
Just-In-Time Java
 TM

 Compilation for the

Itanium
���� Processor

Tatiana Shpeisman

Intel Labs
Tatiana.Shpeisman@intel.com

Guei-Yuan Lueh

Intel China Research Center
Guei-Yuan.Lueh@intel.com

Ali-Reza Adl-Tabatabai

Intel Labs
Ali-Reza.Adl-Tabatabai@intel.com

Abstract

This paper describes a just-in-time (JIT) Java1

compiler for the Intel� Itanium� processor. The Itanium
processor is an example of an Explicitly Parallel

Instruction Computing (EPIC) architecture and thus

relies on aggressive and expensive compiler optimizations
for performance. Static compilers for Itanium use

aggressive global scheduling algorithms to extract

instruction-level parallelism. In a JIT compiler, however,

the additional overhead of such expensive optimizations

may offset any gains from the improved code.
In this paper, we describe lightweight code

generation techniques for generating efficient Itanium

code. Our compiler relies on two basic methods to

generate efficient code. First, the compiler uses

inexpensive scheduling heuristics to model the Itanium

microarchitecture. Second, the compiler uses the
semantics of the Java virtual machine to extract

instruction-level parallelism.

1. Introduction

This paper describes a just-in-time (JIT) Java byte

code compiler for the Intel Itanium processor. The
Itanium processor is a statically scheduled machine that

can issue up to 6 instructions per cycle – its performance,

therefore, depends on aggressive compiler techniques that

extract instruction-level parallelism (ILP). Building a JIT

compiler for this processor is challenging for two reasons.

First, the time and space taken by the JIT is an overhead
on program execution – applying aggressive (time and

memory consuming) JIT optimizations to obtain the last

few percentage of performance gain may not be justified

because the additional compilation overhead will slow

down application load time, which may offset any gains
from optimizations. Second, a Java JIT must be reliable

1 All third party trademarks, trade names, and other

brands are the property of their respective owners

because it is partially responsible for enforcing security (for

example, by inserting checks or unwinding stack frames) –

aggressive ILP optimizations (such as predication,

speculation, and global scheduling) are complicated and
time consuming to implement reliably.

In this paper, we describe lightweight code generation

techniques for generating efficient Itanium code from Java

byte codes. We also describe potential pitfalls in Itanium

code generation as well as optimizations that are of limited

effectiveness. Our JIT compiler relies on several
inexpensive techniques to generate efficient Itanium code.

First, the compiler uses heuristics to model Itanium micro

architecture features (e.g., bypass latencies and execution

unit resources). Second, the compiler leverages the

semantics and metadata of the Java Virtual Machine (JVM)

[17] to extract ILP. Our experimental results show that the
goal of inexpensive but effective optimizations on Itanium

is achievable.

The JIT compiler is part of the Open Runtime Platform

(ORP) [15], an open source JVM that uses the GNU

classpath Java libraries [10]. We ported ORP to run on the
Itanium Processor Family (IPF) but we have not yet tuned

the performance of ORP’s machine-specific and

performance-critical components, such as synchronization,

garbage collection, and exception handling. Figure 1

compares the performance of ORP with the IBM JDK v1.3

Beta 2 (which is also an IPF JVM) for several benchmarks
from the Spec JVM98 benchmark suite [21]. These

measurements were gathered on a 733 MHZ Itanium

workstation. ORP is competitive with the IBM JDK for

compute-intensive benchmarks such as 201_compress,

202_jess and 222_mpegaudio, all of which spend most of

their execution time in JIT-compiled code. The IBM JDK
outperforms ORP significantly for benchmarks that demand

fast synchronization (227_mtrt and 209_db) and exception

handling (228_jack).

The remainder of this paper is organized as follows.

Section 2 presents an overview of the IPF architecture and

the Itanium processor micro architecture. Section 3
describes the optimization phases of our JIT compiler.

Section 4 describes the register allocator, which is

based on the linear scan register allocation algorithm [19]

and enhancements that minimize the amount of

information the compiler has to store to support garbage
collection. We propose an improved linear scan allocator

that performs register coalescing without increasing the

asymptotic complexity of the allocator.

Section 5 describes the code scheduler. We show

how the scheduler models the latencies and resource

constraints of the Itanium processor, and performs
memory disambiguation and safe speculation of memory

loads by leveraging the rich metadata provided by the

JVM.

Section 6 describes Itanium-specific optimizations

that have only minor benefits (aggressive sign-extension

optimization and predication) and describes the potential
pitfall of ignoring branch hint bits on the Itanium

processor.

2. The Itanium processor

The IPF architecture organizes instructions into static
groups called bundles [13]. A bundle is 128 bits long and

contains 3 instruction slots. Each instruction has a type (I,

M, F, B, A, L) corresponding to the execution unit type

on which the instruction will execute. The I-, M-, F- and

B-type instructions can be executed only on integer,

memory, floating-point or branch units, respectively. A-
type (arithmetic) instructions, such as integer add, can be

executed on either memory units or integer units. L-type

instructions are for loading of 64-bit immediates and use

the integer and floating-point units. L-type instructions

take two slots in a bundle; all other instructions take one

slot. Only certain combinations of instruction types are
valid inside each bundle. There are 24 valid combinations

each of which is called a template. Some templates

contain stop bits, which indicate cycle breaks between

instructions – these are necessary to enforce dependencies

between instructions within and across bundles. The

sequence of instructions between stop bits or between a
stop bit and a taken branch is called an instruction group.

The IPF architecture is a load-store architecture and

has only the register indirect addressing mode for data

access instructions. The register file contains 128 integer,

128 floating-point, 64 predicate, and 8 branch registers.
The integer registers are divided into 96 stack registers

and 32 static registers. Each procedure starts by allocating

a register frame using the alloc instruction. The Register

Stack Engine (RSE) ensures that the requested number of

registers is available to the method by moving registers

between the register stack and the backing store in
memory without explicit program intervention.

The IPF architecture is a 64-bit architecture and

provides limited support for 32-bit integer arithmetic.

Load instructions zero-extend 8-, 16- and 32-bit integer

values. The compiler must generate explicit sign-

extension instructions whenever the upper 32 sign bits may
affect program semantics.

One of the salient features of the IPF architecture is

predication. Most instructions have a qualifying predicate –

if the predicate is evaluated to true, the processor commits

the instruction’s side effects to the architectural state;

otherwise, the processor discards the instruction’s side
effects. Predication is used to remove branches, thus

reducing branch misprediction penalties, increasing the

scope for instruction scheduling, and possibly reducing path

lengths.

Another feature of the IPF architecture is branch
prediction hint bits, which allow a compiler to specify what

kind of branch prediction should be done for a branch

instruction. The branch prediction hint can be one of four

values: statically taken, statically not taken, dynamically

taken, and dynamically not taken. The usage of the hint is

micro architecture specific.
The Itanium processor [14] is an implementation of the

IPF architecture. This processor can decode two bundles

per cycle and issue up to six instructions per cycle. The

micro architecture has nine execution units: two memory,

two integer, two floating-point and three branch units. NOP

instructions are assigned to execution units and are executed
like any other instruction. The micro architecture will stall if

the instructions inside an instruction group oversubscribe

the processor’s execution unit resources. The execution

units have varying execution latencies and there are non-

unit bypass latencies between certain execution units.

3. Compiler overview

There are two kinds of compilation infrastructures that

are commonly adopted in JVM implementation: mixed

mode and compilation mode. The former comprises of an

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

_2
01

_c
om

pr
es

s

_2
02

_j
es

s

_2
09

_d
b

_2
22

_m
pe

ga
ud

io

_2
27

_m
trt

_2
28

_j
ac

k

G
EO

M
EA

N

N
o

r
m

a
li

z
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

IBM ORP

Figure 1. Performance comparison of ORP versus
IBM JDK.

interpreter that interprets cold (infrequently-executed)

methods and a compiler that compiles identified hot

(frequently-executed) methods [23][22]. The later
compiles methods using either multiple JIT compilers [8]

or multi-level compilation [4]. The infrastructure we use

is compilation mode, which is similar to JUDO [8]. The

scope of this paper focuses solely on lightweight code

generation techniques that can be used in fast code

generation [8] and 1-level optimization [22]. Figure 2
shows the structure of the JIT compiler. The compiler

consists of two major components: the front end and the

back end. The front end builds the intermediate

representation (IR) and performs machine-independent

optimizations. The back end lowers the IR to the machine

level and performs architecture-dependent optimizations
such as register allocation and code scheduling.

PrepassPrepass

InliningInlining

Global optimizationsGlobal optimizations

IR constructionIR construction

Code SelectionCode Selection

Register AllocationRegister Allocation

Front end

Code EmissionCode Emission

GC supportGC support

Back end

Code SchedulingCode Scheduling

PredicationPredication

Figure 2. Compiler structure.

The compiler front end is similar to the one described

in [8]. Compilation starts with the prepass phase, which

traverses the Java bytecodes and collects information such

as basic block boundaries and the Java operand stack

depth. The IR construction phase then uses this
information to build the control-flow graph and IR

instruction sequences for each basic block. It also

performs local common subexpression elimination across

extended basic blocks.

The inlining phase identifies call sites that are

candidates for inlining. The front end repeats the IR
construction phase for the inlined call sites, merging the

inlined method’s IR into the caller’s IR. The inlining

policy is based on static heuristics that guard against code

explosion by limiting the size of the inlined method and

the total size of the method after inlining. When inlining

a virtual method that can be overridden, the compiler
generates a guard that tests whether the inlined method is

the right method to be invoked. This guard branches to

the normal method invocation code sequence if the test

fails. The last phase of the front end is the global

optimization phase, which performs copy propagation,

constant folding, dead code elimination [2], and null pointer

check elimination.
The first phase of the compiler back end is code

selection, which lowers high-level operations (such as field

or array element accesses) to IPF code sequences. Global

register allocation assigns physical registers, generates spill

code, and performs coalescing to eliminate register moves.

Predication [3] eliminates some branches by predicating the
instructions that are control dependent on a branch with the

branch condition.

Code scheduling assigns instructions to execution

cycles, packs them into the bundles, and selects templates.

The scheduler must insert stop bits so that the hardware

respects data dependence hazards. It must also use NOP
instructions to fill unused instruction slots inside a template.

The backend performs code scheduling after register

allocation so that it also schedules any spill code generated

by register allocation and so that move operations that are

eliminated by register coalescing do not interfere with

scheduling.
The GC support phase computes the set of live object

references at every instruction [20] and writes this

information into a compressed GC map data structure. The

compiler uses this information at run-time to report the root

set of live references to the garbage collector. The final
code emission phase emits the native IPF binary code into

memory for execution.

4. Register allocation

Choosing a register allocation algorithm involves

making a trade-off between compilation time and the quality
of the generated code. Graph coloring [5][6] is a commonly

used approach to assign registers, which requires building

the interference graph. Given the large number of registers

available on the Itanium processor and the RSE a simpler

algorithm is sufficient to yield a good register allocation. To

favor fast compilation time, we chose the linear scan
register allocation algorithm [19] that has linear-time

complexity in assigning registers and does not require

building the interference graph.

Linear scan register allocation algorithm approximates

live ranges of variables using live intervals. A live interval
is a contiguous set of instructions that includes the

variable’s live range.

The register allocator first creates a linear ordering of

the instructions according to a traversal of the control flow

graph and then builds a list of live intervals sorted by the

order of the first instruction of the interval. The interval
size has a direct influence on the quality of register

allocation because the longer an interval, the more likely it

overlaps with other live intervals. The register allocator tries

to minimize interval lengths by traversing the blocks in

topological order. For a method with I instructions, V

virtual registers, and B basic blocks, the live intervals are

computed in O(I+VB) time given precomputed liveness

information.
After computing the live intervals, the register

allocator assigns registers to live intervals in a single pass

over the sorted list of live intervals in O(V) time. To avoid

excessive RSE activity, the register allocator tries to

assign the minimum number of physical registers. It also

tries to avoid spilling variables and minimize anti
dependencies, both of which hinder code scheduling. The

register allocator starts with a set of four available

registers. It assigns registers from this available set in a

round-robin fashion. If it runs out of registers, it adds

another register to the available set or spills if it cannot

add another register to the set. This strategy avoids
superfluous anti dependencies while minimizing the

number of used registers and the number of spills.

4.1. Register coalescing

Register coalescing eliminates moves by assigning

the same register to the source and destination operands

of a move. Coalescing is an important optimization for

Itanium because the extra move instructions take up
execution resources during scheduling and add to critical

path lengths, especially floating-point moves, which have

a latency of five cycles.

If the live ranges of the source and the destination of

a move instruction do not interfere the compiler can

coalesce the live ranges and eliminate the move [5]. For

example, Figure 3 shows that variables v, t1 and t2 can

be assigned the same physical register and the two move

instructions can be eliminated. Linear scan register

allocation does not compute the live ranges of variables

and can coalesce two variables only if their live intervals
do not intersect. As a result, it easily misses register

coalescing opportunities. For example, Figure 3b shows

that v and t2 cannot be coalesced because their intervals

overlap.

Figure 3. Live interval as approximation of live
range

The JIT compiler performs register coalescing as a

separate optimization inside linear scan register allocation.

Rather than relying on the limited opportunities for live
interval coalescing, the compiler attempts to coalesce a

source and destination of a register move instruction if the

live interval of the source does not intersect with the live

range of the destination. The algorithm uses the live interval

information already computed for the linear register scan

and computes the live ranges on the fly during a single
reverse pass over the instructions.

The register coalescing algorithm iterates over all the

instructions in reverse order. When it encounters a register

move instruction d = s, it checks whether this instruction is

the end of the live interval of the variable s. If so, it marks

d and s as candidates for coalescing. If the algorithm
reaches the beginning of the live interval of s without

finding a conflict, it coalesces d and s. A conflict occurs if

d is live inside the live interval of s; that is, if the live

interval of s contains a use or definition of d, or d is live at

the basic block boundary inside the live interval of s. This

algorithm is powerful enough to coalesce multiple variables.
For example, in the program fragment shown in Figure 3, it

coalesces v with both t1 and t2.

0
1
2
3
4
5
6
7

_2
01

_c
om

pr
es

s

_2
02

_j
es

s

_2
09

_d
b

_2
22

_m
pe

ga
ud

io

_2
27

_m
trt

_2
28

_j
ac

k

%
 s

p
e
e
d

u
p

 o
v
e
r

n
o

 c
o

a
le

s
c
in

g

Figure 4. Register coalescing.

The complexity of the register coalescing algorithm is

O(I + VB). The I component is because of the reverse

traversal of the instructions. The VB component is because
of the iteration over the live variables at each basic block

boundary. This is the same asymptotic complexity that is

required to build the live intervals; thus, this algorithm

improves the results of linear scan register allocation

without increasing its complexity. Figure 4 shows that
register coalescing optimization improves performance by

up to 6%. The best results are for the floating-point

benchmarks because floating-point register moves have a

high latency (5 cycles). The speedup for integer benchmarks

is 1-2%.

4.2. Garbage collection support

The JIT compiler provides support for garbage
collection at every instruction using a technique similar to

...

t1=...

...

v = t1

...= v

B1

B2

B3

B4

t2=...

...

v = t2

t1=...

...

v = t1

t2=...

...

v = t2

...= v

...
 B1

B2

B4

B3

a) Live ranges

b) Live intervals

...

t1=...

...

v = t1

...= v

B1

B2

B3

B4

t2=...

...

v = t2

t1=...

...

v = t1

t2=...

...

v = t2

...= v

...
 B1

B2

B4

B3

...

t1=...

...

v = t1

...= v

B1

B2

B3

B4

t2=...

...

v = t2

...

t1=...

...

v = t1

...= v

B1

B2

B3

B4

t2=...

...

v = t2

t1=...

...

v = t1

t2=...

...

v = t2

...= v

...
 B1

B2

B4

B3

t1=...

...

v = t1

t2=...

...

v = t2

...= v

...
 B1

B2

B4

B3

t1=...

...

v = t1

t2=...

...

v = t2

...= v

...
 B1

B2

B4

B3

a) Live ranges

b) Live intervals

a) Live ranges

b) Live intervals

the one described in [20]. For each instruction, it

computes the set of registers and stack locations that

contain live references and interior pointers (pointers to
the middle of the objects allocated on the heap) and

records this information in a data structure called the GC

map table. To enumerate the root set, the garbage

collector iterates over the set of frames on each thread’s

runtime stack. For each frame, the garbage collector

makes a callback into the JIT asking it to enumerate the
set of live references for that frame and to unwind to the

previous frame. The JIT compiler computes the set of

live references for the frame using the GC map

information.

The number of physical registers assigned to hold

references and interior pointers affects the size of the GC
map because of the GC map’s encoding scheme. The

compiler attempts to minimize the size of the GC map by

attempting to minimize the number of physical registers

that are assigned to hold references or pointers. The

register allocator splits the integer physical registers into

two groups: registers reserved for references and pointers,
and registers that can contain values of any integral type.

Register allocation is performed in two passes. In the first

pass the allocator assigns registers only to references and

interior pointers from an initial set of four available

registers. If it runs out of registers, it does not add
registers to the available set – rather it leaves the virtual

registers unassigned. In the second pass, the allocator

starts with a fresh set of four available registers, and

assigns physical registers to all unassigned virtual

registers, this time increasing the number of available

registers if necessary. This technique allows the compiler
to limit the number of registers used by references

whenever possible without sacrificing the quality of

register allocation.

5. Code scheduling

The basic unit of scheduling is an extended basic
block (i.e., a linear sequence of instructions with a single

entry point and multiple exits). The control flow exits

from the middle of an extended block correspond to

control flow caused by run-time exceptions. An extended

basic block cannot span a function call. For each
extended basic block the scheduler first builds a

dependence graph whose nodes are instructions and

whose edges correspond to dependencies. The graph

contains an edge <I,J> if an instruction J is data or control

dependent on instruction I. Each edge is annotated with

the latency of the dependency.
The number of edges in the dependence graph affects

the quality of the generated code as well as the time and

memory required for scheduling. The method prolog

sequence allocates a memory stack frame by adjusting the

stack pointer and allocates a register frame using the

alloc instruction; these instructions induce many

dependencies in the program because any instruction that

uses stack registers or the stack frame depends on them. The
scheduler avoids these dependencies by assigning the

maximum possible heuristic value to these prolog

instructions, thereby guaranteeing that they are scheduled

before the dependent instructions. This also allows the

scheduler to schedule the prolog instructions in parallel with

independent instructions.
The scheduler assigns instructions to execution cycles

using cycle scheduling [11]. Given a choice between

several ready instructions, the scheduler selects the one that

has a maximum distance along any path to a leaf node of the

graph. When several instructions have the same maximum

distance the scheduler chooses the one that has the
maximum number of successors. During cycle scheduling,

the scheduler attempts to avoid over subscribing execution

unit resources by using a resource vector to model each

cycle’s execution unit utilization [18]. The cycle scheduler,

however, does not assign instructions to execution units –

the subsequent template selection pass does this assignment.
Template selection groups the instructions in each cycle into

valid bundles, which effectively assigns instructions to

execution units.

The reason for assigning execution units after cycle

scheduling is that some instructions can be executed on
more than one execution unit – assigning these instructions

eagerly during scheduling can lead to sub-optimal code on

Itanium. For example, an integer add can be executed on

either the memory unit or the integer unit. When inserting

an integer add instruction into a cycle, the scheduler records

that the instruction may use either the integer unit or the
memory unit, but it does not choose which one. The

scheduler uses the generic machine resource approach [1] to

guarantee that an execution unit will be available for the

integer add instruction. Address computation instructions,

however, are assigned to execution units during scheduling

because this assignment affects the latency of the address
computation instruction; Section 5.3 describes this in more

detail.

5.1. Type-based memory disambiguation

Memory disambiguation is very important in a compiler

for a statically scheduled machine such as Itanium because

load operations tend to be on the critical path and false

memory dependencies hinder instruction-level parallelism.
Traditional compilers use potentially expensive analyses to

determine whether two memory operations may access the

same memory location. The JIT compiler uses the Java

virtual machine’s metadata to disambiguate memory

accesses (i.e., it uses type-based memory disambiguation
[9]).

The JIT compiler annotates each memory operand with

the type and kind of the memory location it references. The

compiler derives type information from the Java byte

codes and preserves this information throughout

optimizations. The memory location kind is one of: object
field, static field, array element, array length, stack

argument, virtual table address, constant value, method

address, spilled variable, callee-saved register, switch

table element, and constant string address. The compiler

further disambiguates field references using unique field

identifiers provided by the virtual machine; for example,
it can determine that the store instructions generated from

the Java byte codes putfield #10 and putfield #15 refer to

different memory locations even if both fields have the

same type. Figure 5 shows that type-based memory

disambiguation yields up to 2% performance

improvement over a conservative approach that assumes
that all memory accesses are aliased.

Figure 5. Type-based memory disambiguation.

5.2. Exception dependencies

The Java virtual machine [12][17] specifies that all

object accesses must be checked at runtime – an attempt

to access a field or method using a null object reference or

an attempt to use an array index that is out of bounds

causes an exception. Moreover, Java exceptions are
precise – all visible side effects from instructions before

the exception must appear to have taken place and no side

effects from instructions after the exception may appear to

have taken place [12].

The JIT compiler implements run-time exceptions
explicitly by generating test-and-branch instructions that

check the exception condition and transfer control to code

that throws an exception if the check fails. These explicit

checks introduce branches inside common code paths

effectively creating extended basic blocks.

To enforce the precise exception semantics of Java
the scheduler creates a dependence edge from an

exception check branch to a subsequent instruction inside

the extended basic block if that instruction is a memory

store, writes a register that is live at the exception handler,

is another exception check branch for a different

exception type, or is a memory reference that may be

guarded by the check (e.g., an instruction that loads a field

of an object cannot be executed before the instruction that
checks that the object reference is not null unless the

compiler uses speculation). This strategy minimizes the

number of dependence edges and allows load instructions

that do not throw exceptions to be hoisted above exception

check branches.

Figure 6 shows an example of a program fragment with
a null pointer exception check. Assume there is no

exception handler for the null pointer exception or such a

handler does not use r17, r21, and f8. The scheduler

generates only the dependency from the branch (instruction

2) to the object field load (instruction 4). Instructions 3 and

5 do not depend on the branch because their destination
registers are dead on the branch taken path, and instruction 6

does not depend on the branch because it loads a static field

(which cannot throw an exception) and because its

destination register f8 is dead on the branch taken path.

 1 (p6,p0) = cmp.eq r16, 0

 2 (p6) br throw null pointer exception

 3 r17 = add r16, 8

 4 r18 = ld [r17] // load object field

 5 r21 = movl 0x000f14e32019000

 6 f8 = fld [r21] // load static

Figure 6. Program fragment with exception
dependencies.

The chart in Figure 7 shows the performance

improvement from using extended block scheduling with

precise dependencies between exception branches and load
instructions over basic block scheduling. The chart in this

figure shows that these techniques improve performance

significantly; for example, the performance of

222_mpegaudio improves by more than 20%.

Figure 7. Extended basic block scheduling.

0.0

0.5

1.0

1.5

2.0

2.5

_2
01

_c
om

pr
es

s

_2
02

_j
es

s

_2
09

_d
b

_2
22

_m
pe

ga
ud

io

_2
27

_m
trt

_2
28

_j
ac

k

%
 s

p
e

e
d

u
p

 o
v

e
r

n
o

 d
is

a
m

b
ig

u
a

ti
o

n

0

5

10

15

20

25

_2
01

_c
om

pr
es

s

_2
02

_j
es

s

_2
09

_d
b

_2
22

_m
pe

ga
ud

io

_2
27

_m
trt

_2
28

_j
ac

k
 %

 s
p

e
e

d
u

p
 o

v
e

r
n

a
iv

e

5.3. Modeling bypass latencies

The scheduler can model most bypass latencies easily

because most instructions can only be mapped to a single

execution unit type. An important exception is the latency

from an address computation instruction to a load
instruction that uses the address. An address computation

can be executed in a single cycle on either an integer or a

memory unit. There is no bypass latency to a load

instruction if its address computation is executed on a

memory unit and a bypass latency of one cycle if it is
executed on an integer unit. As a result, the scheduler

cannot model the true latency of the address computation

instruction if it does not assign an execution unit to the

address computation during scheduling.

Because memory address computation instructions

tend to be on the critical path, the scheduler attempts to
assign an address computation instruction to a memory

unit during scheduling. If all the memory units for the

cycle are already assigned the scheduler assigns the

address computation to an integer unit and increments its

dependence latency.

The chart in Figure 8 compares the performance
improvement from accurately modeling the latency of

address computation instructions over assuming there is

no additional latency from an address computation to a

load. This chart shows that this technique improves

performance by up to 3%.

Figure 8. Modeling address computation bypass
latency.

5.4. Template selection

The template selection phase groups instructions into

bundles. It chooses an instruction slot for each instruction,
fills empty slots with NOP instructions, and selects the

templates that specify the execution unit types and cycle

breaks.

Ignoring the execution unit and decode resources of the

micro architecture during template selection can lead to

over-subscription of processor resources -- for example, by
assigning NOP instructions to units already assigned to

other instructions or by using more than two templates for

an instruction group (the Itanium processor decodes two

bundles per cycle). Previous work [16] suggested using

integer programming to find the optimal template

assignment. Such an approach is too expensive in a JIT
compiler. Instead, we designed a fast heuristics-based

algorithm that performs template selection in linear time to

the number of instructions and generates a contention-free

schedule for most of the instruction cycles.

For each cycle in the schedule, the template selector

iterates over the instructions in the cycle and greedily
assigns each instruction to the first available instruction slot

– that is, to the first empty slot that can contain an

instruction of the given type under the restrictions imposed

by the templates. Each cycle ends with a stop bit that can

occur either in the middle or at the end of the bundle. Once

a bundle is full, the compiler selects a template that is
compatible with the instructions and stop bits in the bundle.

The critical part of this greedy algorithm is the heuristic

that determines the order in which the scheduler considers

the instructions. The template selector considers the

instructions in order of their types whenever permitted by
intra-cycle dependencies. The particular order -- M, F, L, I,

A, B -- corresponds to the order in which the execution units

appear in valid templates. The A-type instructions are

scheduled after M- and I-type instructions to avoid over

subscribing memory and integer execution units.

The example in Figure 9 illustrates how considering the
instructions in an arbitrary order may lead to sub-optimal

code. The heuristics will cause the greedy algorithm to

optimally group the instructions in Figure 9a into two

bundles that can be executed during the same cycle, as

shown in Figure 9b. (The “.mfi” template of the first bundle

indicates that the first, second and third instructions of that
bundle use the M, F, and I units, respectively. The “;;” at the

end of the second bundle indicates the stop bit.) Note that

floating-point instructions i4 and i5 are assigned to different

bundles because there is no template with two F-unit

resources.
By comparison, the greedy algorithm that considers the

instructions in their original order generates the non-optimal

code shown in Figure 9c. It groups instructions i1, i2, and i3

into the first bundle. Finally, it must assign the NOPs to the

unused instruction slots, which in this case can only be M-

unit NOPs. The resulting code executes in two cycles.
The compiler uses several additional heuristics to

prevent slot assignments that cause resource contention.

First, it imposes restrictions on assigning an M-unit

instruction to a middle slot of the bundle, since there are

only two memory units available, and all templates except

the .bbb template have an M-unit instruction in the first slot.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

_2
01

_c
om

pr
es

s

_2
02

_j
es

s

_2
09

_d
b

_2
22

_m
pe

ga
ud

io

_2
27

_m
trt

_2
28

_j
ac

k

%
 s

p
e

e
d

u
p

 o
v

e
r

ig
n

o
ri

n
g

 b
y

p
a

s
s

 Instruction Type Functional unit

(i1) add a = b,c A M-unit or I-unit

(i2) ld d = [x] M M-unit

(i3) sxt e = f I I-unit

(i4) fadd h = u,t F F-unit

(i5) fadd j = v,w F F-unit

a) Instructions assigned to a cycle by the scheduler

{.mfi ld d = [x] {.mmi add a = b,c

 fadd h = u,t ld d = [x]
 sxt e = f sxt e = f

} } // stall –no M-unit for

nop.m

{.mfb add a = b,c {.mfi nop.m

 fadd j = v,w fadd h = u,t

 nop.b nop.i
;;} }

 {.mfi nop.m

 fadd j = v,w

 nop.i

 ;;}
b) Optimal template c) Result of greedy template

choice. selection with no heuristics.

Figure 9. Template selection example.

Thus, the compiler does not assign an M-unit instruction

to the second slot unless the remaining instructions can be

packed without using a second bundle with an M-unit first

slot. Second, the compiler assigns A-unit instructions only

to M-slots (I-slots) if the cycle under consideration uses
all available I-units (M-units). Finally, the compiler

chooses the execution units for the NOP operations that

are least likely to cause the resource contention – namely,

M-unit for the NOP in the first slot of the bundle, F-unit

for the NOP in the second slot and B-unit for the NOP in

the third slot.

Figure 10. Template selection using heuristics.

The chart in Figure 10 compares the performance of the

heuristic-based greedy algorithm with the naïve greedy

algorithm not guided by the heuristics. Using the heuristics
improves the performance by up to 5%.

6. Other optimizations

In this section we describe two potentially promising

optimizations that we found to have only minor benefits:

predication and sign extension elimination. We also
describe a potential pitfall in Itanium code generation:

Ignoring branch hint bits disables the hardware branch

predictor, which hurts performance significantly (up to

almost 50% on one benchmark) .

6.1. Predication

Predication (also known as if-conversion [3]) is a

program transformation that removes a branch by
predicating the instructions that are control dependent on the

branch. A simple example of predicated code is shown in

Figure 11.

 cmp.lt (p6,p7) = r17, 0 cmp.lt (p6,p7) = r17, 0
(p6) br L1 (p6) mov r8 = 1

 mov r8 = 1 (p7) mov r8 = 0

 br L2 br.ret

L1: mov r8 = 0
L2: br.ret

a) Unpredicated code b) Predicated code

Figure 11. Example of predication.

Predication can have both a positive and negative affect

on execution time: It can speed up execution by reducing

stalls caused by mispredicted branches, but can also slow
down execution by increasing the number of executed

instructions In general, predication is profitable only if the

reduction in branch misprediction stall cycles is greater than

the increase in the number of wasted execution cycles that

are a result of squashed instructions. A compiler must

accurately model resources and consider profile information
to guarantee performance improvement from predication.

Our compiler uses a simple version of predication.

Namely, it predicates simple hammocks (control flow

structures generated from simple if-then-else statements)

that are balanced (i.e., have the same number of instructions

in the then and else blocks). It also avoids predicating
hammocks that contain calls: The Itanium processor

implements calls as branches; therefore, replacing a

potentially mispredicted branch with one or more

mispredicted calls will not result in a performance

improvement. The chart in Figure 12 shows that this simple

0

1

2

3

4

5

6

_2
01

_c
om

pr
es

s

_2
02

_j
es

s

_2
09

_d
b

_2
22

_m
pe

ga
ud

io

_2
27

_m
trt

_2
28

_j
ac

k

%
 s

p
e
e
d

u
p

 o
v
e
r

g
re

e
d

y
 s

tr
a
te

g
y

predication technique improves performance by up to 2%

but can also degrade performance by 1%. These results

are consistent with the finding about general predication
in [7].

Figure 12. Predication.

6.2. Using branch hints

The first version of the compiler naïvely ignored the

branch hint bits and used the default value of zero, which

happened to be statically taken. As a result, the compiler

did not use the hardware branch prediction mechanism at
all. In a later version, the compiler specified unconditional

branches to be statically taken and specified all other

branches to be dynamically not taken. This simple

strategy worked amazingly well as shown in Figure 13.

We tried to further refine branch hints by specifying

exception branches as statically not taken and loop
backward branches as dynamically taken; however, this

refinement did not have a measurable affect on

performance.

Figure 13. Using branch hints.

The compiler generates hints for indirect branches in

the move to branch register instruction. These hints,
however, do not have a measurable affect on performance

because they are effective only if the move instruction

precedes the branch instructions by at least 9 cycles. The

scheduler (which is not as aggressive as a global code

scheduler in a static ILP compiler) cannot find enough

instruction-level parallelism to take advantage of indirect
branch hints.

6.3. Eliminating sign extension

One potential optimization we looked into is sign-

extension elimination. There are two simple ways to do this:

eagerly and lazily. An eager approach generates sign

extension after every definition of a 32-bit number that
might generate an incorrectly sign-extended 64-bit number.

This is very expensive, as any arithmetic operation can

generate incorrect sign extension in case of over or

underflow. Another approach is to generate sign extension

before every use of a 32-bit number that requires it. This is

the approach we implemented in our compiler. The most
frequent case of an instruction requiring a sign-extended

operand is array element address computation. Most of the

indices are 32-bit integer numbers that have to be sign-

extended before they can be scaled and added to the 64-bit

array address.

There are many opportunities for eliminating sign
extension. Yet, Itanium is a multi-issue processor, and

eliminating sign extension will result in the performance

improvement only if the sign extension happens to be on a

critical path.

We measured the upper bound on the potential

performance improvement from sign-extension elimination
by unsafely disabling sign-extension generation. Most of the

benchmark programs executed correctly and the

performance improvement was no more than 1%. This is

because most of the sign extension was for array indices,

which were not on the critical path (they can be done in
parallel with computing the address of the first array

element). We conclude that sign-extension elimination is

not an important optimization if the compiler does not

perform aggressive global optimizations.

7. Conclusions

The Itanium processor relies heavily on ILP-extracting

compiler optimizations for performance. Implementing a

JIT compiler for Itanium is challenging because ILP-

extracting optimizations tend to be expensive and take time

to implement. The code generation techniques described in

this paper are lightweight and yield efficient Itanium code.
The techniques rely on heuristics to model the Itanium

micro architecture and on JVM semantics to extract ILP.

Our measurements show that the goal of inexpensive but

effective optimizations on Itanium is achievable using the

techniques described in this paper.

0

10

20

30

40

50

60

_2
01

_c
om

pr
es

s

_2
02

_j
es

s

_2
09

_d
b

_2
22

_m
pe

ga
ud

io

_2
27

_m
trt

_2
28

_j
ac

k

%
 s

p
e

e
d

u
p

 o
v

e
r

ig
n

o
ri

n
g

b
ra

n
c

h
 h

in
ts

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

_2
01

_c
om

pr
es

s

_2
02

_j
es

s

_2
09

_d
b

_2
22

_m
pe

ga
ud

io

_2
27

_m
trt

_2
28

_j
ac

k

%
 s

p
e
e
d

u
p

 o
v
e
r

n
o

 p
re

d
ic

a
ti

o
n

References

[1] A. Adl-Tabatabai, T. Gross, G.Y. Lueh and J. Reinders.

Modeling Instruction-Level Parallelism for Software

Pipelining. IFIP WG10.3 Working Conference on

Architectures and Compilation Techniques for Fine and

Medium Grain Parallelism, North Holland, January 1993,

pp. 321-330.

[2] V. Aho, R. Sethi, and J. Ullman. Compilers: Principles,

Techniques, and Tools. Addison-Wesley, Reading, MA,

second edition, 1986.

[3] J. R. Allen, K. Kennedy, C. Portefield, and J. Warren.

Conversion of Control Dependence to Data Dependence.

Symposium on Principles of Programming Language,

January 1983, pp. 177-189.

[4] M. Arnold, S. Fink, D. Grove, M. Hind, and P.F. Sweeney.

Adaptive Optimizations in the Jalapeno JVM. Conference

on Object-Oriented Programming, Systems, Languages &

Applications, October 2000, pp. 47-64.

[5] G.J. Chaitin. Register allocation and spilling via graph

coloring. In Proceeding of the ACM SIGPLAN 1982

Symposium on Compiler Construction. pp. 201-207.

[6] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke,

M. E. Hopkins, and P. W. Markstein. Register Allocation

via Coloring. Computer Languages, Vol. 6, No. 1, 1981,

pp. 47-57

[7] Y. Choi, A. Knies, L. Gerke, and T. Ngai “The Impact of

If-Conversion and Branch Prediction on Program

Execution on the Intel Itanium Processor”. 34th

Symbposium on Microarchitecture, Austin, TX, December

2001, pp. 182-191.

[8] M. Cierniak, G.-Y. Lueh, and J. M. Stichnoth. Practicing

JUDO: Java Under Dynamic Optimizations. Conference on

Programming Language Design and Implementation,

October 2000, pp. 13-26.

[9] A. Diwan, K. S. McKinley, and J.E.B. Moss. Type-based

Alias Analysis. Conference on Programming Language

Design and implementation, May 1998, pp. 106-117.

[10] Free Software Foundation. GNU Classpath. Availabe at

http://www.gnu.org/software/classpath

[11] P. B. Gibbons and S. S. Muchnick. Efficient Instruction

Scheduling for a Pipelined Architecture. Symposium on

Compiler Construction, July 1986.

[12] J. Gosling, B. Joy and G. Steele. The Java Language

Specification. Addison-Wesley, 1996.

[13] Intel Corporation. Intel� Itanium� Architecture Software

Developer’s Manual. Available at

http://developer.intel.com/design/itanium/manuals.

[14] Intel Corporation. Intel� Itanium� Processor Reference

Manual for Software Optimization. Available at

http://developer.intel.com/design/itanium/manuals

[15] Intel Corporation. Open Runtime Platform (ORP).

Available at http://orp/sourceforge.ne

[16] D. Kaestner and S. Winkel. ILP-based Instruction

Scheduling for IA-64. Workshop on Languages, Compilers,

and Tools for Embedded Systems, June 2001, pp. 145-154.

[17] T. Lindholm and F. Yellin. The Java Virtual Machine

Specification. Second Edition. Addison-Wesley, 1999.

[18] S. S. Muchnick. Advanced Compiler Design and

Implementation. Morgan Kaufmann Publishers, San

Francisco, CA, 1997.

[19] M. Poletto and V. Sarkar. Linear Scan Register Allocation.

ACM Transactions on Programming Languages and Systems,

Vol. 21, No. 5, September 1999, pages 895-913.

[20] J.M. Stichnoth, G.-Y. Lueh, and M. Cierniak. Support for

Garbage Collection at Every Instruction in a Java Compiler.

Conference on Programming Language Design and

Implementation, May 1999, pp. 118-127.

[21] Standard Performance Evaluation Corporation. SPEC JVM98

Benchmarks. Available at http://www.spec.org/osg/jvm98.

[22] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and T.

Nakatani. A Dynamic Optimization Framework for a Java

Just-In-Time Compiler. Conference on Object-Oriented

Programming, Systems, Languages & Applications, October

2001, pp. 180-194

[23] Sun Microsystems. The Java hotspot Virtual Machine. White

paper available at

http://java.sun.com/products/hotspot/docs/whitepaper/Java_H

otSpot_WP_Final_4_30_01.html

