
Efficient Interconnects for Clustered Microarchitectures

Joan-Manuel Parcerisa1, Julio Sahuquillo2, Antonio González1,3, José Duato2

1 Dept. Arquitectura de Computadors 2 Dept. Informàtica de Sistemes i Computadors 3Intel Barcelona Research Center
Universitat Politècnica de Catalunya Universitat Politècnica de València Intel Labs
Barcelona, Spain València, Spain Univ. Politècnica de Catalunya
{jmanuel,antonio}@ac.upc.es {jsahuqui,jduato}@disca.upv.es Barcelona, Spain
Abstract

Clustering is an effective microarchitectural technique
for reducing the impact of wire delays, the complexity, and
the power requirements of microprocessors. In this work,
we investigate the design of on-chip interconnection net-
works for clustered microarchitectures. This new class of
interconnects has different demands and characteristics
than traditional multiprocessor networks. In a clustered
microarchitecture, a low inter-cluster communication la-
tency is essential for high performance.

We propose point-to-point interconnects together with
an effective latency-aware instruction steering scheme and
show that they achieve much better performance than bus-
based interconnects. The results show that the connectivity
of the network together with latency-aware steering
schemes are key for high performance. We also show that
these interconnects can be built with simple hardware and
achieve a performance close to that of an idealized conten-
tion-free model.

1. Introduction

Superscalar architectures have evolved towards higher
issue-widths and longer instruction windows in order to
achieve higher instruction throughput by taking advantage
of the ever increasing availability of on-chip transistors.
These trends are likely to continue with next generation
multithreaded microprocessors [13, 24], which allow for a
much better utilization of the resources in a wide issue su-
perscalar core.

However, increasing the complexity also increases the
delay of some architectural components that are in the crit-
ical path of the cycle time, which may significantly impact
performance by reducing the clock speed or introducing
pipeline bubbles [17]. On the other hand, projections about
future technology trends foresee that long wire delays will
scale much slower than gate delays [1, 3, 11, 14, 16]. Con-

sequently, the delay of long wires will gradually become
more important.

Clustering of computational elements is becoming
widely recognized as an effective method for overcoming
some of the scaling, complexity and power problems [8, 9,
10, 17, 19, 23, 24, 27]. In a clustered superscalar microar-
chitecture, some of the critical components are partitioned
into simpler structures and are organized in smaller pro-
cessing units called clusters. In other words, a clustered mi-
croarchitecture trades-off IPC for a better clock speed, en-
ergy consumption, and ease of scaling.

While intra-cluster signals are still propagated through
fast interconnects, inter-cluster communications use long
wires, and thus, are slow. The impact of these communica-
tion delays is reduced as far as signals are kept local within
clusters. Previous work showed that the performance of a
clustered superscalar architecture is highly sensitive to the
latency of the inter-cluster communication network [5, 19].
Many steering heuristics have been studied to reduce the
communication rate [2, 6], and value prediction has been
proposed to hide the communication latency [19]. The al-
ternative approach proposed in this work consists of reduc-
ing the communication latency, by designing networks that
reduce the contention delays and proposing a topology-
aware instruction steering scheme that minimizes commu-
nication distances. Moreover, the proposed interconnects
also reduce capacitance, thus speeding up signal propaga-
tion.

For a 2-cluster architecture it may be feasible to imple-
ment an efficient and contention-free cluster interconnect
by directly connecting each functional unit output to a reg-
ister file write port in the other cluster. However, as the
number of clusters increases, the completely connected
network may be very costly or unfeasible due to its com-
plexity. On the other hand, a simple shared bus requires
lower complexity but it has high contention. Therefore, a
particular design needs to trade-off complexity for latency
to find the optimal configuration.

Previous works on clustered microarchitectures have
assumed interconnection networks that are either an ideal-

ized model ignoring complexity issues [2, 19], or they con-
sider only 2 clusters (Multicluster [8], Alpha 21264 [10]),
or they assume a simple but long-latency ring [12]. In this
paper, we explore several alternative interconnection net-
works with the goal of minimizing latency while keeping
the cluster complexity low. To the best of our knowledge
no other work has addressed this issue. We have studied
two different technology scenarios: one with four 2-way is-
sue clusters, the other with eight 2-way issue clusters. In
both cases, we propose different point-to-point network to-
pologies that can be implemented with low complexity,
i.e., just a single dedicated write port in each register file,
and achieve performance close to those of idealized models
without contention.

The rest of this paper is organized as follows. Section
2 gives an overview of the assumed clustered microarchi-
tecture. Section 3 describes the proposed interconnection
networks, and Section 4 analyzes the experimental results.
Finally, Section 5 summarizes the main conclusions of this
work.

2. Microarchitecture Overview

Several microarchitectures with different code parti-
tioning strategies have been proposed [21]. They partition
the code either at branch boundaries [9, 22, 25], or group-
ing dependent instructions together [5, 6, 8, 12, 17, 18].
The microarchitecture assumed in this paper is based on a
dependence-based paradigm [6, 19]. It differs from others
in that the register file is distributed, and its instruction
steering heuristic focuses on minimizing the penalty pro-
duced by inter-cluster communications while keeping the
cluster workloads reasonably balanced. Both features are
detailed below.

We assume a superscalar processor with register re-
naming based on a set of physical registers, and an instruc-
tion issue queue that is separated from the reorder buffer
(ROB), as in the MIPS R10000 [26] or the Alpha 21264
[10] processors. The execution core is partitioned into sev-
eral homogeneous clusters, each one having its own in-
struction queue, a set of functional units, and a physical
register file (see Figure 1). The main architectural parame-

connects, we assumed a simple centralized front-end and
data cache, although some strategies are currently being in-
vestigated to distribute these components as well [20]. Al-
so, for simplicity, we have not considered the partitioning
into heterogeneous clusters, which might be used to avoid
replication of rarely used functional units such as multipli-
ers or FP units, or to reduce path length and connectivity to
memory ports. Anyway, the proposed techniques in this pa-
per can easily be generalized for heterogeneous clusters.

2.1. The Distributed Register File

The steering logic determines the cluster where each
instruction is to be executed, and then the renaming logic
allocates a free physical register from that cluster to its des-
tination register. The renaming map table dynamically
keeps track of which physical register and cluster each log-
ical register is mapped to, and it has space to store as many
mappings per logical register as clusters. Register values
are replicated only where they are needed as source oper-
ands. When a logical register is redefined with a new map-
ping, all previous mappings of the same logical register are
cleared and saved in the reorder buffer (ROB), to allow
freeing the corresponding physical registers at commit
time.

Since the physical register file is distributed, source
and destination registers are only locally accessed within
each cluster. A register value is only replicated in the reg-
ister file of another cluster when it is required by a subse-
quent dependent instruction to be executed in that cluster.
In that case, the hardware automatically generates a special
copy instruction to forward the operand (see Figure 2) that
will logically precede the dependent instruction in program
order. The copy is inserted into both the ROB and the in-
struction queue of the producer’s cluster, and it is issued
when its source register is ready and it secures a slot of the

Figure 1. Clustered microarchitecture

(a) Clustered processor (b) Detail of a cluster

Processor Front-End

Steering Logic

C0 C1 C2 C3

ICN
FU FU

Bypass

Cluster Register File

ICN

Cluster Instr. Queue

L1 Data Cache

back-end

Table 1. Default machine parameters

Parameter Configuration

I-cache L1 64KB, 32-byte line, 2-way assoc, 1cycle hit

Branch Predictor

Hybrid gshare/bimodal: Gshare has 14-bit
global history plus 64K 2-bit counters.
Bimodal has 2K 2-bit counters, and the
choice predictor has 1K 2-bit counters

Num. clusters (C) 1, 2, 4, 8
Phys. regs. per C 56 int + 56 fp

IQ size per C 16
Issue width per C 2
Fetch/Decode width 8

F.U. per C 2 int ALU,1 int mul/div,1 fp ALU,1 fp mul
ROB size 128
LSQ size 64

Issue Out-of-order issue. Loads may issue when
prior address stores are known

D-cache L1 64KB, 32 byte line, 2way set-associative,
3 cycle hit time, 3R/W ports

I/D-cache L2 256KB, 64 byte line, 4way assoc, 6 cycle hit

network. Then, it reads the operand either from the register
file or the bypass, sends it through the interconnection net-
work, and delivers it to the consumer’s cluster bypass net-
work and register file.

Copy instructions are handled just like ordinary in-
structions, which helps simplifying the scheduling hard-
ware and keeping exceptions precise, although they must
follow a slightly different renaming procedure: a free phys-
ical register is allocated in the destination cluster, and this
mapping is noted in the map table’s entry corresponding to
the logical register but, unlike ordinary instructions, the old
mappings are not cleared.

2.2. A Topology-Aware Steering Heuristic

Our instruction steering heuristic is a variation of the
baseline heuristic proposed by Parcerisa and González [19]
for a similar microarchitecture. The baseline steering
scheme works in the following way: if the workload of the
clusters is not much imbalanced, the algorithm first follows
a primary criterion which selects the clusters that minimize
communication penalties, and next it follows a secondary
criterion which chooses the least loaded of the above se-
lected clusters. However, when the workload imbalance
exceeds a given threshold, the primary criterion does not
apply (refer to [19] for further details about the workload
metrics). To satisfy the primary criterion, i.e. to minimize
communication penalties, the heuristic distinguishes two
cases: (i) if all the source operands are available, it chooses
the clusters that have the highest number of source oper-
ands mapped, and (ii) if any operand is not available, it
chooses the cluster where it is going to be produced.

For many of the interconnect topologies we study in
this paper, the latency of the communications depends on
the distance between source and destination clusters. A
steering heuristic that is aware of the network topology can
take advantage of this knowledge to minimize the distance
(and thus the latency) of the communications. Therefore,
we have refined the primary criterion to take the distance
into account, in such a way that when all source operands
are available (case (i)), it chooses the clusters that minimize
the longest communication distance (the one that is in the
critical path). To illustrate this feature, let us suppose that
an instruction has two source operands, which are both

available, and the left one is mapped to cluster 1, while the
right one is mapped to clusters 2 and 3. In this case, the
original primary criterion would select clusters 1, 2 and 3,
since all of them have one operand mapped. Whatever is
chosen, one copy would be needed, either between clusters
1 and 2 or between clusters 1 and 3. If we assume that clus-
ter 1 is closer to cluster 2 than to cluster 3, then the en-
hanced heuristic will select only clusters 1 and 2.

3. The Interconnection Network

Each copy instruction sends a message through the
network, including the copied operand, and the corre-
sponding register tag. In this section we discuss several de-
sign trade-offs and constraints regarding the design of the
interconnection network, and next we describe in detail
those that have been experimentally analyzed for architec-
tures with 4 and 8 clusters.

3.1. Routing Algorithms

Interconnection networks have been widely studied in
the literature for different computer areas such as multi-
computers and network of workstations (NOWs) [7]. In
these contexts, communication latencies are thousands of
processor cycles long, and routing decisions take several
cycles. In contrast, for clustered microarchitectures perfor-
mance is highly sensitive to the communication latency and
just one cycle is a precious time, as shown by the results in
Section 5, and also by other previous works [2, 5]. Thus, in
this context networks must use simple routing schemes that
carefully minimize communication latency (instead of
maximizing throughput, like in other contexts). We assume
that all routing decisions are locally taken at issue time
(source routing), by choosing the shortest path to the desti-
nation cluster. If there is more than one minimal route, the
issue logic chooses the first one that it finds available.

3.2. Register File Write Ports

The network is connected to the cluster register files
through a number of dedicated write ports where copies are
delivered. From the point of view of the network design, in-
cluding as many ports as required by its peak delivery
bandwidth is the most straightforward alternative, but the
number of write ports has a high impact on cluster com-
plexity. First, each additional write port requires an addi-
tional result tag to be broadcast to the instruction issue
queue, which increases the wakeup delay by a quadratic
factor with respect to the number of tags [17]. Second, the
register file access time increases linearly with the number
of ports. Third, the register file area grows quadratically
with the number of ports, which makes the length and delay
of the bypass wires to increase.

I1: r1 ← r2 + r2

I2: r3 ← r1 + r3

Copy r1c1→ c2

Figure 2. Sample timing of a communication between
two dependent instructions I1 and I2, steered to clus-
ters c1 and c2 respectively (the arrows mean wakeup

signals, and communication latency is 2 cycles).

(sent to c2)

(sent to c1)

(sent to c1)

F Dec Issue Ex WB

Issue WB

F Dec Issue Ex WBwait for op. R1

Network

Moreover, previous studies showed that, with ade-
quate steering heuristics, the required average communica-
tion bandwidth is quite low (0.22 communications per in-
struction for 4 clusters [19]), and thus it is unlikely that
having more than one write port per cluster connected to
the network can significantly improve performance. There-
fore, for all the analyzed networks we assume that they are
connected to a single write port per cluster, except for the
idealized models.

3.3. Transmission Time

The total latency of a communication has two main
components: the contention delays caused by a limited
bandwidth, and the transmission time caused by wire de-
lays. For a given network design, the first component var-
ies subject to unpredictable hazards, and we evaluate it
through simulation. On the other hand, the second compo-
nent is a fixed parameter that depends on the propagation
speed and length of the interconnection wires, which are
low-level circuit design parameters bound to each specific
circuit technology and design. To help narrowing this com-
plex design space, we have taken two reasonable assump-
tions for point-to-point networks.

First, the minimum inter-cluster communication laten-
cy is one cycle. This clock cycle includes wire delay and
switch logic delay. Note that, with current technology,
most of the communication latency is wire delay. Clusters
at a one cycle distance are considered neighbors. Second,
only neighbor clusters are directly connected (with a pair of
links, one in each direction). As a consequence, the com-
munication between two non-neighbor clusters takes as
many cycles as the number of links it crosses.

With these two assumptions, the space defined by dif-
ferent propagation speeds and wire lengths is discretized
and reduces to the one defined by a single variable: the
number of clusters that are at one cycle distance from a giv-
en cluster (which is an upper bound of the connectivity de-
gree of the network). Our analysis covers a small range of
this design space by considering the connectivity degrees
of several typical regular topologies.

Consistent with these long wire delays, the centralized
L1 data cache is assumed to have a 3 cycle pipelined hit la-
tency (address to cache, cache access and data back).

3.4. Router Structures

We assume a very simple router attached to each clus-
ter for point-to-point interconnects. The router enables
communication pipelining by implementing stage registers
(buffers) in each output link (Rright, Rleft and Rup, in
Figure 3). To reduce the complexity, the router does not in-
clude any other buffering storage for in-transit messages,
but it rather guarantees that after receiving an in-transit

message, it will be forwarded in the next cycle. This re-
quirement is fulfilled by giving priority to in-transit mes-
sages over newly injected ones, and by structurally pre-
venting that two in-transit messages compete for the same
output link. This conflict does not exist in a ring (Figure 3a)
but may happen if a node has more than 2 neighbors, like
in a mesh or a torus, where each router may have up to 4
links. Note, however, that since we have considered only
small meshes with 4 and 8 clusters, each router has never
more than 3 links (Figure 3b).

A copy instruction is kept in the issue buffer until both
its source operand is available and it secures the required
bus or link, so no other buffering storage is required. That
is, the scheduler handles the router injection registers
(Rinject, in Figure 3) as any other resource. However, while
access requests for a bus-based network are sent to a distant
centralized arbiter, the arbitration for a point-to-point net-
work is done locally at the source cluster by simply moni-
toring in-transit messages at the router stage registers (Rri-

ght, Rleft and Rup). Eventually, the copy is issued and the
outgoing message stays in one of the Rinject output registers
while it is being transmitted.

The router also interfaces with the cluster datapath.
For partially asynchronous networks, the router includes an
input FIFO buffer (Qin, in Figure 3) where all incoming
messages are queued. Each cycle, only the message at the
queue head is delivered to the cluster datapath, the others
stay in the queue. For synchronous networks, the router is
still less complex. By appropriately scheduling the injec-
tion of messages at the source cluster (more details are giv-
en later), the proposed scheme guarantees that there is no
more than one input message per cycle. Therefore, the rout-
er requires just a single register (not shown), instead of the
FIFO buffer.

3.5. Bus versus Point-to-Point Interconnects

Although our analysis mainly focuses on point-to-
point networks, we also study a bus interconnection, for
comparison purposes. It is made up of as many buses as

(a) Connected to 2 (b) Connected to 3

R.File FUs

Rinject_l

Rleft

Rright

Figure 3. Router schemes for asynchronous
point-to-point interconnects

Qin

Bypass

Rinject_r

Rinject_l

Rleft

Rright

Qin
Rinject_r

Rinject_uRup

nodes (ring). nodes (mesh and torus).

R.File FUsBypass

clusters, each bus being connected to a write port in one
cluster, and each cluster being able to send data to any bus
(Figure 4a). Although this is a conceptually simple model,
it has several drawbacks that make it little scalable. First,
since buses are shared among all clusters, their access must
be arbitrated, which makes the communication latency
longer, although bandwidth is not affected as long as arbi-
tration and transmission use different physical wires. Sec-
ond, a large portion of the total available bandwidth, which
is proportional to the number of clusters, is wasted due to
the low bandwidth requirements of the system. However, if
the number of buses was reduced, then the number of con-
flicts would increase, and hence the communication laten-
cy. Third, each bus must reach all the clusters, thus leading
to long wires and long transmission times, which can dras-
tically reduce the bandwidth if the bus transmission time is
longer than one cycle1.

Compared to the above bus interconnect, a point-to-
point interconnect (a ring, a mesh, a torus, etc.) has the fol-
lowing advantages. First, the access to a link can be arbi-
trated locally at each cluster. Second, communications can
be more easily and effectively pipelined. Third, delays are
shorter, due to requiring shorter wires and having smaller
parasitic capacitance (less devices attached to a point-to-
point link than to a bus). Fourth, network cost is lower than
for a configuration with as many buses as clusters. Finally,
it is more scalable: when the number of clusters increases,
its cost, bandwidth and ease of routing scales better than for
the bus-based configuration.

3.6. Four-Cluster Topologies

For four clusters, we propose two alternative point-to-
point networks based on a ring topology, and compare
them to a realistic bus-based network (see Figure 4). We
also compare their performance to that of an idealized ring,

which represents an upper bound for ring networks. In a 4-
cluster point-to-point topology, inter-cluster distances are
either one cycle (messages sent among adjacent nodes) or
two cycles (messages sent among non-adjacent nodes). Be-
low we describe these topologies.

Bus2. This is a realistic bus model with a 2-cycle transmis-
sion time (hence its name). It has as many buses as clusters,
each one connected to a single write port (see Figure 4a),
and a very simple centralized bus arbiter. The total commu-
nication latency is 4 cycles because bus arbitration, includ-
ing the propagation of the request and grant signals, takes
2 additional cycles. We assume that the arbitration time
may overlap with the transmission time of a previously ar-
bitrated communication, so each single bus bandwidth is
0.5 communications per cycle.

Synchronous Ring. This topology is one of the contribu-
tions of this work, since previously proposed rings work in
asynchronous mode. This topology assumes no queues in
the routers, neither to store in-transit messages nor to store
messages arriving at their destination clusters.

Since no queues are included at the destination clus-
ters, when a message arrives it must be immediately written
into the register file. The issue logic schedules copy in-
structions with an algorithm (summarized in Table 2) that
ensures that no more than one message arrives at a time at
a given node. During odd cycles, a source cluster src is al-
lowed to send a short-distance message (D=1) to its adja-
cent cluster in the clockwise direction ((src +1) mod 4),
and a long-distance message (D=2) in the counter-clock-
wise direction ((src + 2) mod 4). During an even cycle, the
allowed directions are reversed. Since in-transit messages

are given priority over newly injected ones (see Section
3.4), a copy instruction may have to wait until both the re-
quested link is available and the cycle parity is appropriate.

Despite the fact that there are cyclic dependencies be-
tween links [7], deadlocks are avoided by synchronously
transmitting messages through all the links in the ring, even
if the stage buffer at the next router is busy (it will be free
when the message arrives). This is possible thanks to using
the same clock signal for all the routers and giving a higher
priority to in-transit messages.

Partially Asynchronous Ring. Typical asynchronous net-
works include buffers both in the intermediate routers, to

1. Note that it is difficult to pipeline bus communications, but it is
easy to pipeline communication through point-to-point links. Although
this is not needed with current VLSI technology (we assume a transmis-
sion time of 1 cycle), it clearly indicates that point-to-point links are
much more scalable than buses.

C0 C1 C3C2

C0

C3

C1

C2

(a) One bus per

(b) Synchronous ring

C0

C3

C1

C2

(c) Partially Asynchronous ring

Figure 4. 4-cluster topologies

cluster.

Table 2. Rules to secure a link in the source
cluster src (D refers to distance in cycles)

Direction
Odd Cycle Even Cycle

D Target Cluster D Target Cluster

Clockwise 1 src → (src+1) mod 4 2 src → (src+2) mod 4

Counter-
clockwise

2 src → (src+2) mod 4 1 src → (src+3) mod 4

store in-transit messages, and in the destination routers, to
store messages that are waiting for a write port (in our case
to the register file) [7]. The former are removed in our de-
sign, like in the synchronous ring. However, we still need
the latter, since two messages can arrive at the same time to
the same destination cluster and there is only one write port
in each cluster. In this case, the message whose data cannot
be written is delayed until it has a port available. Note that
the system must implement an end-to-end flow control
mechanism in order not to lose messages when a queue is
full. This is an additional cost of the asynchronous
schemes, which is discussed in more detail in Section 4.4.
In this network, routers use the same clock signal. There-
fore, it is only partially asynchronous. A fully asynchro-
nous network has not been considered because its cost
would be much higher (larger buffers, link-level flow con-
trol, extra buffers to avoid deadlocks, etc.). Deadlocks are
avoided as in the synchronous ring.

Ideal Ring. For comparison purposes, we consider an ide-
alized ring whose inter-cluster distances are the same as
those of the realistic ring (as previously discussed), but an
unlimited bandwidth is assumed, which makes it conten-
tion-free (i.e., it has an unlimited number of links between
each pair of nodes and an unbounded number of write ports
for incoming messages in each cluster). The performance
of this ideal ring is an upper bound for the performance of
any ring that has the same link latencies as the ones as-
sumed in this study.

3.7. Eight-Cluster Topologies

For eight-cluster architectures, we first consider two
ring-based interconnects, synchronous and partially asyn-
chronous, similar to those proposed for 4-cluster architec-
tures, and also two versions of a realistic bus-based net-
work, having transmission times of 2 and 4 cycles, respec-
tively.

In addition to the ring, we also analyze mesh and torus
topologies, both of them partially asynchronous, since they
feature lower average communication distances. Figure 5
shows these two new schemes. Below, we describe each
scheme in detail.

Bus2 and Bus4. The bus required to connect 8 clusters is
likely to be slower than that required by the 4-cluster con-
figuration due to longer wires and higher capacitance. To
account for this, we consider two bus-based configurations:
the Bus2, which optimistically assumes the same latencies
as those of the 4-cluster configuration (i.e., a transmission
time of 2 cycles), and the Bus4, which more realistically as-
sumes twice this latency (i.e., a transmission time of 4 cy-
cles).

Synchronous Ring. In this section, the routing scheme
discussed above for a 4-cluster synchronous ring is extrap-
olated to 8 clusters. Like in the 4-cluster configuration, at
issue time the scheduler of copy instructions (shown in
Table 3) must ensure that only one message arrives at a
time at a given cluster, because there is only one write port.
Note that distances in an 8-cluster ring topology range from
1 (D=1) to 4 (D=4) cycles.

Mesh. A mesh topology (see Figure 5a) reduces some dis-
tances with respect to a ring. The average distance in a ring
is 2.29 hops, while in a mesh it is 2 hops; however, the
maximum distance is still 4 hops. The dashed lines in the
figure show the links added to the ring topology to convert
it into a mesh.

Due to the increased connectivity, this topology intro-
duces a new problem to the design of the routers with re-
spect to a ring, because at central nodes (labelled C2, C3,
C6 and C7) more than one router input link could compete
to access the same output link.

Our approach is to avoid buffers for storing in-transit
messages by simply constraining the connectivity of some
paths. More precisely, a message flowing through one of
the dashed links in Figure 5a must have the node at the
link’s end as its destination, and it must come from either
the node at the link’s origin or from a predetermined asso-
ciated link among those to which it is connected. For in-
stance, if one message is sent from cluster C2 to C7, it must
be routed through C6. It cannot be sent through C3 because
the link C2-C3 does not end at the message destination. Al-
so, a message from C0 to C3 must be routed through C1 be-
cause the link C0-C2 is not associated to the link C2-C3.

Again, deadlocks are avoided by using the same clock
signal for all the routers and transmitting messages syn-
chronously.

Torus. A torus has smaller average distance than a mesh
(see Figure 5b). In some nodes (C0, C1, C4 and C5) more
than one input link could compete to access the same out-
put link. Like for the mesh, this problem is solved without
including intermediate buffers by constraining the connec-
tivity of several links. The solution is outlined in the figure,
where dashed arcs indicate links with a limited connectivi-
ty (see also router details in Figure 3b).

Table 3. Rules to secure a link in the source clus-
ter src (D refers to distance in cycles)

Direction
Odd Cycle Even Cycle

D Target Cluster D Target Cluster

Clockwise 1 src → (src+1) mod 8 2 src → (src+2) mod 8

3 src → (src+3) mod 8 4 src → (src+4) mod 8

Counter-
clockwise

4 src → (src+4) mod 8 3 src → (src+5) mod 8

2 src → (src+6) mod 8 1 src → (src+7) mod 8

Note that this constraint does not change the minimal
distance between every pair of nodes, but for some pairs it
does reduce the number of alternative routes. For example,
there is only one 2-hop route from C4 to C1. However, due
to the poor utilization of the network (as we will show later)
this is a minor drawback.

Again, deadlocks are avoided as indicated above. On
another issue, when mapping torus links on silicon, some
links may be longer than the shorter ones (e.g., links be-
tween C0 and C4). This may introduce delays in those par-
ticular links. For the sake of simplicity, we did not consider
that additional delay.

Ideal Torus. For comparison purposes, we also consider
an idealized torus model, with distances identical to those
of the realistic torus but with unlimited bandwidth, which
makes the network contention-free. In other words, it is as-
sumed that the network has an unlimited number of links
between any pair of adjacent nodes and an unbounded
number of register write ports connected to the network in
each cluster. The performance of this model is an upper
bound on the performance of the realistic torus.

4. Experimental Results

In this section it is described the simulation environ-
ment and it is evaluated the different network architectures
proposed above.

4.1. Experimental Framework

To perform our microarchitectural timing simulations,
we have extended the sim-outorder simulator of the Sim-
pleScalar v3.0 tool set [4] with all the architectural features

described above, including the different interconnection
network topologies.

We have selected a subset of 14 benchmarks, those
achieving higher IPC, from the Mediabench benchmark
suite [15]. This benchmark suite captures the main features
of commercial multimedia applications, which are a grow-
ing segment of commercial workloads. All the benchmarks
were compiled for the Alpha AXP using Compaq’s C com-
piler with the -O4 optimization level, and they were run till
completion.

All topologies maintain the same processor model.
Table 1 summarizes the machine parameters used through
the simulations.

4.2. Network Latency Analysis

To gain some insight on the different behavior of syn-
chronous and partially asynchronous rings for a 4-cluster
architecture, we analyze their average communication la-
tency. In particular, since the transmission time component
of the latency is the same for both interconnects, we only
analyze the contention delay component.

As shown in Figure 6, short-distance messages wait
for longer than long-distance ones. The main reason is the
available bandwidth for each type of message: the latter
have two alternative minimal-distance routes, while the
former have only one. However, since the routing is the
same for both ring interconnects, it does not explain the dif-
ferences observed between the two rings.

Figure 6 shows that the contention delay of short-dis-
tance messages for a synchronous ring (1.48 cycles) is
about 4.9 times longer than for a partially asynchronous
one (0.30 cycles). In contrast, the contention caused to
long-distance messages for a synchronous ring (0.07 cy-
cles) is just slightly lower than for a partially asynchronous
one (0.10 cycles). These differences are due to the different
ways each interconnect avoids conflicts between messages

(a) A Mesh

C1 C3 C7

C4

C5

C6C2C0(b) A Torus

Figure 5. Additional topologies for 8 clusters. A black
dot at the end of a link means that there is more than
one link that can be followed for the next hop if the

corresponding node is not the destination. Messages
can always be routed through solid links but dashed
links represent the end of the corresponding path;

thus, they are only used when they are the final ones.

C1 C3 C7

C4

C5

C6C2C0

cj
pe

g

dj
pe

g

ep
ic

de
c

ep
ic

en
c

g7
21

de
c

g7
21

en
c

ra
st

a

gs
m

de
c

gs
m

en
c

m
es

ao
sd

em
o

m
pe

g2
de

c

ra
w

da
ud

io

pe
gw

itd
ec

pe
gw

ite
nc

A
V

E
R

A
G

E

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

D
el

ay
 (

cy
cl

es
)

short, sync short, async long, sync long, async

Figure 6. Average contention delays per com-
munication, with ring interconnects.

that require access to the same write port: in a synchronous
ring, these conflicts are prevented by ensuring that a short-
distance message is not issued if the parity of the cycle is
not the appropriate one (see Table 2), regardless of whether
the link is busy or not. For example, a long-distance mes-
sage from C1 to C3 (see Figure 4b) will be injected in an
even cycle, thus reaching the router at C2 and requesting
the C2-C3 link during the next odd cycle. As messages
from C2 to C3 must be injected during odd cycles, these
short-distance messages will be delayed if there are in-tran-
sit long-distance messages. In a partially asynchronous
ring, a message of any kind can be issued as soon as the re-
quired output link is available, although it may have to wait
in the destination cluster router until it gains access to the
register write port.

To summarize, the long delays caused to short-dis-
tance messages by the scheduling constraints of the syn-
chronous ring make its overall contention delay higher than
for a partially asynchronous one. In addition, since the
steering algorithm tries to minimize the distance, near 80%
of the messages are short-distance, and therefore these
messages have a higher impact on the overall contention
delay. As a consequence, the partially asynchronous ring
performs better than the synchronous one, as shown below.

4.3. Performance of Four-Cluster Interconnects

Figure 7 compares the performance, reported as num-
ber of committed instructions per cycle (IPC), of a 4-cluster
processor for the different proposed interconnects.

The two ring interconnects consistently achieve better
performance than the bus topology, for all benchmarks.
This is mainly because point-to-point networks achieve
shorter latency since the steering algorithm tries to keep
close instructions that have to communicate. Besides, the
ring topology offers a higher bandwidth, although in this
scenario bandwidth is not critical for performance due to
the low traffic generated by the steering scheme [19] (e.g.
it is on average 0.18 communications per instruction, on a

partially asynchronous ring). The IPC achieved by the syn-
chronous ring is, on average, 18.1% higher than that
achieved by the bus, while the partially asynchronous ring
performance is 27.4% higher than that of the bus.

The performance of the partially asynchronous ring is
very close to that of the ideal ring (just 1.1% difference),
which shows that increasing the number of links or the
number of register write ports would hardly improve per-
formance. In other words, due to the effectiveness of the
steering logic to keep the traffic low, a simple configura-
tion with a single link between adjacent clusters and a sin-
gle register write port for incoming messages is clearly the
most cost-effective design.

4.4. Queue Length

Typical partially asynchronous rings need specific
mechanisms to prevent (or to recover from) potential over-
flows of the network buffers. In our partially asynchronous
interconnect, this problem occurs only in the queues for in-
coming messages at each cluster.

In order to adequately dimension these queues, we first
assumed unbounded size queues and measured the number
of occupied entries each time a new message arrives at its
destination cluster. Note that with FIFO queues and a sin-
gle write port, this number is equal to the number of cycles
a message stays in the queue. We found that for any bench-
mark, more than 96% of the messages do not have to wait
because they find the queue empty, and the maximum num-
ber of occupied entries was 9. For instance, Table 4 shows
a typical queue length distribution (for benchmark djpeg).

Although 9-entry queues are long enough in our exper-
iments, the model should ensure that data is never lost, to
guarantee execution correctness. Two approaches are pos-
sible: first, to implement a flow control protocol that pre-
vents FIFO queue overflows; and second, to implement a
recovery mechanism for these events. Flow control can be
based on credits. In this case, each cluster would contain a
credit counter for each destination cluster. Every time a
message is transmitted to a cluster, the corresponding cred-
it counter would be decreased. If the counter is equal to ze-
ro, the message would not be transmitted because the FIFO
queue may be full. When a message is removed from the

cj
pe

g

dj
pe

g

ep
ic

de
c

ep
ic

en
c

g7
21

de
c

g7
21

en
c

ra
st

a

gs
m

de
c

gs
m

en
c

m
es

ao
sd

em
o

m
pe

g2
de

c

ra
w

da
ud

io

pe
gw

itd
ec

pe
gw

ite
nc

A
V

E
R

A
G

E

1

2

3

4

IP
C

Bus2 Sync ring Async ring Ideal ring

Figure 7: Comparing 4-cluster topologies

Table 4. Queue length distribution (for djpeg)
 # occupied

entries
 # messages

Distribution
(% times)

Cumulative
Distribution (%)

0 1327534 96.20 96.20

1 47136 3.42 99.61

2 4807 0.35 99.96

3 484 0.04 100.00

4 26 0.00 100.00

5 1 0.00 100.00

>= 6 0 0.00 100.00

queue, a credit is returned to the sender of that message,
thus, consuming link bandwidth. Upon reception of the
credit, the corresponding credit counter is increased. How-
ever, since overflows are so infrequent, the most cost-ef-
fective solution is to flush the pipeline in case of an over-
flow, very much like in the case of a branch misprediction,
and to restart again execution at the instruction that gener-
ated the message that caused the overflow. This approach
requires minimal additional hardware and it produces neg-
ligible performance penalties (for 9-entry queues there is
no penalty at all for our benchmarks).

4.5. Performance of Eight-Cluster Interconnects

In this section, we evaluate the 8-cluster network inter-
connects described in Section 3.7, for a 16-way issue archi-
tecture. Figure 8 shows the IPC for the different schemes.
The point-to-point ring achieves a significant speed-up
even over the optimistic bus architecture denoted as bus2.
The average speed-up of the synchronous ring over bus2 is
14.6% whereas the partially asynchronous ring outper-
forms bus2 by 25.7%.

Comparing the partially asynchronous topologies, the
mesh achieves an IPC 3.3% higher than that of the ring,
while the IPC of the torus is 7.3% higher than that of the
ring. On the other hand, the partially asynchronous torus
performance is very close to that of the ideal torus config-
uration (just 1.2% difference).

4.6. Performance of the Topology-Aware Steering

In all the previous experiments it was assumed the to-
pology-aware instruction steering scheme described in
Section 2.2. This scheme differs from the previously pro-
posed baseline scheme, because it minimizes communica-
tion distances (hence latencies) for point-to-point intercon-
nects. Figure 9 compares both steering schemes for two
configurations, one with 4 clusters and an asynchronous
ring, the other with 8 clusters and an asynchronous torus. It
shows that the topology-aware steering scheme increases
IPC by 2.5% with 4 clusters, and by 16.5% with 8 clusters.

The performance improves because the average communi-
cation latency is reduced.

5. Conclusions

In this work we have investigated the design of on-
chip interconnection networks for clustered microarchitec-
tures. This new class of interconnects has different de-
mands and characteristics than traditional multiprocessor
networks, since a low communication latency is essential
for high performance. We have shown that simple point-to-
point interconnects together with effective latency-aware
steering schemes achieve much better performance than
bus-based interconnects. Besides, the former does not re-
quire a distant centralized arbitration to access the trans-
mission medium.

In particular, we have proposed a very simple synchro-
nous ring interconnect that only requires five registers and
three multiplexers per cluster and substantially improves
the performance of a bus-based scheme.

We have also shown that a partially asynchronous ring
performs better than the synchronous one at the expense of
some additional cost/complexity due to the additional
queue required per cluster. However, we have found that a
tiny queue will practically never overflow. Thus, instead of

cj
pe

g

dj
pe

g

ep
ic

de
c

ep
ic

en
c

g7
21

de
c

g7
21

en
c

ra
st

a

gs
m

de
c

gs
m

en
c

m
es

ao
sd

em
o

m
pe

g2
de

c

ra
w

da
ud

io

pe
gw

itd
ec

pe
gw

ite
nc

A
V

E
R

A
G

E

1

2

3

4
IP

C
Bus4
Bus2
Sync ring
Async ring
Mesh
Torus
Ideal torus

Figure 8: Comparing 8-cluster topologies

cj
pe

g

dj
pe

g

ep
ic

de
c

ep
ic

en
c

g7
21

de
c

g7
21

en
c

ra
st

a

gs
m

de
c

gs
m

en
c

m
es

ao
sd

em
o

m
pe

g2
de

c

ra
w

da
ud

io

pe
gw

itd
ec

pe
gw

ite
nc

A
V

E
R

A
G

E

1

2

3

4

IP
C

4C async ring + Baseline
4C async ring + TA

8C torus + Baseline
8C torus + TA

Figure 9: Baseline vs. topology-aware (TA)
steering schemes, for 4 and 8 clusters

using complex flow control protocols, it is much more cost-
effective to handle overflows by flushing the processor
pipeline, which is a mechanism that current microproces-
sors already implement for other purposes (i.e., branch
misprediction).

We have explored other synchronous and partially
asynchronous interconnects such as meshes and a torus, in
addition to rings. These three topologies basically differ in
their connectivity degree, and consequently, in the average
inter-cluster distances. From our study we extract two main
conclusions: (i) higher connectivity results in significant
performance improvements, and (ii) despite the low hard-
ware requirements of the proposed partially asynchronous
interconnect, it achieves a performance close to an equiva-
lent idealized interconnect with unlimited bandwidth and
number of ports to the register file.

To conclude, the choice of an effective interconnec-
tion network architecture together with an efficient laten-
cy-aware steering scheme is a key to high performance in
clustered microarchitectures. Simple implementations of
point-to-point interconnects are quite effective and scal-
able.

Acknowledgements

We thank the anonymous referees for their valuable
comments. This work is supported by the Spanish Ministry
of Education and by the FEDER funds of the European
Union, under contract CYCIT TIC2001-0995-C02-01.

References

[1] V. Agarwal, M.S. Hrishikesh, S.W. Keckler, and D.
Burger, “Clock Rate versus IPC: The End of the Road for
Conventional Microarchitectures”, Proc. 27th Ann. Int’l.
Symp on Computer Architecture, June 2000, pp. 248-259.

[2] A. Baniasadi, and A. Moshovos, “Instruction Distribution
Heuristics for Quad-Cluster, Dynamically-Scheduled,
Superscalar Processors”, Proc. 33rd. Int’l. Symp. on
Microarchitecture (MICRO-33), Dec. 2000, pp. 337-347.

[3] M.T. Bohr, “Interconnect Scaling - The Real Limiter to
High Performance ULSI”, Proc. 1995 IEEE Int’l. Electron
Devices Meeting, 1995, pp. 241-244.

[4] D. Burger, T.M. Austin, and S. Bennett, Evaluating Future
Microprocessors: The SimpleScalar Tool Set, tech. report
CS-TR-96-1308, Univ. Wisconsin-Madison, 1996.

[5] R. Canal, J-M. Parcerisa, and A. González, “A Cost-Effec-
tive Clustered Architecture”, Proc. Int’l. Conf. on Parallel
Architectures and Compilation Techniques (PACT 99),
Newport Beach, CA, Oct. 1999, pp. 160-168.

[6] R. Canal, J-M. Parcerisa, A. González, “Dynamic Cluster
Assignment Mechanisms”, Proc. 6th. Int’l. Symp.on High-
Performance Computer Architecture,Jan.2000, pp.132-142

[7] J. Duato, S. Yalamanchili, L. Ni, Interconnection Net-
works, An Engineering Approach, IEEE Computer Society
Press, 1997.

[8] K.I. Farkas, P. Chow, N.P. Jouppi, and Z. Vranesic, “The
Multicluster Architecture: Reducing Cycle Time through
Partitioning”, Proc. 30th. Int’l. Symp. on Microarchitec-
ture, Dec. 1997, pp. 149-159.

[9] M. Franklin, The Multiscalar Architecture, Ph.D. thesis,
C.S. Dept., Univ. of Wisconsin-Madison, 1993.

[10] L. Gwennap, “Digital 21264 Sets New Standard”, Micro-
processor Report, 10 (14), Oct. 1996.

[11] R. Ho, K.W. Mai, M.A. Horowitz, “The Future of Wires”,
Proceedings of the IEEE, 89(4): 490-504, Apr. 2001.

[12] G.A. Kemp and M. Franklin, “PEWs: A Decentralized
Dynamic Scheduler for ILP Processing”, Proc. Int’l. Conf.
on Parallel Processing, Aug. 1996, pp. 239-246.

[13] K. Krewell, Intel Embraces Multithreading, Microproces-
sor Report, Sept. 2001, pp. 1-2.

[14] The International Technology Roadmap for Semiconduc-
tors. Semiconductor Industry Association. 1999.

[15] C. Lee, M. Potkonjak, and W.H. Mangione-Smith, “Media-
bench: A Tool for Evaluating and Synthesizing Multimedia
and Communications Systems”, Proc. Int’l. Symp. on
Microarchitecture (MICRO-30), Dec. 1997, pp. 330-335.

[16] D. Matzke, “Will Physical Scalability Sabotage Perfor-
mance Gains”, IEEE Computer 30(9): 37-39, Sep. 1997.

[17] S. Palacharla, N.P. Jouppi, and J.E. Smith, “Complexity-
Effective Superscalar Processors”, Proc. 24th. Int’l. Symp.
on Computer Architecture, June 1997, pp. 206-218.

[18] S.Palacharla, “Complexity-Effective Superscalar Proces-
sors”, Ph.D. thesis, Univ. of Wisconsin-Madison, 1998.

[19] J.-M. Parcerisa and A. González, “Reducing Wire Delay
Penalty through Value Prediction”, Proc. 33rd. Int’l. Symp.
on Microarchitecture (MICRO-33), Dec.2000, pp.317-326.

[20] J.-M. Parcerisa, A. González, and J.E. Smith, “Building
Fully Distributed Microarchitectures with Processor
Slices”, tech. report UPC-DAC-2001-33, Computer Arch.
Dept., Univ. Politècnica de Catalunya, Spain, Nov. 2001.

[21] N. Ranganathan and M. Franklin, “An Empirical Study of
Decentralized ILP Execution Models”, Proc. 8th. Int’l.
Conf. on Architectural Support for Programming Lan-
guages and Operating Systems, Oct. 1998, pp. 272-281.

[22] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J.E. Smith,
“Trace Processors”, Proc. 30th. Int’l. Symp. on Microar-
chitecture (MICRO-30), Dec. 1997, pp. 138-148.

[23] J.M. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy,
POWER4 System Microarchitecture, Technical white
paper, IBM server group web site, Oct. 2001

[24] M. Tremblay, J. Chan, S. Chaundrhy, A.W. Conigliaro,
S.S. Tse, “The MAJC Architecture: A Synthesis of Paral-
lelism and Scalability”, IEEE Micro 20(6): 12-25, Nov./
Dec. 2000.

[25] J-Y. Tsai and P-C. Yew, “The Superthreaded Architecture:
Thread Pipelining with Run-Time Data Dependence
Checking and Control Speculation”, Proc. Int’l. Conf. on
Parallel Architectures and Compilation Techniques, 1996,
pp. 35-46.

[26] K.C. Yeager, “The MIPS R10000 Superscalar Micropro-
cessor”, IEEE Micro, 16(2): 28-41, Apr. 1996.

[27] V. Zyuban. Inherently Lower-Power High-Performance
Superscalar Architectures, Ph.D. thesis, Univ. of Notre
Dame, Jan. 2000.

	Efficient Interconnects for Clustered Microarchitectures
	Joan-Manuel Parcerisa1, Julio Sahuquillo2, Antonio González1,3, José Duato2
	1 Dept. Arquitectura de Computadors 2 Dept. Informàtica de Sistemes i Computadors 3 Intel Barcelo...
	Universitat Politècnica de Catalunya Universitat Politècnica de València Intel Labs
	Barcelona, Spain València, Spain Univ. Politècnica de Catalunya
	{jmanuel,antonio}@ac.upc.es {jsahuqui,jduato}@disca.upv.es Barcelona, Spain
	Abstract
	1. Introduction
	2. Microarchitecture Overview
	Figure 1. Clustered microarchitecture
	Table 1. Default machine parameters
	2.1. The Distributed Register File
	Figure 2. Sample timing of a communication between two dependent instructions I1 and I2, steered ...

	2.2. A Topology-Aware Steering Heuristic

	3. The Interconnection Network
	3.1. Routing Algorithms
	3.2. Register File Write Ports
	3.3. Transmission Time
	3.4. Router Structures
	Figure 3. Router schemes for asynchronous point-to-point interconnects

	3.5. Bus versus Point-to-Point Interconnects
	3.6. Four-Cluster Topologies
	Figure 4. 4-cluster topologies
	Bus2
	Synchronous Ring
	Table 2. Rules to secure a link in the source cluster src (D refers to distance in cycles)

	Partially Asynchronous Ring
	Ideal Ring

	3.7. Eight-Cluster Topologies
	Bus2 and Bus4
	Synchronous Ring
	Table 3. Rules to secure a link in the source cluster src (D refers to distance in cycles)

	Mesh
	Torus
	Figure 5. Additional topologies for 8 clusters. A black dot at the end of a link means that there...

	Ideal Torus

	4. Experimental Results
	4.1. Experimental Framework
	4.2. Network Latency Analysis
	Figure 6. Average contention delays per communication, with ring interconnects.

	4.3. Performance of Four-Cluster Interconnects
	4.4. Queue Length
	Table 4. Queue length distribution (for djpeg)

	4.5. Performance of Eight-Cluster Interconnects
	4.6. Performance of the Topology-Aware Steering

	5. Conclusions
	Acknowledgements
	References
	[1] V. Agarwal, M.S. Hrishikesh, S.W. Keckler, and D. Burger, “Clock Rate versus IPC: The End of ...
	[2] A. Baniasadi, and A. Moshovos, “Instruction Distribution Heuristics for Quad-Cluster, Dynamic...
	[3] M.T. Bohr, “Interconnect Scaling - The Real Limiter to High Performance ULSI”, Proc. 1995 IEE...
	[4] D. Burger, T.M. Austin, and S. Bennett, Evaluating Future Microprocessors: The SimpleScalar T...
	[5] R. Canal, J-M. Parcerisa, and A. González, “A Cost-Effective Clustered Architecture”, Proc. I...
	[6] R. Canal, J-M. Parcerisa, A. González, “Dynamic Cluster Assignment Mechanisms”, Proc. 6th. In...
	[7] J. Duato, S. Yalamanchili, L. Ni, Interconnection Networks, An Engineering Approach, IEEE Com...
	[8] K.I. Farkas, P. Chow, N.P. Jouppi, and Z. Vranesic, “The Multicluster Architecture: Reducing ...
	[9] M. Franklin, The Multiscalar Architecture, Ph.D. thesis, C.S. Dept., Univ. of Wisconsin-Madis...
	[10] L. Gwennap, “Digital 21264 Sets New Standard”, Microprocessor Report, 10 (14), Oct. 1996.
	[11] R. Ho, K.W. Mai, M.A. Horowitz, “The Future of Wires”, Proceedings of the IEEE, 89(4): 490-5...
	[12] G.A. Kemp and M. Franklin, “PEWs: A Decentralized Dynamic Scheduler for ILP Processing”, Pro...
	[13] K. Krewell, Intel Embraces Multithreading, Microprocessor Report, Sept. 2001, pp. 1-2.
	[14] The International Technology Roadmap for Semiconductors. Semiconductor Industry Association....
	[15] C. Lee, M. Potkonjak, and W.H. Mangione-Smith, “Mediabench: A Tool for Evaluating and Synthe...
	[16] D. Matzke, “Will Physical Scalability Sabotage Performance Gains”, IEEE Computer 30(9): 37-3...
	[17] S. Palacharla, N.P. Jouppi, and J.E. Smith, “Complexity- Effective Superscalar Processors”, ...
	[18] S.Palacharla, “Complexity-Effective Superscalar Processors”, Ph.D. thesis, Univ. of Wisconsi...
	[19] J.-M. Parcerisa and A. González, “Reducing Wire Delay Penalty through Value Prediction”, Pro...
	[20] J.-M. Parcerisa, A. González, and J.E. Smith, “Building Fully Distributed Microarchitectures...
	[21] N. Ranganathan and M. Franklin, “An Empirical Study of Decentralized ILP Execution Models”, ...
	[22] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J.E. Smith, “Trace Processors”, Proc. 30th. Int’...
	[23] J.M. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy, POWER4 System Microarchitecture,...
	[24] M. Tremblay, J. Chan, S. Chaundrhy, A.W. Conigliaro, S.S. Tse, “The MAJC Architecture: A Syn...
	[25] J-Y. Tsai and P-C. Yew, “The Superthreaded Architecture: Thread Pipelining with Run-Time Dat...
	[26] K.C. Yeager, “The MIPS R10000 Superscalar Microprocessor”, IEEE Micro, 16(2): 28-41, Apr. 1996.
	[27] V. Zyuban. Inherently Lower-Power High-Performance Superscalar Architectures, Ph.D. thesis, ...

