
Optimizing Loop Performance for Clustered VLIW Architectures

Yi Qian
Steve Carr

Department of Computer Science
Michigan Technological University

Houghton MI 49931-1295
{yqian, carr}@mtu.edu

Philip Sweany
Texas Instruments

P.O. Box 660199, MS/8649
Dallas TX 75266-0199

sweany@ti.com

Abstract

Modern embedded systems often require high degrees of
instruction-level parallelism (ILP) within strict constraints
on power consumption and chip cost. Unfortunately, a
high-performance embedded processor with high ILP gen-
erally puts large demands on register resources, making it
difficult to maintain a single, multi-ported register bank. To
address this problem, some architectures, e.g. the Texas In-
struments TMS320C6x, partition the register bank into mul-
tiple banks that are each directly connected only to a sub-
set of functional units. These functional unit/register bank
groups are called clusters.

Clustered architectures require that either copy opera-
tions or delay slots be inserted when an operation accesses
data stored on a different cluster. In order to generate excel-
lent code for such architectures, the compiler must not only
spread the computation across clusters to achieve maximum
parallelism, but also must limit the effects of intercluster
data transfers.

Loop unrolling and unroll-and-jam enhance the paral-
lelism in loops to help limit the effects of intercluster data
transfers. In this paper, we describe an accurate metric for
predicting the intercluster communication cost of a loop
and present an integer-optimization problem that can be
used to guide the application of unroll-and-jam and loop
unrolling considering the effects of both ILP and interclus-
ter data transfers. Our method achieves a harmonic mean
speedup of 1.4 – 1.7 on software pipelined loops for both a
simulated architecture and the TI TMS320C64x.

1. Introduction

With increasing demands for performance by DSP ap-
plications, embedded processors must increase available
instruction-level parallelism (ILP) within significant con-

straints on power consumption and chip cost. Unfortu-
nately, increasing the amount of ILP on a processor while
maintaining a single register bank increases the cost of the
chip and potentially decreases overall performance [6]. The
number of read/write ports required to support high levels
of ILP hampers cycle time.

To improve ILP and keep the port requirements of the
register banks low, some modern embedded processors,
e.g. the Texas Instruments TMS320C6x, employ clustered
VLIW architectures. Clustered VLIW machines use sev-
eral small register banks with a low number of ports instead
of one large, highly ported register bank. Each register
bank is grouped with one or more functional units which
can access data directly from the local register bank. These
functional unit/register bank groups are called clusters. If
a functional unit needs a value stored in a remote cluster,
extra copy operations or delays are needed to retrieve the
value. This leads to intercluster communication overhead.
Clustered VLIW architectures depend on the efficient use of
partitioned register banks. Thus, the compiler must both ex-
pose more parallelism for maximal functional-unit utiliza-
tion, and schedule instructions among clusters such that in-
tercluster communication overhead is minimized.

Much recent work in compilation for clustered VLIW
architectures has concentrated on methods to partition vir-
tual registers amongst the target architecture’s clusters ef-
fectively for software pipelined loops [2, 11, 15, 24]. Since
DSP applications spend a large fraction of time in loops,
high-level loop transformations offer an excellent opportu-
nity to enhance these partitioning schemes and greatly im-
prove performance. Previous methods for applying loop
transformations for clustered VLIW architectures have pre-
sented ad-hoc techniques to apply loop unrolling and/or
unroll-and-jam to loops to improve parallelism on clustered
architectures [12, 19, 20]. In this paper, we present a new
metric for predicting the intercluster communication costs
of a loop and an integer-optimization problem to determine
unroll amounts for loop unrolling and unroll-and-jam based

upon the new metric. Our method automatically tailors un-
rolling and unroll-and-jam for a specific loop on a specific
architecture based upon the predicted initiation interval of a
software pipelined loop in the presence of intercluster com-
munication.

2. Related Work

Considerable recent research has addressed the problem
of generating code for clustered VLIW architectures. In this
section, we give an overview of methods related to software
pipelining and loop transformations.

Nystrom and Eichenberger [15] present an algorithm
that first performs partitioning with heuristics that con-
sider modulo scheduling for clustered VLIW architectures.
Specifically, they try to prevent inserting copies that will
lengthen the recurrence constraint of modulo scheduling.
If copies are inserted off critical recurrences in recurrence-
constrained loops, the initiation interval for these loops may
not be increased if enough copy resources are available.
Nystrom and Eichenberger report excellent results for their
technique.

Hiser, et al. [11], describe our experiments with regis-
ter partitioning in the context of software pipelining. Our
basic approach abstracts away machine-dependent details
from partitioning with edge and node weights, a feature
extremely important in the context of a retargetable com-
piler. Experiments have shown that we can expect a 10–
25% degradation due to partitioning for software pipelined
loops over an unrealizable 16-wide architecture with one
register bank. While this is more degradation than Nystrom
and Eichenberger report, an architecture with significantly
more ILP was used.

Sánchez and González [19, 20] have studied the effects
of inner-loop unrolling on modulo scheduled loops on ar-
chitectures with partitioned register banks. They unroll in-
ner loops by the number of clusters on the target architecture
to improve register partitioning.

Codina, et al. [10], propose a framework that inte-
grates cluster assignment with software pipelining and reg-
ister allocation on clustered processors. They have devel-
oped a heuritic approach to evaluate the quality of sched-
uled code using intercluster communication, register pres-
sure and memory accesses.

Aleta, et al. [2], describe a partitioning method that
is based on widely accepted multi-level graph-partitioning
methods. The authors have modified multi-level graph par-
titioning to emphasize final schedule length rather than the
number of inter-partition arcs remaining in the partition
graph.

Zalamea, et al. [24], present a partitioning method that
considers register allocation, register spilling and interclus-
ter communication when making a choice of cluster for an

operation. Their use of “limited” backtracking provides
much of the power of their method.

Huang, et al. [12], present a loop transformation scheme
to enhance ILP for software pipelined loops for partitioned
register bank architectures. Their method uses unroll-and-
jam to increase parallelism within a single cluster, then un-
rolls the loop level with the estimated lowest communica-
tion overhead by the number of clusters on the target archi-
tecture to improve parallelism across clusters. In this paper,
we present a new metric and integer-optimization problem
that take into account the effect of unrolling and unroll-and-
jam on software pipelining. Unlike Huang’s method, which
unrolls loops by a fixed factor to generate intercluster par-
allelism, our method tailors unroll-and-jam for a specific
loop based upon the target architecture’s configuration and
the data dependences in the loop.

3. Background

3.1. Software Pipelining

Since the integer-optimization method used in this work
is based upon software pipelining, we introduce several
concepts related to modulo scheduling [14, 18]. Modulo
scheduling selects a schedule for one iteration of a loop such
that, when that schedule is repeated, no resource or depen-
dence constraints are violated. This requires analysis of the
data dependence graph (DDG) for a loop to determine the
minimum number of cycles required between initiating ex-
ecution of successive loop iterations, called the minimum
initiation interval or MinII. Computing MinII involves two
factors: the resource initiation interval (ResII) and the recur-
rence initiation interval (RecII). ResII is the maximum num-
ber of instructions in a loop requiring a specific functional-
unit resource. RecII is the length of the longest recurrence
in the data dependence graph (DDG) of a loop. The maxi-
mum of RecII and ResII imposes a lower bound on MinII.
Once MinII is determined, instruction scheduling attempts
to find the shortest legal schedule. The smallest schedule
length to produce a legal schedule of the DDG becomes the
actual initiation interval (II). After a schedule for the loop
itself has been found, code to set up the software pipeline
(prelude) and drain the pipeline (postlude) are added. Rau
[18] provides a detailed discussion of an implementation of
modulo scheduling.

Because our optimization method uses unroll-and-jam
and unrolling, using the MinII of a loop to measure perfor-
mance improvements is inadequate. Unrolling will increase
the MinII rather than lower it even though loop performance
may be improved. Instead of using MinII, we measure per-
formance improvement in terms of unit MinII, or uMinII to
get an actual measure of speedup. The uMinII of a loop is

the MinII divided by the product of the unroll factors of the
loops [7].

3.2. Unroll-and-jam and Loop Unrolling

Unroll-and-jam [3] is a transformation that can improve
inner-loop parallelism and enhance software pipelining.
The transformation unrolls an outer loop and then fuses the
copies of the inner loops back together. Consider the fol-
lowing loop.

for (i = 0; i < 2*n; i++)
for (j = 0; j < n; j++)

y[i] += x[j]*m[i][j];

After unroll-and-jam of the i-loop by a factor of 2 the loop
becomes

for (i = 0; i < 2*n; i+=2)
for (j = 0; j < n; j++) {

y[i] += x[j]*m[i][j];
y[i+1] += x[j]*m[i+1][j];

}

The original loop contains two memory operations (the
store and load of y[i] are removed by scalar replacement
[9]) and one multiply-accumulate operation. On a ma-
chine with one memory unit, one computational unit and
unit-cycle operations, the uMinII of the loop would be 2.
The unroll-and-jammed loop contains three memory oper-
ations (y[i], y[i+1] and one reference to x[j] are scalar
replaced) and two multiply-accumulates, giving a uMinII
of 1.5. Thus, unroll-and-jam introduces more computation
into an innermost loop body without a proportional increase
in memory references, giving better performance.

For clustered architectures, unroll-and-jam (or unrolling)
can also be performed to spread the parallelism in an inner-
most loop across clusters [12, 19, 20]. This transformation
is analogous to a parallel loop where different iterations of
the loop run on different processors. On a clustered VLIW
architecture, each unrolled iteration can be executed on a
separate cluster.

Consider the following loop that is unrolled by a factor
of 2.

for (j = 0; j < 2*n; j+=2) {
a[j] = a[j] + 1; /* iteration j */
a[j+1] = a[j+1] + 1; /* iteration j+1 */

}

Since there are no dependences between the iterations, no
intercluster communication is required if iterations j and
j+1 are executed on different clusters and value cloning is
applied [13].

When a loop carries a dependence, communication be-
tween register banks may be needed. Consider the follow-
ing unrolled loop.

for (j = 0; j < 2*n; j+=2) {
a[j] = a[j-1] + 1; /* iteration j */
a[j+1] = a[j] + 1; /* iteration j+1 */

}

Before unrolling there is a true dependence from the first
statement to itself carried by the j-loop. After unrolling,
there are two loop-carried dependences between the state-
ments. If the code for iteration j is executed on one cluster
and the code for iteration j+1 on another, the loop schedule
requires communication between clusters.

Not all loop-carried dependences require communica-
tion. As in shared-memory parallel code generation, loop
alignment can be used to change a loop-carried-dependence
into a loop-independent dependence. In the following loop,
there is a loop-carried dependence from a[j] to a[j-1].

for (j = 1; j < n; j++) {
a[j] = b[j] + 1;
c[j] = a[j-1] + 1;

}

This loop can be aligned as follows.

c[1] = a[0] + 1;
for (j = 1; j < n-1; j++) {
a[j] = b[j] + 1;
c[j+1] = a[j] + 1;

}
a[n-1] = b[n-1] + 1;

Now, we can unroll the j-loop and schedule iteration j on
one cluster and iteration j+1 on another cluster without de-
pendences between clusters.

Unfortunately, alignment is not always possible. Align-
ment is limited by two types of dependences: recurrences
and multiple dependences between two statements with dif-
fering dependence distances. Each of these restrictions on
alignment is called an alignment conflict because align-
ment cannot change all loop-carried dependences into loop-
independent dependences. An alignment conflict represents
register-bank communication if the source and the sink of
the dependence are put in separate clusters.

Although actually aligning a loop is unnecessary to ex-
pose the intercluster parallelism as shown in [12], alignment
conflicts can be used to determine the intercluster commu-
nication in a loop. The method presented in the next section
predicts the number of edges that cause alignment conflicts
before unroll-and-jam and unrolling are applied. This pre-
diction serves as an estimate of the impact of communica-
tion on the final loop performance.

4. Method

To generate a good software pipeline for unroll-and-
jammed loops on clustered VLIW machines a compiler
should be able to, before unroll-and-jam is performed, not
only determine which dependences introduce intercluster
communication, but also predict whether the communica-
tion increases the schedule length of the software pipelined
code. Our method uses uMinII, including the effects of in-
tercluster data communication, as a metric to guide unroll-
and-jam for clustered VLIW machines. We perform unroll-
and-jam on the loop levels that will create the most intr-
acluster and/or intercluster parallelism and determine the
unroll-and-jam amounts that will give excellent loop per-
formance.

The rest of this section is organized as follows. Sec-
tion 4.1 gives our heuristic approach for picking loops to
unroll. Section 4.2 describes a method to compute uMinII
for unroll-and-jammed loops. Finally, Section 4.3 gives our
method for computing unroll-and-jam amounts to achieve a
lower uMinII.

4.1. Determining Loops to Unroll

In our method unroll-and-jam is applied to achieve both
intracluster and intercluster parallelism. The first step of
our approach is to determine the loop levels for unrolling or
unroll-and-jam. For improving ILP in a single cluster, we
seek the loop level, la, that will have the most data reuse
after unroll-and-jam is applied. In other words, our algo-
rithm chooses the loop level that carries the most depen-
dences that can become amenable to scalar replacement af-
ter unroll-and-jam is applied. To obtain intercluster paral-
lelism, we unroll the loop level, l p, that contains the fewest
dependences that may result in intercluster data communi-
cation after unrolling.

To aid in the discussion that follows we define Ua as the
unroll factor for la and Up as the unroll factor for l p. Hence,
the unroll factor of the entire loop nest is Ua×Up. Note that
la and lp can be the same loop.

4.2. Computing uMinII

To compute the uMinII of a loop, we must determine
both the unit RecII (uRecII) and the unit ResII (uResII).
Callahan, et al., have shown that unrolling and unroll-and-
jam do not increase the uRecII of a loop [5]. Thus, we need
only compute the uRecII once. If the innermost loop is un-
rolled, then the uRecII remains unchanged. If an outer loop
is unrolled, then the uRecII decreases by a factor of the un-
roll amount.

On an architecture with hardware loop support, FU f

fixed-point units, FUm memory/address units and support

for FUc intercluster copies per cycle, the uResII is

max{� F
FUf

�,� M
FUm

�,� C
FUc

�}
Ua ×Up

.

Here F is the number of fixed-point operations in the loop
body, M is the number of memory references and C is the
number of intercluster data transfers. F is defined as

f ×Ua ×Up,

where f is the original number of fixed-point operations in
the loop. The computation of M is outlined in detail by Carr
and Kennedy [8].

When computing C it is assumed that the unroll-and-
jammed loop is partitioned in such a way that Ua copies
of loop body derived from unroll-and-jamming loop l a are
placed in a single cluster. Then each of the U p copies of this
statement group is executed in distinct clusters. There are
two reasons for this assumption. First, by distributing the
copies of the same statement group in separate clusters, a
balanced work load across clusters is likely obtained. Sec-
ond, this partitioning scheme keeps many operations involv-
ing data reuse within a single cluster, which limits interclus-
ter communication.

4.2.1. Unrolling a Single Loop

When computing the intercluster copies caused by unrolling
a single loop l (l = la = lp), we consider the dependence
graph Gl = (Vl,El) consisting of all dependences where
the distance vector associated with the dependence, d(e),
is of the form 〈0, . . . ,0,dl,0, . . . ,dn〉 such that the lth entry
of d(e), dl(e), is not 0. El is partitioned into two groups:
EC

l and EI
l . EC

l is the set of unalignable dependences car-
ried by l whose source and sink are variant with respect to l.
EI

l is the set of dependences whose references are invariant
with respect to l. The communication cost due to edges in
EC

l is denoted CC
l and the communication cost due to edges

in EI
l is denoted CI

l . For simplicity of presentation, we as-
sume that each array reference has at most one incoming
dependence edge. See [8] for details on handling multiple
incoming edges.

Computing CC
l : For each edge e = (v0,w0) ∈ El there are

Up×Ua edges e0,e1, ...,eUp×Ua−1 ∈E ′
l after unroll-and-jam.

For each em =(vm,wn)∈E ′
l , n =(m+dl(e)) mod (Up×Ua)

[5]. We examine the first Ua edges created by unrolling to
determine the communication cost per cluster for l, denoted
uCl(e) for each edge e∈ E ′

l . Since the sources of the first Ua

edges, v0,v1, . . . ,vUa−1, will be located in the first cluster,
communication exists if and only if any sink is not in the
first cluster, i.e., if any n ≥ Ua. This implies that uCl(e)

is the number of edges where n = (m + dl(e)) mod (Up ×
Ua) ≥Ua, m = 0,1, . . . ,Ua −1. Hence,

CC
l = ∑

e∈EC
l

uCl(e)×Up.

To derive uCl(e), we break down the computation into
three common cases. These cases arise from the fact that
dependences in loops are usually very simple. For each case
we give our conclusion and an example. For a detailed proof
of each case, see [17].

Case 1: If dl(e) mod (Ua×Up) = 0, then uCl(e) = 0. Con-
sider the following loop where dl(e) = 4:

for (i = 1; i < 4*N, i++)
a[i] = a[i-4];

To generate code for a 4-cluster machine, we may un-
roll the loop by a factor of 4, giving

for (i = 1; i < 4*N, i += 4) {
a[i] = a[i-4];
a[i+1] = a[i-3];
a[i+2] = a[i-2];
a[i+3] = a[i-1];

}

Each statement may be executed on a different clus-
ter without incurring a communication cost due to the
original dependence.

Case 2: If dl(e) mod (Ua × Up) �= 0 and Ua = 1, then
uCl(e) = 1. Consider the following loop where dl(e) =
1:

for (i = 1; i < 3*N; i++)
a[i] = a[i-1];

After unroll-and-jam by a factor of 3, where U p =
3,Ua = 1, we have

for (i = 1; i < 3*N; i+=3) {
a[i] = a[i-1];
a[i+1] = a[i];
a[i+2] = a[i+1];

}

If each of these statements is assigned to a different
cluster, each cluster needs one intercluster data trans-
fer.

Case 3: If dl(e) mod (Ua ×Up) �= 0, Ua > 1 and Ua ≥
dl(e), then uCl(e) = dl(e). Consider the following loop
where dl(e) = 2:

for (i = 1; i < 6*N; i++)
a[i] = a[i-2];

After unroll-and-jam by a factor of 6 (assume U p =
2,Ua = 3), we have

for (i = 1; i < 6*N; i += 6) {
a[i] = a[i-2];
a[i+1] = a[i-1];
a[i+2] = a[i];
a[i+3] = a[i+1];
a[i+4] = a[i+2];
a[i+5] = a[i+3];

}

If the first three statements are executed on one cluster
and the last three on another cluster, each cluster needs
two intercluster copies.

From the derivation of uCl(e) we can make the follow-
ing observation: when unrolling a single loop l, the com-
munication cost per cluster caused by dependences that are
variant with respect to l does not change much with respect
to the unroll factor. In practice most dependences fall into
the above cases.1 To compute uCl(e) for variant references
in general, see [17].

Computing CI
l : For each dependence whose source and

sink are invariant with respect to l, there are Ua ×Up ref-
erences in the loop body after unroll-and-jam/unrolling.
Ua ×Up−1 memory references are eliminated by scalar re-
placement. When partitioning the loop body into U p sepa-
rate clusters, a memory operation is executed in one cluster
and the other Up −1 clusters require a copy operation. This
function remains constant as Ua changes, giving

CI
l = ∑

e∈EI
l

(Up −1).

4.2.2. Unrolling Multiple Loops

When la �= lp, we must consider the effects of multiple
loops. Unroll-and-jam of la will potentially increase the
number of loop-carried dependences causing communica-
tion when lp is unrolled or unroll-and-jammed to spread
computation across clusters. For references invariant with
respect to lp, the communication costs can be computed as

1In our experiments, all dependences are handled by these cases.

described in the previous section. However, the same is not
true for variant references.

To compute the communication cost for variant refer-
ences, we consider the case when l p is the innermost loop
and the case when it is not. When l p is the innermost loop,
the two types of dependences that can cause communication
are

1. innermost-loop-carried dependences, and

2. outer-loop-carried dependences that become carried by
the innermost loop after unroll-and-jam.

In the first case, the method presented in the previous sec-
tion accurately computes the communication cost. For the
second case, only dependences with a distance vector of the
form 〈0, . . . ,di, . . . ,0, . . . ,dn〉, where di �= 0 and i is la, are
considered. We call this set of dependence E U

i . Consider
any e ∈ EU

i . After performing unroll-and-jam on i by a fac-
tor of Ui, (Ui − di(e))+ dependences have a zero entry in
ith component of the distance vector and are carried by the
innermost loop or are loop independent [8].

For each edge e ∈ EU
i made innermost by unroll-and-

jam, we need to compute the communication cost caused by
unrolling lp (the innermost loop). To derive this communi-
cation cost, we use the convention that Cn(e), where n is lp,
is the communication cost caused by the dependences with
distance dn(e) after unrolling the innermost loop Un − 1
times. Since unrolling the innermost loop can not increase
data reuse, the only reason for unrolling the innermost loop
is to create intercluster parallelism.

From the previous section, we have

Cn(e) = uCn(e)×Un.

Thus, if the set of unalignable innermost-loop-carried de-
pendences, is denoted EC

n , then the communication cost
when lp is the innermost loop is

∑
e∈EC

n

UiCn(e)+ ∑
e∈EU

i

(Ui −di(e))+Cn(e).

When lp is not the innermost loop, we also only consider
the dependences that can be made innermost. This set of
dependences is denoted EU

i j and the distance vector of each
of these edges is of the form 〈0, . . . ,di, . . . ,0,d j,0, . . . ,dn〉,
where i is la and j is lp, or vice versa. In this case both i and
j must be unroll-and-jammed enough to make d i = 0 and
d j = 0, giving a communication cost of

∑
e∈EU

i j

(Ui −di(e))+(Uj −d j(e))+.

Cn(e) is not needed here since the innermost loop is not
unrolled.

Example. To demonstrate intercluster copy prediction for
unrolling multiple loops, consider the following loop:

for (j = 1; j < N; j++)
for (i = 1; i < N; i++)

{
a[i][j]=a[i-1][j]
b[i][j]=a[i][j-1]+a[i-1][j-1]

}

Let e1 denote the edge from a[i][j] to a[i-1][j], e2

denote the edge from a[i][j] to a[i][j-1], and e3 de-
note the edge from a[i][j] to a[i-1][j-1]. Note that
d(e1) = 〈0,1〉, d(e2) = 〈1,0〉 and d(e3) = 〈1,1〉. If Ui = 2,
Uj = 2 for a 2-cluster machine, we have

EC
n = {e1}

EU
j = {e2,e3}

Cn(e1) = 1×2 = 2
Cn(e2) = 0
Cn(e3) = 1×2 = 2

Therefore,

C = Uj ×Cn(e1)+(Uj −d j(e2))+ ×Cn(e2)+
(Uj −d j(e3))+ ×Cn(e3)

= 2×2+1×0+1×2
= 6

4.2.3. Register Pressure

Unroll-and-jam/unrolling can increase the number of regis-
ters needed in the innermost loop body. Carr and Kennedy
have presented a method to compute the number of registers
required by scalar replacement for an unroll-and-jammed
loop before unroll-and-jam is applied [8]. Since they do not
consider unrolling an innermost loop, we extend their work
to include the effects of inner-loop unrolling.

In computing register pressure R, the method proposed
in [8] partitions the reference set of a loop into the follow-
ing three sets that exhibit different memory behavior when
unroll-and-jam is applied.

• V /0 is the set of references without an incoming depen-
dence,

• VC
r is the set of memory reads that have a loop-carried

or loop-independent incoming dependence, but are not
invariant with respect to any loop, and

• V I
r is the set of memory reads that are invariant with

respect to a loop.

The number of registers required by each reference set is
represented by R /0, RC

r , and RI
r respectively, giving R =

R /0 + RC
r + RI

r. In this paper, we only discuss the changes
needed for RC

r . R /0 will be 0 since the references in V /0 are

not amenable to scalar replacement. The computation of R I
r

is described elsewhere [17].
For each reference v ∈ V C

r such that the edge associated
with v is carried by the innermost loop, unrolling the inner-
most loop by Un will create Un dependence edges amenable
to scalar replacement. From Callahan, et al. [5], (Un −
dn(ev))+ of these edges have distances of �dn(ev)/Un�, and
min(Un,dn(ev)) of them have distances of �dn(ev)/Un�+1.
Therefore, for each dependence in the innermost loop, the
number of registers required by scalar replacement after un-
rolling the innermost loop is

Rn = (Un −dn(ev))+ ×
(⌊

dn(ev)
Un

⌋
+1

)
+

min(Un,dn(ev))×
(⌊

dn(ev)
Un

⌋
+2

)

Since Carr and Kennedy show that

RC
r = ∑

v∈VC
r

(∏
1≤i<n

(Ui −di(ev))+)× (dn(ev)+1)

when the innermost loop is not unrolled, we have

RC
r = ∑

v∈VC
r

∏
1≤i<n

(Ui −di(ev))+Rn

when the innermost loop is unrolled.
In practice dependence distances are almost always 0 or

1, allowing us to simplify the computation of register pres-
sure. If dn(ev) < Un, we have

⌊
dn(ev)

Un

⌋
= 0,

and

(Un −dn(ev))+ = Un −dn(ev).

Thus, Rn becomes

(Un −dn(ev))×1+dn(ev)×2 = Un +dn(ev),

giving

RC
r = ∑

v∈VC
r

∏
1≤i<n

(Ui −di(ev))+(Un +dn(ev)).

4.3. Computing Unroll Amounts

To find the best unroll amounts for a particular loop
on a particular target architecture, we solve the following
integer-optimization problem.

objective function: min uMinII

constraints: RC
r +RI

r ≤ Rm

Ua,Up ≥ 1
where Rm is the number of physical registers in the target
machine.2

To solve this problem, we can bound the search space
and do an exhaustive search to find the best unroll amounts.
Carr and Kennedy have shown that bounding the space by
Rm in each dimension is sufficient. If an exhaustive search is
too expensive, a heuristic search, such as described in [17],
may be used.

5. Experimental Results

We have implemented the algorithm described in Sec-
tion 4 in Memoria, a source-to-source Fortran transformer
based upon the DSystem [1]. We evaluate the effectiveness
of our transformations on a simulated architecture, called
the URM [16], and the Texas Instruments TMS320C64x.

The benchmark suite for this experiment consists of 119
loops that have been extracted from a DSP benchmark suite
provided by Texas Instruments. The suite, including two
full applications and 48 DSP kernels, contains typical DSP
applications: FIR filter, correlation, Reed-Solomon decod-
ing, lattice filter, LMS filter, etc. Out of these 119 loops,
unroll-and-jam or loop unrolling is applicable to the 71
loops that do not contain branches or function calls in the
innermost-loop body. Our results are reported over these 71
loops.

We converted the DSP benchmarks from C into Fortran
by hand so that Memoria could process them. After conver-
sion, each C data type or operation is replaced with a similar
Fortran data type or operation. For example, unsigned in-
tegers are converted into integers in the Fortran code and
bitwise operations in C are converted into the correspond-
ing bitwise intrinsics in Fortran. By defining the operation
cycle counts properly, this conversion allows us to achieve
accurate results from our experiments.

Section 5.1 reports the speedups achieved by Memo-
ria on four clustered VLIW architectures modeled with
the URM. Section 5.2 presents the speedups achieved by
Memoria on the Texas Instruments TMS320C64x. Finally,
Section 5.3 analyzes the accuracy of our communication
cost model.

2Note that registers will need to be reserved to allow for the increase in
register pressure caused by software pipelining.

5.1. URM Results

For the URM, we have compiled the code generated by
Memoria with Rocket [21], a retargetable compiler for ILP
architectures. Rocket performs cluster partitioning [11],
software pipelining [18] and Chaitin/Briggs style register
assignment [4]. In this experiment, Rocket targets four dif-
ferent clustered VLIW architectures with the following con-
figurations:

1. 8 functional units with 2 clusters of size 4

2. 8 functional units with 4 clusters of size 2

3. 16 functional units with 2 clusters of size 8

4. 16 functional units with 4 clusters of size 4

Each register bank has 48 integer registers. All func-
tional units are homogeneous and have instruction timings
as shown in Table 1. Each machine with 8 functional units
can perform one copy between register banks in a single cy-
cle, while the 16 functional unit machines can perform two
per cycle.

Operations Cycles
integer copies 1
float copies 1

loads 5
stores 1

integer mult. 2
integer divide 12
other integer 1
other float 2

Table 1. Operation Cycle Counts

Table 2 shows the speedup obtained by our method on
the benchmark suite. The speedup is measured using the
actual unit II (uII) of the software pipelined loop before and
after loop transformations. The “# Improved” row shows
the number of loops that gain improvement via unroll-and-
jam and/or unrolling.

We have observed a 1.39 – 1.68 harmonic mean speedup
in uII achieved by our algorithm over the original loops.
The median speedup ranges from 1.52 – 1.78. The speedups
for individual loops range from 0.7 to 14.4, with more than
50 loops, or 70% of loops to which unrolling is applicable,
seeing improvement by our method.

As can be seen in the range of speedups, some loops
have very large speedups and some loops actually show a
degradation. The loops with the largest speedups are dou-
bly nested and compute a reduction. Unroll-and-jam im-
proves the performance of this type of loop particularly
well. The two loops that degrade in performance use index

Width 8 FUs 16 FUs
Clusters 2 4 2 4

Speedup
Harmonic Mean 1.39 1.68 1.40 1.43

Median 1.52 1.78 1.60 1.60
Improved 50 69 50 51

Table 2. URM Speedups: Transformed vs.
Original

arrays, making accurate dependence analysis nearly impos-
sible. Because the dependence analysis is inexact, our pre-
diction scheme does not correctly predict the communica-
tion needed by the loop.

Although the architecture with 8 functional units ar-
ranged in 4 clusters achieves the best overall speedup, the
performance of each individual loop is lower than on the
other architectures. This is because this architecture has
enough functional units to capture parallelism exploited by
unrolling, but requires a significant number of cycles for in-
tercluster data transfers since only one such transfer can be
initiated in a single cycle.

Using a fixed unroll amount, as is done in previous work,
may cause performance degradation when communication
costs are dominant. Table 3 shows the performance differ-
ence between our method and Huang’s method [12] when
the methods use different unroll amounts. The row marked
“# of Loops” shows how many of the loops have different
unroll amounts under both methods on each clustered archi-
tectures. The row labeled “Harmonic Mean” gives the har-
monic mean speedup in uII obtained by our method. The
row labeled “Harmonic (Fixed)” shows the harmonic mean
speedup in uII obtained by Huang’s method. Our algorithm
gives a better harmonic mean speedup in uII than Huang’s
method on each architecture. The degradations seen on the
4-cluster 8-wide machine are due to the dependences with
indeterminate dependence distances caused by index arrays.

Width 8 FUs 16 FUs
Clusters 2 4 2 4

Speedup
Harmonic Mean 1.00 0.91 1.00 1.07

Harmonic (Fixed) 0.88 0.84 0.88 0.95
of Loops 9 4 9 21

Table 3. URM Speedups: Our Algorithm vs.
Fixed Unroll Amounts

5.2. TMS320C64x Results

We have also evaluated our algorithm on the Texas In-
struments TMS320C64x (or C64x). The C64x CPU is a

two-cluster VLIW fixed-point processor with eight func-
tional units that are divided equally between the clusters.
Each cluster is directly connected to one register bank hav-
ing 32 general purpose registers. All eight of the functional
units can access the register bank in their own cluster di-
rectly, and the register bank in the other cluster through a
cross path. Since only two cross paths exist, a total of up
to two cross path source reads can be executed per cycle.
Other intercluster data transfers are done via explicit copy
operations. On the C64x, multiply instructions have one de-
lay slot, load instructions have four delay slots, and branch
instructions have five delay slots. Most other instructions
have zero delay slots, while some can have up to three de-
lay slots [22].

To make use of the C64x C compiler, we convert the
unrolled code generated by the Memoria into C by hand.
Then, both the original and transformed versions of the code
are compiled and run on the C64x. When using the C64x
compiler, we choose the highest optimization level (-o3)
[23]. Since the unrolling algorithm in the C64x compiler
is a subset of Huang’s algorithm, we turned off unrolling in
the TI compiler to examine the effect of our unrolling al-
gorithm on our set of loops. We compare our algorithm to
Huang’s later in this section.

The results obtained on the C64x are summarized in Ta-
ble 4. The C64x compiler fails to find a profitable sched-
ule for two loops, and thus generates code for these loops
without applying software pipelining. Additionally two
loops that contain a division operation cannot be software
pipelined since the C64x compiler treats division operations
as function calls that disable software pipelining. There-
fore, Table 4 gives the results for 67 loops in our benchmark
suite.

Speedup
Harmonic Mean 1.70

Median 2.00
Improved 55

Table 4. TI C64x Speedups: Transformed vs.
Original

The harmonic mean speedup in uII across the entire
benchmark suite is 1.7. The individual speedups for the
loops ranged from 1.0 to 4. The harmonic mean speedup
improvement is better than that seen on the URM. The C64x
supports more intercluster copies which, in turn, reduces the
overhead of the copy operations.

On the 9 loops where our algorithm produces a differ-
ent result than Huang’s algorithm, Huang’s algorithm gets
better performance than ours. This is because the C64x sup-
ports SIMD operations and our performance model does not
considers these effects. Our model will choose not to unroll

these loops because of communication. However, unrolling
allows the C64x compiler to detect the SIMD operations
and improve intracluster parallelism. Since Huang’s algo-
rithm always unrolls irrespective of communcation cost, it
blindly exposes the SIMD operations. The solution to this
problem is to model SIMD operations in our performance
model.

5.3. Accuracy of Communication Cost Prediction

To evaluate the accuracy of our algorithm in predicting
intercluster communication, we compare the number of in-
tercluster data transfers due to cross-cluster dependences
predicted by our communication cost model against the ac-
tual number of cross-cluster dependences found in the trans-
formed loops. For each loop after unroll-and-jam/unrolling
and scalar replacement are applied, Memoria counts the in-
tercluster true dependences whose sinks are not killed by a
definition in the path from the source to the sink. The in-
put dependences whose sources and sinks reside in distinct
clusters are also recorded.

The result shows our communication cost model makes
an exact prediction for most of the loops in our benchmark
suite. For the 2-cluster machines, only 5 out of 71 loops
show a misprediction. For 4-cluster machines, 7 loops have
a misprediction. In each case, the misprediction is by one or
two dependences and occurs in the loops that contain index
arrays.

Many heuristic algorithms may not be able to derive a
partition that limits copies to the extent that our model pre-
dicts. However, this prediction serves as a lower bound for
these heuristics to attempt to achieve.

6. Conclusions

This paper presents a new method for predicting the
amount of intercluster data transfers caused by data depen-
dences in loops run on clustered VLIW architectures. This
method is part of an integer-optimization problem used to
predict the performance of a software-pipelined loop and to
guide unroll-and-jam or loop unrolling for clustered VLIW
architectures.

We have implemented our algorithm and run an experi-
ment on DSP benchmarks for four different simulated, clus-
tered VLIW architectures, and the TI TMS320C64x. Our
results show that the prediction of intercluster data depen-
dences that cause communication is accurate. In addition,
out of the 71 DSP benchmarks used, 70%-97% of the loops
can be improved via unroll-and-jam/unrolling by a har-
monic mean speedup of 1.4 – 1.7 for the five different ar-
chitectures.

Clustered VLIW embedded processors are increasing in
use, making it important for compilers to achieve high ILP

with low communication overhead. We believe that the
work presented in this paper is an important step in gener-
ating high performance code on clustered architectures. We
believe that high-level loop transformations should be an
integral part of compilation for clustered VLIW machines.

Acknowledgments

This research was partially supported by NSF grants
CCR-9870871 and CCR-0209036. StarCore provided sup-
port in the initial stages of this work. Additionally, the au-
thors would like to thank Texas Instruments for providing
the benchmark suite used in this experiment.

References

[1] V. Adve, J.-C. Wang, J. Mellor-Crummey, D. Reed, M. An-
derson, and K. Kennedy. An integrated compilation and per-
formance analysis environment for data parallel programs.
In Proceedings of Supercomputing ’95, San Diego, CA, Dec.
1995.

[2] A. Aletá, J. Codina, J. Sánchez, and A. González. Graph-
partitioning based instruction scheduling for clustered pro-
cessors. In Proceedings of the 34th Annual International
Symposium on Microarchitecture, pages 150–159, Austin,
Texas, Dec. 2001.

[3] F. Allen and J. Cocke. A catalogue of optimizing transfor-
mations. In R. Rustin, editor, Design and Optimization of
Compilers, pages 1–30. Prentice-Hall, 1972.

[4] P. Briggs, K. D. Cooper, K. Kennedy, and L. Torczon. Col-
oring heuristics for register allocation. In Proceedings of the
ACM SIGPLAN ’89 Conference on Programming Language
Design and Implementation, pages 275–284, Portland, OR,
July 1989.

[5] D. Callahan, J. Cocke, and K. Kennedy. Estimating Interlock
and Improving Balance for Pipelined Architectures. Journal
of Parallel and Distributed Computing, 5:334–358, 1988.

[6] A. Capitanio, N. Dutt, and A. Nicolau. Partitioned regis-
ter files for vliw’s: A preliminary analysis of tradeoffs. In
Proceedings of the 25th Annual International Symposium on
Microarchitecture (MICRO-25), pages 292–300, Portland,
OR, December 1-4 1992.

[7] S. Carr, C. Ding, and P. Sweany. Improving software
pipelining with unroll-and-jam. In Proceedings of the 29th
Annual Hawaii International Conference on System Sci-
ences, Maui, HI, January 1996.

[8] S. Carr and K. Kennedy. Improving the ratio of memory
operations to floating-point operations in loops. ACM Trans.
Prog. Lang. Syst., 16(6):1768–1810, 1994.

[9] S. Carr and K. Kennedy. Scalar replacement in the presence
of conditional control flow. Software Practice and Experi-
ence, 24(1):51–77, Jan. 1994.

[10] J. Codina, J. Sanchez, and A. Gonzalez. A unified modulo
scheduling and register allocation technique for clustered
processors. In Proceedings of the 2001 International Con-
ference on Parallel Architectures and Compiler Techniques,
Barcelona, Spain, September 2001.

[11] J. Hiser, S. Carr, P. Sweany, and S. Beaty. Register partition-
ing for software pipelining with partitioned register banks.
In Proceedings of the 14th International Parallel and Dis-
tributed Processing Symposium, pages 211–218, Cancun,
Mexico, May 2000.

[12] X. Huang, S. Carr, and P. Sweany. Loop transformations for
architectures with partitioned register banks. In Proceedings
of the ACM SIGPLAN Workshop on Languages, Compilers
and Tools for Embedded Systems, pages 48–55, Snowbird,
UT, June 2001.

[13] D. Kuras, S. Carr, and P. Sweany. Value cloning for archi-
tectures with partitioned register banks. In Proceedings of
the 1998 Worshop on Compiler and Architecture Support for
Embedded Systems, Washington D.C., December 1998.

[14] M. Lam. Software pipelining: An effective scheduling tech-
nique for VLIW machines. In Proceedings of the ACM
SIGPLAN ’88 Conference on Programming Language De-
sign and Implementation, pages 318–328, Atlanta, GA, July
1988.

[15] E. Nystrom and A. Eichenberger. Effective cluster assign-
ment for modulo scheduling. In Proceedings of the 31st In-
ternational Symposium on Microarchitecture (MICRO-31),
pages 103–114, Dallas, TX, December 1998.

[16] D. Poplawski. The unlimited resource machine (URM).
Technical Report 95-01, Michigan Technological Univer-
sity, Jan. 1995.

[17] Y. Qian. Loop Transformations for Clustered VLIW Ar-
chitectures. PhD thesis, Department of Computer Science,
Michigan Technological University, Houghton, MI, August
2002.

[18] B. R. Rau. Iterative modulo scheduling: An algorithm for
software pipelined loops. In Proceedings of the 27th Annual
International Symposium on Microarchitecture (MICRO-
27), November 29-Dec 2 1994.

[19] J. Sànchez and A. Gonzàlez. The effectiveness of loop un-
rolling for modulo scheduling in clustered VLIW architec-
tures. In Proceedings of the 2000 International Conference
on Parallel Processing, Toronto, Canada, August 2000.

[20] J. Sànchez and A. Gonzàlez. Instruction scheduling for clus-
tered VLIW architectures. In Proceedings of 13th Interna-
tional Symposium on System Systhesis (ISSS-13), Madrid,
Spain, September 2000.

[21] P. H. Sweany and S. J. Beaty. Overview of the Rocket re-
targetable C compiler. Technical Report CS-94-01, Depart-
ment of Computer Science, Michigan Technological Univer-
sity, Houghton, January 1994.

[22] Texas Instruments. TMS320C6000 CPU and Instruction Set
Reference Guide, 2000. literature number SPRU189.

[23] Texas Instruments. TMS320C6000 Optimizing Compiler
User’s Guide, 2000. literature number SPRU187.

[24] J. Zalamea, J. Llosa, E. Ayguadé, and M. Valero. Mod-
ulo scheduling with integrated register spilling for clustered
VLIW architectures. In Proceedings of the 34th Annual
International Symposium on Microarchitecture, pages 160–
169, Austin, Texas, Dec. 2001.

