almost half the benchmarks. The
conclusion of this work is that by systematically enhancing the
range of motion of instructions and by undertaking minimal
replication of instructions and values along with their
secondary effects, one can generate code quality comparable
or superior to that generated by exhaustive methods previously
proposed.

Table 1 Results of alias analysis
Total

LD/
ST

#LD #ST #var
sym

#add
sym

alias found
(point to

single
reference)

Alias
found/total
load/store

(%)
Biquad_N_sections 26 15 11 10 16 26 100

Complex_update 26 16 10 6 20 20 76.92
n_complex_update 67 26 41 35 32 53 79.10

n_real_updates 18 5 13 6 12 16 88.89
GSM Untoast 401 225 176 48 353 397 99.00
g721 decoder 191 113 78 66 125 191 100

rawcaudio(adpcm) 21 13 8 11 10 21 100
rawdaudio(adpcm) 26 15 11 17 9 26 100
SPEC2000-Bzip2 1432 840 592 424 1008 1398 97.63
SPEC2000-VPR 2927 1763 1164 903 2024 2872 98.12

Average 93.97

11/12

Table 3. MSG properties
Grp

#
Node

#
Edge

#
Avg.

Size of
web

Biquad_N_sections 8 26 12 3.25
Complex_update 11 26 27 2.363636

n_complex_updates 21 67 49 3.190476
N_real_updates 7 18 7 2.571429

GSM Untoast 129 401 486 3.108527
g721 decoder 32 191 130 5.96875

Rawcaudio(adpcm) 10 21 25 2.1
Rawdaudio(adpcm) 9 26 31 2.888889

SPEC2000-Bzip2 395 1432 1109 3.625316
SPEC2000-VPR 937 2927 3104 3.123799

Table 2 Classification of generated parallel load/stores
Merge type Failed

merge
Without

dup
With
dup

LDLD LDST ISA STST Re-
solved

Biquad_N_sections 4 1 2 3 0 1 2
Complex_update 6 2 3 5 3 3 2

n_complex_updates 9 3 4 8 2 3 3
n_real_updates 0 1 0 1 0 2 0

GSM Untoast 73 14 32 55 4 10 9
g721 decoder 17 4 6 15 4 4 4

Rawcaudio (adpcm) 5 2 2 5 1 1 1
Rawdaudio (adpcm) 7 2 4 5 3 5 3

SPEC2000-Bzip2 177 43 78 142 10 13 12
SPEC2000-VPR 394 103 154 343 26 30 45

Table 4. Comparison of execution time (104 cycles)
Original Heuristic(at A) SA LD/ST replication

(at B)
Var replication

(at C)
%Speedup (after var
replication/Original)

%Speedup (after
var replication/SA)

Biquad_N_sections 94 87.5 86.64 85.08 83.9 13.18432767 3.258081524
Complex_update 1.6 1.56 1.56 1.53 1.53 5.643817202 2.24142932

n_complex_updates 312 300.3 295.93 299.4 298.2 4.594244163 -0.771453874
N_real_updates 123.3 116.1 114.74 114.2 113.3 8.842528413 1.26705758

GSM Untoast 7652 5478 5149.9 5393 5346 43.12337734 -3.677966343
g721 decoder 5201 4138 3718.8 4137 4084 27.33031336 -8.958826183

Rawcaudio(adpcm) 10490 9052 9071.8 8937 8802 19.17685555 3.064144342
Rawdaudio(adpcm) 4677 4186 3961 4150 4114 13.69017833 -3.715787615

SPEC2000-Bzip2 20945 17893 16875 17578 17423 20.2098194 -3.146948583
Average 17.31060682 -1.160029981

Table 5. Comparison of compilation time (Seconds)
Original Heuristic(at A) SA LD/ST replication

(at B)
Var replication

(at C)
%Speedup (after

LD/ST replication/SA)
%Speedup (after

var replication/SA)
Biquad_N_sections 7.75 8.92 291.75 11.23 17.85 2497.474516 1534.454138

Complex_update 4.99 6.1 1125.99 6.85 10.75 16354.67326 10368.68129
n_complex_updates 10.1 12.3 511.09 14.73 21.60 3370.477952 2265.213625

N_real_updates 6.34 6.91 295.34 7.61 12.49 3781.307223 2264.920316
GSM Untoast 391 430 8717.78 556.03 902.50 1467.852987 865.96204
g721 decoder 250 295 4061.06 412.85 614.94 883.6588128 560.395309

Rawcaudio(adpcm) 15.8 18.3 674.75 21.42 35.36 3049.802212 1808.277119
Rawdaudio(adpcm) 11 14.6 1984.01 20.04 31.72 9800.269262 6155.699016

SPEC2000-Bzip2 1378.82 1745.4 32765.97 2234.98 3331.24 1366.048962 883.5954124
SPEC2000-VPR 2237.76 2690.81 57197.27 3157.40 4386.57 1711.532724 1203.918

Average 4428.309791 2791.112

Table 6. Comparison of code size (# of Instructions)
Original Heuristic(at A) SA LD/ST replication

(at B)
Var replication

(at C)
%Code growth

(after LDST
replication/Original)

%Code growth
(after var

replication/Original)
Biquad_N_sections 157 151 147 167 180 6.369426752 14.64968153

Complex_update 118 106 102 135 148 14.40677966 25.42372881

n_complex_updates 295 273 271 321 347 8.813559322 17.62711864

N_real_updates 181 179 179 197 209 8.839779006 15.46961326

GSM Untoast 3992 3843 3818 4053 4284 1.528056112 7.314629259

g721 decoder 1847 1813 1805 1909 2074 3.356794802 12.29020032

Rawcaudio(adpcm) 204 193 190 218 234 6.862745098 14.70588235

Rawdaudio(adpcm) 190 174 172 209 221 10 16.31578947

SPEC2000-Bzip2 12256 12102 12073 12452 13150 1.59921671 7.294386423

SPEC2000-VPR 46954 46280 46194 48338 52214 2.947565703 11.20245347
Average 6.472392317 14.22934835

12/12

REFERENCES
[1] J.W.Davidson, S.Jinturkar, “Memory Access Coalescing:

A Technique for Eliminating Redundant Memory
Accesses”, Proc. PLDI '94, pp. 186-195, June 1994.

[2] Keith D.Cooper, Timothy J.Harvey, “Compiler-Controlled
Memory”, In 8th ASPLOS, October 1998.

[3] T.H.Cormen, C.E.Leiserson, R.L.Rivest, Introduction to
algorithms, MIT Press, 1989

[4] Ashish Bhalgat, John Greenland, Santosh Pande,
“Instruction Scheduling to Hide Load/Store Latency In
Irregular Architecture Embedded Processors”, 3rd

workshop on MP-DSP, Nov.2001.
[5] Robert Azencott , Simulated annealing: parallelization

techniques, Braun-Brumfield,INC.
[6] E.Aarts,J.Korst, Simulated annealing and Boltzmann

Machines, Courier Int’l.
[7] C.H.Papadimitriou, K.Steiglitz, Combinatorial

optimization Algorithms and Complexity, Dover
Publications INC, 1998.

[8] A.V.Aho, R.Sethi, J.D.Ullman, Compilers Principles,
Techniques and Tools, Addison-Wesley, Reading, MA,
1986

[9] S.S.Muchnick, Advanced Compiler Design and
Implementation, Morgan Kaufman,1997

[10] Mach-SUIF Backend Complier, The Machine-SUIF 2.1
compiler documentation set. Harvard University, Sep.
2000,

[11] Stanford SUIF Compiler Infrastructure, The SUIF 2
compiler documentation set, Stanford University,
Sep.2000. http://suif.stanford.edu/suif/index.html.

[12] Motorola INC, DSP56300 24-bit Digital Signal Processor
Family Manual, Jan. 1995.

[13] A.W.Appel, L.George, “Optimal Spilling for CISC
Machines with Few Registers”, Proc. PLDI'01, pp. 243-
253, June 2001.

[14] Lal George, Andrew W. Appel, “Iterated Register
Coalescing”, Proc. SIGPLAN '96 Conf. Programming
Language Design and Implementation.

[15] A. Sudarsanam and S. Malik. “Memory Bank and Register
Allocation in Software Synthesis for ASIPs”, In
Proceedings of the International Conference on Computer
Aided Design, pages 388--392, 1995.

[16] B. Powell, E.A. Lee, and W.C. Newman. “Direct
Synthesis of Optimized DSP Assembly Code from Signal
Flow Block Di-agrams”, Proceedings International
Conference on Acoustics, Speech, and Signal Processing,
5:553 556, 1992

[17] Rainer Leupers, Daniel Kotte, “Variable partitioning for
dual memory bank DSPs”, ICASSP, May 2001.

[18] Ashok Sudarsanam, Sharad Malik, “Simultaneous
Reference Allocation in Code Generation for Dual Data
Memory Bank ASIPs”, ACM Trans. On Design
Automation of Electronic Systems, pp.242-264, Vol. 5,
No.2, Apr. 2000.

[19] K. D.Cooper, N.McIntosh, “Enhanced Code Compression
for Embedded RISC Processors”, Proc. PLDI '99, pp.
139-149, May 1999.

[20] M. A. R. Saghir, P. Chow, C. G. Lee, “Exploiting Dual
Data-Memory Banks in Digital Signal Processors”, Proc.
of the 8th International Conference on Architectural
Support for Programming Languages and Operation
Systems, pp. 234--243, 1996.

[21] J. Cho, Y. Paek, D. Whalley, "Register and Memory
Assignment for Non-orthogonal Architectures via Graph
Coloring and MST Algorithms", Proc. of LCTES’02, pp.
130-138, Jun. 2002.

APPENDIX A

THEOREM: MSG solving (find the XY assignment to
the nodes and determine the maximal number of
combinable edges) is NP-complete.

Proof: The optimization problem can be restated as a
decision problem, i.e. asking whether it has k node pairs
satisfying the conditions.

Firstly, this is a NP problem. Since, given a certificate,
i.e. node pairs and color (bank) assignment for each symbol
group, we can verify the following facts in polynomial time.
• Edges and nodes belong to the graph
• Two nodes on the edge have different color.
• The number of node pairs is greater than k.

Secondly, we reduce a well-known NP-complete
problem−Partition to MSG coloring problem. “Partition” is
a decision problem defined as:

Given objects with sizes A1,A2,…An, asking whether
they can be splitted into 2 disjoint sets S and T, such that

��
∈∈

=
Si

i
Ti

i AA . We build our graph according to the given

“Partition” problem. There are n symbol groups with node
number A1,A2….An. All nodes are fully connected (all
edges exist). Solving our problem optimally means we have

found the
��
�

�
��
�

�
−��

∈∈

||
Si

i
Ti

i AAMIN . Remember that � iA is

a fixed number, so
��
�

�
��
�

�
− ��

∈∈
||

Si
i

Ti
i AAMIN is equivalent to

maximal number of combinable node-pairs. Thus, if this
minimum equals 0, we give a positive answer to the
“Partition” problem, otherwise, we give a negative answer.
This reduction can be done in polynomial time, so we have
proved that solving MSG is NP-complete.

