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Abstract 
 

This paper describes a just-in-time (JIT) Java1 

compiler for the Intel� Itanium� processor.  The Itanium 
processor is an example of an Explicitly Parallel 

Instruction Computing (EPIC) architecture and thus 

relies on aggressive and expensive compiler optimizations 
for performance.  Static compilers for Itanium use 

aggressive global scheduling algorithms to extract 

instruction-level parallelism.  In a JIT compiler, however, 

the additional overhead of such expensive optimizations 

may offset any gains from the improved code. 
In this paper, we describe lightweight code 

generation techniques for generating efficient Itanium 

code.  Our compiler relies on two basic methods to 

generate efficient code.  First, the compiler uses 

inexpensive scheduling heuristics to model the Itanium 

microarchitecture.  Second, the compiler uses the 
semantics of the Java virtual machine to extract 

instruction-level parallelism. 

 

1. Introduction 
 

This paper describes a just-in-time (JIT) Java byte 

code compiler for the Intel Itanium processor. The 
Itanium processor is a statically scheduled machine that 

can issue up to 6 instructions per cycle – its performance, 

therefore, depends on aggressive compiler techniques that 

extract instruction-level parallelism (ILP). Building a JIT 

compiler for this processor is challenging for two reasons.  

First, the time and space taken by the JIT is an overhead 
on program execution – applying aggressive (time and 

memory consuming) JIT optimizations to obtain the last 

few percentage of performance gain may not be justified 

because the additional compilation overhead will slow 

down application load time, which may offset any gains 
from optimizations. Second, a Java JIT must be reliable 

                                                           
1 All third party trademarks, trade names, and other 

brands are the property of their respective owners 

because it is partially responsible for enforcing security (for 

example, by inserting checks or unwinding stack frames) – 

aggressive ILP optimizations (such as predication, 

speculation, and global scheduling) are complicated and 
time consuming to implement reliably. 

In this paper, we describe lightweight code generation 

techniques for generating efficient Itanium code from Java 

byte codes. We also describe potential pitfalls in Itanium 

code generation as well as optimizations that are of limited 

effectiveness. Our JIT compiler relies on several 
inexpensive techniques to generate efficient Itanium code.  

First, the compiler uses heuristics to model Itanium micro 

architecture features (e.g., bypass latencies and execution 

unit resources). Second, the compiler leverages the 

semantics and metadata of the Java Virtual Machine (JVM) 

[17] to extract ILP. Our experimental results show that the 
goal of inexpensive but effective optimizations on Itanium 

is achievable.  

The JIT compiler is part of the Open Runtime Platform 

(ORP) [15], an open source JVM that uses the GNU 

classpath Java libraries [10].  We ported ORP to run on the 
Itanium Processor Family (IPF) but we have not yet tuned 

the performance of ORP’s machine-specific and 

performance-critical components, such as synchronization, 

garbage collection, and exception handling.  Figure 1 

compares the performance of ORP with the IBM JDK v1.3 

Beta 2 (which is also an IPF JVM) for several benchmarks 
from the Spec JVM98 benchmark suite [21]. These 

measurements were gathered on a 733 MHZ Itanium 

workstation. ORP is competitive with the IBM JDK for 

compute-intensive benchmarks such as 201_compress, 

202_jess and 222_mpegaudio, all of which spend most of 

their execution time in JIT-compiled code. The IBM JDK 
outperforms ORP significantly for benchmarks that demand 

fast synchronization (227_mtrt and 209_db) and exception 

handling (228_jack). 

The remainder of this paper is organized as follows.  

Section 2 presents an overview of the IPF architecture and 

the Itanium processor micro architecture.  Section 3 
describes the optimization phases of our JIT compiler.   

Section 4 describes the register allocator, which is 



 

 

 

based on the linear scan register allocation algorithm [19] 

and enhancements that minimize the amount of 

information the compiler has to store to support garbage 
collection. We propose an improved linear scan allocator 

that performs register coalescing without increasing the 

asymptotic complexity of the allocator.  

Section 5 describes the code scheduler. We show 

how the scheduler models the latencies and resource 

constraints of the Itanium processor, and performs 
memory disambiguation and safe speculation of memory 

loads by leveraging the rich metadata provided by the 

JVM.  

Section 6 describes Itanium-specific optimizations 

that have only minor benefits (aggressive sign-extension 

optimization and predication) and describes the potential 
pitfall of ignoring branch hint bits on the Itanium 

processor.  

 

2. The Itanium processor 
 

The IPF architecture organizes instructions into static 
groups called bundles [13].  A bundle is 128 bits long and 

contains 3 instruction slots.  Each instruction has a type (I, 

M, F, B, A, L) corresponding to the execution unit type 

on which the instruction will execute. The I-, M-, F- and 

B-type instructions can be executed only on integer, 

memory, floating-point or branch units, respectively. A-
type (arithmetic) instructions, such as integer add, can be 

executed on either memory units or integer units. L-type 

instructions are for loading of 64-bit immediates and use 

the integer and floating-point units. L-type instructions 

take two slots in a bundle; all other instructions take one 

slot.  Only certain combinations of instruction types are 
valid inside each bundle.  There are 24 valid combinations 

each of which is called a template.  Some templates 

contain stop bits, which indicate cycle breaks between 

instructions – these are necessary to enforce dependencies 

between instructions within and across bundles.   The 

sequence of instructions between stop bits or between a 
stop bit and a taken branch is called an instruction group. 

The IPF architecture is a load-store architecture and 

has only the register indirect addressing mode for data 

access instructions. The register file contains 128 integer, 

128 floating-point, 64 predicate, and 8 branch registers.  
The integer registers are divided into 96 stack registers 

and 32 static registers. Each procedure starts by allocating 

a register frame using the alloc instruction. The Register 

Stack Engine (RSE) ensures that the requested number of 

registers is available to the method by moving registers 

between the register stack and the backing store in 
memory without explicit program intervention.  

The IPF architecture is a 64-bit architecture and 

provides limited support for 32-bit integer arithmetic. 

Load instructions zero-extend 8-, 16- and 32-bit integer 

values. The compiler must generate explicit sign-

extension instructions whenever the upper 32 sign bits may 
affect program semantics. 

One of the salient features of the IPF architecture is 

predication. Most instructions have a qualifying predicate – 

if the predicate is evaluated to true, the processor commits 

the instruction’s side effects to the architectural state; 

otherwise, the processor discards the instruction’s side 
effects. Predication is used to remove branches, thus 

reducing branch misprediction penalties, increasing the 

scope for instruction scheduling, and possibly reducing path 

lengths. 

Another feature of the IPF architecture is branch 
prediction hint bits, which allow a compiler to specify what 

kind of branch prediction should be done for a branch 

instruction. The branch prediction hint can be one of four 

values: statically taken, statically not taken, dynamically 

taken, and dynamically not taken. The usage of the hint is 

micro architecture specific. 
The Itanium processor [14] is an implementation of the 

IPF architecture.  This processor can decode two bundles 

per cycle and issue up to six instructions per cycle.  The 

micro architecture has nine execution units: two memory, 

two integer, two floating-point and three branch units. NOP 

instructions are assigned to execution units and are executed 
like any other instruction. The micro architecture will stall if 

the instructions inside an instruction group oversubscribe 

the processor’s execution unit resources.  The execution 

units have varying execution latencies and there are non-

unit bypass latencies between certain execution units. 

 

3. Compiler overview 
 

There are two kinds of compilation infrastructures that 

are commonly adopted in JVM implementation: mixed 

mode and compilation mode. The former comprises of an 
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Figure 1. Performance comparison of ORP versus 
IBM JDK. 



 

 

 

interpreter that interprets cold (infrequently-executed) 

methods and a compiler that compiles identified hot 

(frequently-executed) methods [23][22]. The later 
compiles methods using either multiple JIT compilers [8] 

or multi-level compilation [4]. The infrastructure we use 

is compilation mode, which is similar to JUDO [8]. The 

scope of this paper focuses solely on lightweight code 

generation techniques that can be used in fast code 

generation [8] and 1-level optimization [22]. Figure 2 
shows the structure of the JIT compiler. The compiler 

consists of two major components: the front end and the 

back end. The front end builds the intermediate 

representation (IR) and performs machine-independent 

optimizations. The back end lowers the IR to the machine 

level and performs architecture-dependent optimizations 
such as register allocation and code scheduling. 

 

PrepassPrepass

InliningInlining

Global optimizationsGlobal optimizations

IR constructionIR construction

Code SelectionCode Selection

Register AllocationRegister Allocation

Front end

Code EmissionCode Emission

GC supportGC support

Back end

Code SchedulingCode Scheduling

PredicationPredication

 
Figure 2. Compiler structure. 

The compiler front end is similar to the one described 

in [8]. Compilation starts with the prepass phase, which 

traverses the Java bytecodes and collects information such 

as basic block boundaries and the Java operand stack 

depth. The IR construction phase then uses this 
information to build the control-flow graph and IR 

instruction sequences for each basic block. It also 

performs local common subexpression elimination across 

extended basic blocks. 

The inlining phase identifies call sites that are 

candidates for inlining. The front end repeats the IR 
construction phase for the inlined call sites, merging the 

inlined method’s IR into the caller’s IR. The inlining 

policy is based on static heuristics that guard against code 

explosion by limiting the size of the inlined method and 

the total size of the method after inlining.  When inlining 

a virtual method that can be overridden, the compiler 
generates a guard that tests whether the inlined method is 

the right method to be invoked. This guard branches to 

the normal method invocation code sequence if the test 

fails. The last phase of the front end is the global 

optimization phase, which performs copy propagation, 

constant folding, dead code elimination [2], and null pointer 

check elimination.  
The first phase of the compiler back end is code 

selection, which lowers high-level operations (such as field 

or array element accesses) to IPF code sequences.  Global 

register allocation assigns physical registers, generates spill 

code, and performs coalescing to eliminate register moves. 

Predication [3] eliminates some branches by predicating the 
instructions that are control dependent on a branch with the 

branch condition.  

Code scheduling assigns instructions to execution 

cycles, packs them into the bundles, and selects templates.  

The scheduler must insert stop bits so that the hardware 

respects data dependence hazards.  It must also use NOP 
instructions to fill unused instruction slots inside a template. 

The backend performs code scheduling after register 

allocation so that it also schedules any spill code generated 

by register allocation and so that move operations that are 

eliminated by register coalescing do not interfere with 

scheduling. 
The GC support phase computes the set of live object 

references at every instruction [20] and writes this 

information into a compressed GC map data structure.  The 

compiler uses this information at run-time to report the root 

set of live references to the garbage collector.  The final 
code emission phase emits the native IPF binary code into 

memory for execution. 

 

4. Register allocation  
 

Choosing a register allocation algorithm involves 

making a trade-off between compilation time and the quality 
of the generated code. Graph coloring [5][6] is a commonly 

used approach to assign registers, which requires building 

the interference graph. Given the large number of registers 

available on the Itanium processor and the RSE  a simpler 

algorithm is sufficient to yield a good register allocation. To 

favor fast compilation time, we chose the linear scan 
register allocation algorithm [19] that has linear-time 

complexity in assigning registers and does not require 

building the interference graph.  

Linear scan register allocation algorithm approximates 

live ranges of variables using live intervals. A live interval 
is a contiguous set of instructions that includes the 

variable’s live range.   

The register allocator first creates a linear ordering of 

the instructions according to a traversal of the control flow 

graph and then builds a list of live intervals sorted by the 

order of the first instruction of the interval.  The interval 
size has a direct influence on the quality of register 

allocation because the longer an interval, the more likely it 

overlaps with other live intervals. The register allocator tries 

to minimize interval lengths by traversing the blocks in 

topological order.  For a method with I instructions, V 



 

 

 

virtual registers, and B basic blocks, the live intervals are 

computed in O(I+VB) time given precomputed liveness 

information.  
After computing the live intervals, the register 

allocator assigns registers to live intervals in a single pass 

over the sorted list of live intervals in O(V) time. To avoid 

excessive RSE activity, the register allocator tries to 

assign the minimum number of physical registers.  It also 

tries to avoid spilling variables and minimize anti 
dependencies, both of which hinder code scheduling.  The 

register allocator starts with a set of four available 

registers.  It assigns registers from this available set in a 

round-robin fashion. If it runs out of registers, it adds 

another register to the available set or spills if it cannot 

add another register to the set. This strategy avoids 
superfluous anti dependencies while minimizing the 

number of used registers and the number of spills. 

 

4.1.  Register coalescing 
 

Register coalescing eliminates moves by assigning 

the same register to the source and destination operands 

of a move.  Coalescing is an important optimization for 

Itanium because the extra move instructions take up 
execution resources during scheduling and add to critical 

path lengths, especially floating-point moves, which have 

a latency of five cycles. 

If the live ranges of the source and the destination of 

a move instruction do not interfere the compiler can 

coalesce the live ranges and eliminate the move [5]. For 

example, Figure 3 shows that variables v, t1 and t2 can 

be assigned the same physical register and the two move 

instructions can be eliminated. Linear scan register 

allocation does not compute the live ranges of variables 

and can coalesce two variables only if their live intervals 
do not intersect. As a result, it easily misses register 

coalescing opportunities. For example, Figure 3b shows 

that v and t2 cannot be coalesced because their intervals 

overlap.  

Figure 3. Live interval as approximation of live 
range 

The JIT compiler performs register coalescing as a 

separate optimization inside linear scan register allocation. 

Rather than relying on the limited opportunities for live 
interval coalescing, the compiler attempts to coalesce a 

source and destination of a register move instruction if the 

live interval of the source does not intersect with the live 

range of the destination. The algorithm uses the live interval 

information already computed for the linear register scan 

and computes the live ranges on the fly during a single 
reverse pass over the instructions.  

The register coalescing algorithm iterates over all the 

instructions in reverse order. When it encounters a register 

move instruction d = s, it checks whether this instruction is 

the end of the live interval of the variable s. If so, it marks 

d and s as candidates for coalescing. If the algorithm 
reaches the beginning of the live interval of s without 

finding a conflict, it coalesces d and s.  A conflict occurs if 

d is live inside the live interval of s; that is, if the live 

interval of s contains a use or definition of d, or d is live at 

the basic block boundary inside the live interval of s.  This 

algorithm is powerful enough to coalesce multiple variables. 
For example, in the program fragment shown in Figure 3, it 

coalesces v with both t1 and t2. 
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Figure 4. Register coalescing. 

The complexity of the register coalescing algorithm is 

O(I + VB).  The I component is because of the reverse 

traversal of the instructions. The VB component is because 
of the iteration over the live variables at each basic block 

boundary. This is the same asymptotic complexity that is 

required to build the live intervals; thus, this algorithm 

improves the results of linear scan register allocation 

without increasing its complexity.  Figure 4 shows that 
register coalescing optimization improves performance by 

up to 6%. The best results are for the floating-point 

benchmarks because floating-point register moves have a 

high latency (5 cycles). The speedup for integer benchmarks 

is 1-2%. 

 

4.2. Garbage collection support 
 

The JIT compiler provides support for garbage 
collection at every instruction using a technique similar to 
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the one described in [20]. For each instruction, it 

computes the set of registers and stack locations that 

contain live references and interior pointers (pointers to 
the middle of the objects allocated on the heap) and 

records this information in a data structure called the GC 

map table. To enumerate the root set, the garbage 

collector iterates over the set of frames on each thread’s 

runtime stack.  For each frame, the garbage collector 

makes a callback into the JIT asking it to enumerate the 
set of live references for that frame and to unwind to the 

previous frame.  The JIT compiler computes the set of 

live references for the frame using the GC map 

information.  

The number of physical registers assigned to hold 

references and interior pointers affects the size of the GC 
map because of the GC map’s encoding scheme. The 

compiler attempts to minimize the size of the GC map by 

attempting to minimize the number of physical registers 

that are assigned to hold references or pointers. The 

register allocator splits the integer physical registers into 

two groups: registers reserved for references and pointers, 
and registers that can contain values of any integral type. 

Register allocation is performed in two passes. In the first 

pass the allocator assigns registers only to references and 

interior pointers from an initial set of four available 

registers. If it runs out of registers, it does not add 
registers to the available set – rather it leaves the virtual 

registers unassigned.  In the second pass, the allocator 

starts with a fresh set of four available registers, and 

assigns physical registers to all unassigned virtual 

registers, this time increasing the number of available 

registers if necessary. This technique allows the compiler 
to limit the number of registers used by references 

whenever possible without sacrificing the quality of 

register allocation. 

 

5. Code scheduling 
 

The basic unit of scheduling is an extended basic 
block (i.e., a linear sequence of instructions with a single 

entry point and multiple exits). The control flow exits 

from the middle of an extended block correspond to 

control flow caused by run-time exceptions. An extended 

basic block cannot span a function call.  For each 
extended basic block the scheduler first builds a 

dependence graph whose nodes are instructions and 

whose edges correspond to dependencies.  The graph 

contains an edge <I,J> if an instruction J is data or control 

dependent on instruction I. Each edge is annotated with 

the latency of the dependency.  
The number of edges in the dependence graph affects 

the quality of the generated code as well as the time and 

memory required for scheduling.  The method prolog 

sequence allocates a memory stack frame by adjusting the 

stack pointer and allocates a register frame using the 

alloc instruction; these instructions induce many 

dependencies in the program because any instruction that 

uses stack registers or the stack frame depends on them. The 
scheduler avoids these dependencies by assigning the 

maximum possible heuristic value to these prolog 

instructions, thereby guaranteeing that they are scheduled 

before the dependent instructions.  This also allows the 

scheduler to schedule the prolog instructions in parallel with 

independent instructions. 
The scheduler assigns instructions to execution cycles 

using cycle scheduling [11].  Given a choice between 

several ready instructions, the scheduler selects the one that 

has a maximum distance along any path to a leaf node of the 

graph. When several instructions have the same maximum 

distance the scheduler chooses the one that has the 
maximum number of successors.   During cycle scheduling, 

the scheduler attempts to avoid over subscribing execution 

unit resources by using a resource vector to model each 

cycle’s execution unit utilization [18]. The cycle scheduler, 

however, does not assign instructions to execution units – 

the subsequent template selection pass does this assignment. 
Template selection groups the instructions in each cycle into 

valid bundles, which effectively assigns instructions to 

execution units.   

The reason for assigning execution units after cycle 

scheduling is that some instructions can be executed on 
more than one execution unit – assigning these instructions 

eagerly during scheduling can lead to sub-optimal code on 

Itanium. For example, an integer add can be executed on 

either the memory unit or the integer unit.  When inserting 

an integer add instruction into a cycle, the scheduler records 

that the instruction may use either the integer unit or the 
memory unit, but it does not choose which one. The 

scheduler uses the generic machine resource approach [1] to 

guarantee that an execution unit will be available for the 

integer add instruction. Address computation instructions, 

however, are assigned to execution units during scheduling 

because this assignment affects the latency of the address 
computation instruction; Section 5.3 describes this in more 

detail.  

 

5.1. Type-based memory disambiguation 
 

Memory disambiguation is very important in a compiler 

for a statically scheduled machine such as Itanium because 

load operations tend to be on the critical path and false 

memory dependencies hinder instruction-level parallelism. 
Traditional compilers use potentially expensive analyses to 

determine whether two memory operations may access the 

same memory location.  The JIT compiler uses the Java 

virtual machine’s metadata to disambiguate memory 

accesses (i.e., it uses type-based memory disambiguation 
[9]).  

The JIT compiler annotates each memory operand with 

the type and kind of the memory location it references. The 



 

 

 

compiler derives type information from the Java byte 

codes and preserves this information throughout 

optimizations. The memory location kind is one of: object 
field, static field, array element, array length, stack 

argument, virtual table address, constant value, method 

address, spilled variable, callee-saved register, switch 

table element, and constant string address. The compiler 

further disambiguates field references using unique field 

identifiers provided by the virtual machine; for example, 
it can determine that the store instructions generated from 

the Java byte codes putfield #10 and putfield #15 refer to 

different memory locations even if both fields have the 

same type. Figure 5 shows that type-based memory 

disambiguation yields up to 2% performance 

improvement over a conservative approach that assumes 
that all memory accesses are aliased. 

Figure 5. Type-based memory disambiguation. 

 

5.2. Exception dependencies 
 

The Java virtual machine [12][17] specifies that all 

object accesses must be checked at runtime – an attempt 

to access a field or method using a null object reference or 

an attempt to use an array index that is out of bounds 

causes an exception.  Moreover, Java exceptions are 
precise – all visible side effects from instructions before 

the exception must appear to have taken place and no side 

effects from instructions after the exception may appear to 

have taken place [12]. 

The JIT compiler implements run-time exceptions 
explicitly by generating test-and-branch instructions that 

check the exception condition and transfer control to code 

that throws an exception if the check fails. These explicit 

checks introduce branches inside common code paths 

effectively creating extended basic blocks. 

To enforce the precise exception semantics of Java 
the scheduler creates a dependence edge from an 

exception check branch to a subsequent instruction inside 

the extended basic block if that instruction is a memory 

store, writes a register that is live at the exception handler, 

is another exception check branch for a different 

exception type, or is a memory reference that may be 

guarded by the check (e.g., an instruction that loads a field 

of an object cannot be executed before the instruction that 
checks that the object reference is not null unless the 

compiler uses speculation).  This strategy minimizes the 

number of dependence edges and allows load instructions 

that do not throw exceptions to be hoisted above exception 

check branches. 

Figure 6 shows an example of a program fragment with 
a null pointer exception check. Assume there is no 

exception handler for the null pointer exception or such a 

handler does not use r17, r21, and f8. The scheduler 

generates only the dependency from the branch (instruction 

2) to the object field load (instruction 4). Instructions 3 and 

5 do not depend on the branch because their destination 
registers are dead on the branch taken path, and instruction 6 

does not depend on the branch because it loads a static field 

(which cannot throw an exception) and because its 

destination register f8 is dead on the branch taken path. 

 

 1  (p6,p0) = cmp.eq r16, 0   

 2 (p6) br throw null pointer exception 

 3  r17 = add r16, 8 

 4  r18 = ld [r17]  // load object field 

 5  r21 = movl 0x000f14e32019000 

 6  f8 = fld [r21] // load static 

 

Figure 6. Program fragment with exception 
dependencies. 

The chart in Figure 7 shows the performance 

improvement from using extended block scheduling with 

precise dependencies between exception branches and load 
instructions over basic block scheduling. The chart in this 

figure shows that these techniques improve performance 

significantly; for example, the performance of 

222_mpegaudio improves by more than 20%. 

 

Figure 7. Extended basic block scheduling. 
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5.3. Modeling bypass latencies 
 

The scheduler can model most bypass latencies easily 

because most instructions can only be mapped to a single 

execution unit type. An important exception is the latency 

from an address computation instruction to a load 
instruction that uses the address. An address computation 

can be executed in a single cycle on either an integer or a 

memory unit. There is no bypass latency to a load 

instruction if its address computation is executed on a 

memory unit and a bypass latency of one cycle if it is 
executed on an integer unit. As a result, the scheduler 

cannot model the true latency of the address computation 

instruction if it does not assign an execution unit to the 

address computation during scheduling. 

Because memory address computation instructions 

tend to be on the critical path, the scheduler attempts to 
assign an address computation instruction to a memory 

unit during scheduling.  If all the memory units for the 

cycle are already assigned the scheduler assigns the 

address computation to an integer unit and increments its 

dependence latency.  

The chart in Figure 8 compares the performance 
improvement from accurately modeling the latency of 

address computation instructions over assuming there is 

no additional latency from an address computation to a 

load. This chart shows that this technique improves 

performance by up to 3%.   

Figure 8. Modeling address computation bypass 
latency. 

 

5.4. Template selection 
 

The template selection phase groups instructions into 

bundles. It chooses an instruction slot for each instruction, 
fills empty slots with NOP instructions, and selects the 

templates that specify the execution unit types and cycle 

breaks.  

Ignoring the execution unit and decode resources of the 

micro architecture during template selection can lead to 

over-subscription of processor resources -- for example, by 
assigning NOP instructions to units already assigned to 

other instructions or by using more than two templates for 

an instruction group (the Itanium processor decodes two 

bundles per cycle). Previous work [16] suggested using 

integer programming to find the optimal template 

assignment. Such an approach is too expensive in a JIT 
compiler. Instead, we designed a fast heuristics-based 

algorithm that performs template selection in linear time to 

the number of instructions and generates a contention-free 

schedule for most of the instruction cycles. 

For each cycle in the schedule, the template selector 

iterates over the instructions in the cycle and greedily 
assigns each instruction to the first available instruction slot 

– that is, to the first empty slot that can contain an 

instruction of the given type under the restrictions imposed 

by the templates. Each cycle ends with a stop bit that can 

occur either in the middle or at the end of the bundle. Once 

a bundle is full, the compiler selects a template that is 
compatible with the instructions and stop bits in the bundle.  

The critical part of this greedy algorithm is the heuristic 

that determines the order in which the scheduler considers 

the instructions. The template selector considers the 

instructions in order of their types whenever permitted by 
intra-cycle dependencies. The particular order -- M, F, L, I, 

A, B -- corresponds to the order in which the execution units 

appear in valid templates. The A-type instructions are 

scheduled after M- and I-type instructions to avoid over 

subscribing memory and integer execution units.  

The example in Figure 9 illustrates how considering the 
instructions in an arbitrary order may lead to sub-optimal 

code. The heuristics will cause the greedy algorithm to 

optimally group the instructions in Figure 9a into two 

bundles that can be executed during the same cycle, as 

shown in Figure 9b. (The “.mfi” template of the first bundle 

indicates that the first, second and third instructions of that 
bundle use the M, F, and I units, respectively. The “;;” at the 

end of the second bundle indicates the stop bit.) Note that 

floating-point instructions i4 and i5 are assigned to different 

bundles because there is no template with two F-unit 

resources.  
By comparison, the greedy algorithm that considers the 

instructions in their original order generates the non-optimal 

code shown in Figure 9c. It groups instructions i1, i2, and i3 

into the first bundle. Finally, it must assign the NOPs to the 

unused instruction slots, which in this case can only be M-

unit NOPs.  The resulting code executes in two cycles. 
The compiler uses several additional heuristics to 

prevent slot assignments that cause resource contention.  

First, it imposes restrictions on assigning an M-unit 

instruction to a middle slot of the bundle, since there are 

only two memory units available, and all templates except 

the .bbb template have an M-unit instruction in the first slot. 
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 Instruction       Type  Functional unit  

(i1) add  a = b,c A   M-unit or I-unit 

(i2) ld  d = [x] M   M-unit 

(i3) sxt e = f  I   I-unit 

(i4) fadd h = u,t F   F-unit 

(i5) fadd j = v,w F   F-unit 
 

a) Instructions assigned to a cycle by the scheduler 

 

 

{.mfi ld d = [x]  {.mmi add a = b,c 

  fadd h = u,t    ld d = [x] 
 sxt e = f     sxt e = f 

}      } // stall –no M-unit for 

nop.m 

{.mfb add a = b,c  {.mfi nop.m 

  fadd j = v,w    fadd h = u,t 

  nop.b      nop.i 
;;}      } 

      {.mfi nop.m 

        fadd j = v,w 

        nop.i 

      ;;} 
b) Optimal template   c) Result of greedy template 

choice.     selection with no heuristics. 

Figure 9. Template selection example. 

 

Thus, the compiler does not assign an M-unit instruction 

to the second slot unless the remaining instructions can be 

packed without using a second bundle with an M-unit first 

slot. Second, the compiler assigns A-unit instructions only 

to M-slots (I-slots) if the cycle under consideration uses 
all available I-units (M-units). Finally, the compiler 

chooses the execution units for the NOP operations that 

are least likely to cause the resource contention – namely, 

M-unit for the NOP in the first slot of the bundle, F-unit 

for the NOP in the second slot and B-unit for the NOP in 

the third slot. 

Figure 10. Template selection using heuristics. 

The chart in Figure 10 compares the performance of the 

heuristic-based greedy algorithm with the naïve greedy 

algorithm not guided by the heuristics. Using the heuristics 
improves the performance by up to 5%.  

 

6. Other optimizations 
 

In this section we describe two potentially promising 

optimizations that we found to have only minor benefits: 

predication and sign extension elimination. We also 
describe a potential pitfall in Itanium code generation: 

Ignoring branch hint bits disables the hardware branch 

predictor, which hurts performance significantly (up to 

almost 50% on one benchmark) . 

 

6.1. Predication 
 

Predication (also known as if-conversion [3]) is a 

program transformation that removes a branch by 
predicating the instructions that are control dependent on the 

branch. A simple example of predicated code is shown in 

Figure 11.  

 

      cmp.lt (p6,p7) = r17, 0       cmp.lt  (p6,p7) = r17, 0 
(p6) br L1     (p6) mov    r8 = 1 

      mov r8 = 1   (p7) mov    r8 = 0 

      br L2             br.ret 

L1:  mov    r8 = 0 
L2:  br.ret  

 

a) Unpredicated code         b) Predicated code 

Figure 11. Example of predication. 

 

Predication can have both a positive and negative affect 

on execution time: It can speed up execution by reducing 

stalls caused by mispredicted branches, but can also slow 
down execution by increasing the number of executed 

instructions  In general, predication is profitable only if the 

reduction in branch misprediction stall cycles is greater than 

the increase in the number of wasted execution cycles that 

are a result of squashed instructions. A compiler must 

accurately model resources and consider profile information 
to guarantee performance improvement from predication.  

Our compiler uses a simple version of predication. 

Namely, it predicates simple hammocks (control flow 

structures generated from simple if-then-else statements) 

that are balanced (i.e., have the same number of instructions 

in the then and else blocks). It also avoids predicating 
hammocks that contain calls: The Itanium processor 

implements calls as branches; therefore, replacing a 

potentially mispredicted branch with one or more 

mispredicted calls will not result in a performance 

improvement.  The chart in Figure 12 shows that this simple 
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predication technique improves performance by up to 2% 

but can also degrade performance by 1%. These results 

are consistent with the finding about general predication 
in [7].  

 

Figure 12. Predication. 

 

6.2. Using branch hints 
 

The first version of the compiler naïvely ignored the 

branch hint bits and used the default value of zero, which 

happened to be statically taken. As a result, the compiler 

did not use the hardware branch prediction mechanism at 
all. In a later version, the compiler specified unconditional 

branches to be statically taken and specified all other 

branches to be dynamically not taken. This simple 

strategy worked amazingly well as shown in Figure 13. 

We tried to further refine branch hints by specifying 

exception branches as statically not taken and loop 
backward branches as dynamically taken; however, this 

refinement did not have a measurable affect on 

performance.  

Figure 13. Using branch hints. 

The compiler generates hints for indirect branches in 

the move to branch register instruction.  These hints, 
however, do not have a measurable affect on performance 

because they are effective only if the move instruction 

precedes the branch instructions by at least 9 cycles.  The 

scheduler (which is not as aggressive as a global code 

scheduler in a static ILP compiler) cannot find enough 

instruction-level parallelism to take advantage of indirect 
branch hints. 

 

 

6.3. Eliminating sign extension  
 

One potential optimization we looked into is sign-

extension elimination. There are two simple ways to do this: 

eagerly and lazily. An eager approach generates sign 

extension after every definition of a 32-bit number that 
might generate an incorrectly sign-extended 64-bit number. 

This is very expensive, as any arithmetic operation can 

generate incorrect sign extension in case of over or 

underflow. Another approach is to generate sign extension 

before every use of a 32-bit number that requires it. This is 

the approach we implemented in our compiler. The most 
frequent case of an instruction requiring a sign-extended 

operand is array element address computation. Most of the 

indices are 32-bit integer numbers that have to be sign-

extended before they can be scaled and added to the 64-bit 

array address. 

There are many opportunities for eliminating sign 
extension. Yet, Itanium is a multi-issue processor, and 

eliminating sign extension will result in the performance 

improvement only if the sign extension happens to be on a 

critical path.  

We measured the upper bound on the potential 

performance improvement from sign-extension elimination 
by unsafely disabling sign-extension generation. Most of the 

benchmark programs executed correctly and the 

performance improvement was no more than 1%.  This is 

because most of the sign extension was for array indices, 

which were not on the critical path (they can be done in 
parallel with computing the address of the first array 

element). We conclude that sign-extension elimination is 

not an important optimization if the compiler does not 

perform aggressive global optimizations. 

 

7. Conclusions 
 
The Itanium processor relies heavily on ILP-extracting 

compiler optimizations for performance.  Implementing a 

JIT compiler for Itanium is challenging because ILP-

extracting optimizations tend to be expensive and take time 

to implement. The code generation techniques described in 

this paper are lightweight and yield efficient Itanium code.  
The techniques rely on heuristics to model the Itanium 

micro architecture and on JVM semantics to extract ILP.  

Our measurements show that the goal of inexpensive but 

effective optimizations on Itanium is achievable using the 

techniques described in this paper. 
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