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Abstract
Ever increasing memory latencies and deeper

pipelines push memory farther from the processor.
Prefetching techniques aim is to bridge these two gaps
by fetching data in advance to both the L1 cache and
the register �le. Our main contribution in this paper
is a hybrid approach to the prefetching problem that
combines both software and hardware prefetching in a
cost-e�ective way by needing very little hardware sup-
port and impacting minimally the design of the proces-
sor pipeline. The prefetcher is built on-top of a static
memory instruction bypassing, which is in charge of
bringing prefetched values in the register �le. In this
paper we also present a thorough analysis of the limits
of both prefetching and memory instruction bypassing.
We also compare our prefetching technique with a prior
speculative proposal that attacked the same problem,
and we show that at much lower cost, our hybrid solu-
tion is better than a realistic implementation of specu-
lative prefetching and bypassing. In average, our hybrid
implementation achieves a 13% speed-up improvement
over a version with software prefetching in a subset of
numerical applications and an average of 43% over a
version with no software prefetching (achieving up to a
102% for speci�c benchmarks).

1 Introduction and Related Work
Memory operations represent over 20% of all dy-

namic instructions [3] and while other types of instruc-
tions have �xed latencies, loads have latencies that de-
pend on the placement of the data in the memory hier-
archy. When the data is not in the cache closest to the
processor, stalls may occur. In scienti�c applications
this stalling e�ect has been measured [7] and represents
a signi�cant amount of total application time.

Technological trends point towards relatively longer
latencies at all levels of the memory hierarchy, there-
fore techniques to tolerate them better become increas-
ingly important. In particular, larger and more eÆcient
cache hierarchies and more precise prefetching tech-
niques have become necessary to sustain high perfor-

mance processors.

Prefetching is generally de�ned as the action of
bringing a data item closer to the processor before it is
accessed by a load instruction, thus reducing the load's
overall latency. Prefetching relies on address predic-
tion, i.e., the prediction of the e�ective address of the
operand of a (predicted to be executed) subsequent
load instruction, thus making prefetching speculative.
If prefetching is limited to bringing data in the cache
hierarchy, processor state is not a�ected and there is
no need for microarchitectural recovery mechanisms.

Prefetching can be extended by considering the
physical registers to be part of the memory hierarchy.
That is, even if the data is present in the lower level
cache (L1), more can be gained by bringing it closer to
the processor. This technique is referred to as binding
prefetching when it is performed in a non-speculative
way [7]. There exist several ways to perform this bind-
ing speculatively [10], including value prediction.

Initiation of the prefetching can be done by either
the software, the hardware, or a hybrid combination
of both. In software-based prefetching, the compiler
[7] can insert a pref instruction which, when executed,
will bring the referenced data into the L1 cache. This
explicit prefetching has no semantic implication and
can be ignored by the hardware, e.g. for binary com-
patibility. The compiler can also advance a load ahead
in the instruction stream and in this case, the (implicit)
prefetching becomes binding since data is brought into
a register. If the load instruction has been advanced
across basic block boundaries, it can become specula-
tive and a recovery mechanism is required [6]. This
concept, akin to forwarding mechanisms [3] used to al-
leviate the latency of dependent instructions, can be
extended to the case of non-speculative pref instruc-
tions. In [8], a novel mechanism was introduced that
transforms non{binding prefetches into binding, thus
bypassing the execution of the load instructions that
e�ectively bring data into the register �le. This bypass-
ing, de�ned as memory instruction bypassing, extracts
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Figure 1. Analysis of perfect prefetching and perfect bypassing in a 4-way machine

the execution of the load instructions from the critical
path. On the other hand, hardware-based prefetchers
rely on dynamic learning mechanisms to detect mem-
ory access patterns and predict future memory refer-
ences [4]. In scienti�c applications, the learning mech-
anism is used to detect strided streams, and state-
machines [1] or con�dence counters [2] are used to �l-
ter out potentially non-useful prefetches. Data can be
brought in L1 or in registers with the same implica-
tions as in software-based prefetchers. Recently hybrid
prefetchers have been proposed, mostly in the context
of prefetching for recursive data structures [5]. The ba-
sic idea is to have slices of programmes be executed by
a hardware prefetcher under compiler control. [12] also
uses slices to help in the precomputation of addresses
and branch speculation.

The main contribution of our paper is a novel hard-
ware prefetching mechanism, oriented at a subset of
all memory operations, just those involved in our com-
piler directed memory instruction bypassing. By focus-
ing just on a few amount of instructions, our mecha-
nism can be simple in terms of hardware, e�ective in
terms of accuracy as the compiler already knows the be-
haviour of these instructions and concious on the type
of prefetching to be accomplished (in terms of distance
or other requirements). We also analyse the relation
between prefetching and memory instruction bypass-
ing. We will show that the latter becomes more im-
portant when better prefetching is applied. Finally, in
section 4 we will compare our mechanism with a highly
speculative mechanism known as APDP (Address Pre-
diction for Data Prefetching) [2], which bene�ts from
the same sources as our proposal. Conclusions and fu-
ture work can be found in section 5.

2 Theoretical Limits of Prefetching and

Bypassing

Prefetching's main objective is to have all data that
will be accessed as close to the processor as possible.
Perfect prefetching can be thought of as a technique
that achieves the scenario where all loads �nd their data
in the L1 cache. The characteristics of this prefetch-

ing technique would be perfect accuracy (no mispre-
diction), total coverage (all data is prefetched), and
timeliness (data is prefetched early enough so that it is
in cache when accessed).

The aim of memory instruction bypassing is to hide
the execution of memory instructions. Therefore, un-
der this de�nition, perfect memory instruction bypass-
ing would achieve zero latency for all loads, hiding per-
fect prefetching bene�ts. For the sake of our research,
we will separate the bene�ts of perfect prefetching and
perfect memory instruction bypassing. We will con-
sider perfect memory instruction bypassing just bring-
ing data from L1 (where prefetching stops) to the reg-
ister �le in zero cycles (ocurring at the decode stage,
thus allowing a perfect bypassing of the memory in-
struction). This way we will be able to distinguish
between the potential bene�ts of moving data in the
memory hierarchy from those of bringing data from
the L1 cache to the register �le.

Figure 1 presents the results obtained with perfect
bypassing, perfect prefetching, and their combination
in a 4-way machine very similar to a MIPS R10K (the
con�guration of this processor will be thouroughly ex-
plained in section 3). The improvement of performance
produced by perfect prefetching is, as expected, big-
ger than that of perfect memory instruction bypassing.
Perfect prefetching shortens a critical path that can
be very big, specially with current memory hierarchies
where bringing cache lines from main memory may
take a hundred processor cycles or more. Perfect mem-
ory instruction bypassing is shortening a much smaller
path. Nevertheless, from the �gures, we can see that
the e�ect produced by perfect memory instruction by-
passing is bigger when combined with perfect prefetch-
ing. This can be explained using Amdhal's Law. As
we improve the overall time consumed in bringing data
from main memory to the L1 cache, the rest of the cost
of the memory operation (the bypassing part) becomes
relatively more important. This result demonstrates
the synergetic e�ect between prefetching and bypass-
ing.

We also run experiments with deeper pipelines in
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Figure 2. Effect of compiler optimisations and the number of ports in a 4-way machine

which both the L1 latency and the memory stage were
increased from 1 to 2 cycles. We found out that
the relative improvement of bypassing with respect to
prefetching increases, which shows that bypassing will
become more important with deeper pipelines.

3 Prefetching and memory instruction

bypassing implementation techniques

3.1 Software Prefetching

Initiating prefetching can be done automatically by
the hardware or can be driven by the insertion or place-
ment of memory operations in the code, i.e. software
prefetching, which itself can be decided by the compiler
alone or may require the aid of the programmer.

Software prefetching can be classi�ed as being bind-
ing or non-binding. Binding prefetch brings data from
the memory to the register �le before it is needed.
In order to achieve this, the load instruction must
be advanced far enough in the instruction stream so
that the contents of the register are updated before its
consumers start executing. This advancement can be
achieved, for example, by executing the load instruc-
tion a few iterations ahead of where it is needed.

Sometimes hiding the total latency of the load is
not possible and in many architectures load instruc-
tions cannot be executed speculatively because they
may access memory locations that trigger exceptions,
modifying the normal execution of the application (spe-
cially if it should have never been executed). In certain
codes the moment in which we know that a particular
load is going to be executed is too near to the use of
the data to completely hide its latency. In other sit-
uations it is the lack of resources that the load needs
(such as logical registers) that inhibits us from expand-
ing the lifetime of the load. In these two latter scenarios
though, the bene�ts produced from hiding partially the
load latency are far better than no prefetching at all.

Non-binding software prefetch tries to overcome the
limitations of the binding case. A new instruction,
namely pref instruction, is used to inform the hardware

which data will potentially be accessed in the near fu-
ture, which is consequently brought to the L1 cache
(thus allocating no registers). In most architectures,
this pref instruction is speculative, thus raising no ex-
ceptions at all. This pref instruction (and the non-
binding prefetch it represents) does not have the draw-
backs of the binding load, but on the other hand has
other drawbacks. As it leaves the data in the L1 cache,
a conventional load instruction must still be present in
the code to bring the data to the register �le. This
implies the overhead of two memory operations to do
the work of one. Moreover, the conventional load in-
struction is usually found near its dependent use, and
therefore, the cost of bringing data from the L1 to the
register �le (what we have called memory instruction
bypassing) is not hidden at all.

The choice of when to aply either is not simple. Nor-
mally the compiler will combine both techniques trying
to achieve the best performance. In all our simulations,
we have used code produced by the MIPSpro compiler
(Version 7.30), which is considered to be a very good
compiler in terms of prefetching and which combines
both binding and non-binding prefetch. We have anal-
ysed two base machines, roughly based on the MIPS
R10K processor. The �rst one assumes a 4-way out-
of-order core and the second, more aggressive, assumes
an 8-way out-of-order core. The number of functional
units and the rest of the resources have been lever-
aged to the issue width. The base memory hierarchy
analysed consists of a 32K direct mapped L1 cache ac-
cessible in 1 cycle, a 4-way 2Mb L2 cache with hit in
13 cycles and main memory with an 88 cycles latency.

In �gures 2 and 3 we can see the e�ects that software
prefetching has on �ve numerical applications running
on our base machines. All �ve applications were chosen
from the SPECfp95 suite due to their amenability to
simulation.

The compiler produced three di�erent versions of
each application. In the compiler framework used for
our experiments, prefetching can only be inserted in
-O3 mode. This is why we have chosen to produce
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Figure 3. Effect of compiler optimisations and the number of ports in a 8-way machine

results with the following optimisations. The �rst ver-
sion uses fairly common safe optimisations (-O2 in our
environment). The second version has aggressive opti-
misations turned on (-O3) but no software prefetching
at all. The third version has both the aggressive op-
timisations and the prefetching turned on. The use of
-O3 may introduce optimisations that in some cases
degrade performance, as we will see for certain con�g-
urations of the experiments conducted. In this exper-
iments we have also analysed the e�ect of the number
of ports when accessing the L1 cache.

From these �gures we have observed that in general,
-O3 (no prefetch) results in a de�nite improvement over
-O2 in a 4-way machine. swim is the exception. For this
reason, in forthcoming graphs we will be using -O3 (no
prefetch) as our baseline. We note, however, that the
compiler impact diminishes when the machine becomes
more powerful (cf. �gure 3). We have also noted that
prefetching with a single port in a 4-way machine can
be detrimental (apsi) or provide little bene�t (applu).
We will therefore use two ports and four ports for the
4-way and 8-way machine although this factor is less
important for the latter.

3.2 Compiler Directed Memory Instruction By-
passing

A little more must be said about binding and non-
binding prefetch before we describe this technique. The
former is better as it leaves data directly into registers,
while the latter is less restrictive in terms of resources,
specially logical register names. A binding prefetch
in the form of an advanced load instruction not only
brings data in the register �le, but also brings a full
cache line to the L1 cache. If other elements of the
cache line are needed in the near future, this load is
acting upon them as a non-binding prefetch. The com-
piler normally can deduce this reuse, and therefore,
will not need to issue prefetches for these other ele-
ments in the line; instead it will consider them already
prefetched (in a non-binding manner). Similarly a pref
instruction will act as a non-binding prefetch for all

the elements in the cache line that will be accessed in
the future. This allows the compiler to economise the
number of extra pref instructions needed to prefetch
elements that live in the same line of cache.

The goal of the mechanism proposed in [8] is to con-
vert non-binding to binding prefetches with the com-
bined bene�ts of both types of prefetching. This is
accomplished by the use of two new instructions: pref z

and load z. We will explain the �rst one in detail and
afterwards point out how the second one behaves.

The main di�erence between a pref z and a normal
pref instruction is the extra information that the pref z

carries. This new instruction has a destination register
and a bit �eld indicating which elements in the cache
line will be accessed (more information about how this
information can �t into the instruction encoding can
be found in [8]).

...
...

......
...

...

......

load r11, a[i+3]

loop branch

pref a[i]

load r4, a[i+1]
load r7, a[i]
load r13, a[i+3]

loop branch

pref r9, a[i] LPB=(1,1,0,1)

load r9, a[i]
load r10, a[i+1]

Figure 4. Pref case

Figure 4 shows an example of the use of pref z. On
the left hand side is the code that a usual compiler
would generate and on the right the code using pref z.
This new instruction is annotated with the destina-
tion register of the subsequent load instruction that
will read the �rst element of the prefetched line. The
resf of loads that read elements from the same line are
remapped to use consecutive numbers in their desti-
nation registers, thus allowing the hardware to detect
which loads will consume the data prefetched by this
pref z. At runtime, the hardware not only issues the
prefetch but it also brings the required elements of the
line into the register �le. These values are assigned free
physical registers, and special mappings are created in
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Figure 5. Improvement due to compiler-directed memory instruction bypassing

a separate table. When the loads reach the decoding
stage, the hardware recognises them and instead of is-
suing and executing them in a load-store unit, it moves
the special mappings from the separate table to the
normal renaming table. This way, any instruction be-
fore the loads will see those logical registers as having
their normal value, and after the loads they will be di-
rected to the values brought by the pref z instruction.
Notice that these values may not have reached the reg-
ister �le at the decoding of the loads, in which case
the dependent instructions on the values produced by
the loads should wait just as if they were waiting for
the loads to complete (i.e. some form of scoreboard-
ing is still necessary). In the case that the values have
arrived to the register �le, the dependent instructions
may consume them inmediately, thus allowing for the
memory instruction bypassing to occur.

Although the number of logical registers is �xed in
any given ISA (possibly preventing the compiler of in-
serting more binding prefetches), the number of physi-
cal registers may vary with each implementation of the
ISA. This mechanism dynamically makes use of free
physical registers when the compiler lacks logical ones.
The mechanism behaves very similarly with the new
load z instruction. The only di�erence with respect to
what we have just explained is that the primary data
brought by the load z is renamed normally, as it would
have been if it were a normal load instruction.

In �gure 5 we can see the results observed when
this particular memory bypassing mechanism is imple-
mented in a 4 way out-of-order processor. This mem-
ory instruction bypassing mechanism based on renam-
ing shows speed{ups ranging from 5% to 22%. As was
expected, memory instruction bypassing yields very
good bene�ts when combined with software prefetching
alone. We will show that this relation becomes stronger
in the presence of hardware prefetching. The results of
this �gure have been extracted from [8].

3.3 Our proposal: A decoupled prefetcher

As was noted in section 2, memory instruction by-
passing produces better bene�ts when prefetching is

present. The mechanism presented in [8] relies on soft-
ware prefetching, which in many cases is not enough to
allow all the potential bene�ts that memory instruc-
tion bypassing may o�er. To boost the prefetching
capabilities of the software prefetcher, we propose a
compiler-controlled hardware prefetcher that is simple
and thus cost-e�ective. This hardware prefetcher will
assist the compiler instructions pref z and load z when
appropriate. We call this prefetching scheme decoupled
because the actual prefetching of the data is shared
among di�erent resources. The compiler inserts soft-
ware prefetching instructions, responsible for bringing
data closer to the processor. The compiler also in-
structs the special prefetching hardware as to which
instructions should be prefetched with greater dis-
tances and without extra software intervention. These
supplementary prefetches will bring data into the L1
cache. The memory instruction bypassing mechanism
(also compiler directed) is responsible for bringing the
data from the L1 cache to the register �le in a non-
speculative way.

A documented drawback of hardware prefetchers is
trying to prefetch for too many load instructions un-
less some (complex) �ltering is implemented [9]. Our
mechanism issues as few useless prefetches as possible.
This is accomplished by issuing only one prefetch per
cache line and in a conservative manner since it is con-
trolled by relying on the new type of pref z and load z

instructions. Each time one of these instructions ar-
rives in its execution phase, it is executed normally
(which includes the binding of all the requested ele-
ments of the line), and a special prefetching hardware
assist starts the process of prefetching successive ele-
ments. The purpose of this hardware is to improve the
timeline of the prefetch by increasing the chance that
future executions of this same instruction will hit in
cache, making the most out of the bypassing e�ect.

The nature of our prefetching mechanism allows the
work of prefetching and memory instruction bypassing
to be separated among the hardware and the software.
Our hardware prefetcher is in charge of non-binding
prefetching into the L1 cache, while the software con-
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Figure 6. Influence of the number of entries and lookahead policies (4-way)

trolled pref z and load z instructions bypass the data
into registers. This leaves the compiler with more free-
dom, as it does not need to insert binding prefetch
too far away from its use, thus reducing logical register
pressure. Moreover, as our prefetcher leaves data in the
L1 cache, our hardware mechanism is non-speculative
and does not require recovery mechanisms.

Our hardware consists of a small PC tagged table
called Cache-Line Prefetching Table (CLPT). In our
experiments we have chosen to make it very small (from
8 to 32 entries) and fully associative with least recently
used (LRU) replacement policy. Each entry in this ta-
ble has two �elds (besides the tag): (1) Last E�ective
Address, which contains the last address produced by
this instruction, and (2) Type Bit which allows us to dif-
ferentiate among pref z and loads z. This bit is strictly
necessary as we could keep di�erent instructions in dif-
ferent tables. We have kept them together to simplify
the understanding of the mechanism.

When a pref z or a load z is decoded, the hardware
mechanism is activated. If there is a tag match in the
CLPT table, the current stride (di�erence between ef-
fective address and last e�ective address) is computed.
The address of the next line to prefetch is computed
addingN�stride to the e�ective address and a prefetch
is initiated. N , the depth of prefetching, is a param-
eter and we have performed experiments with N = 1
and N = 2, and with either value for pref z and load z

instructions (thus the need for the Type Bit). In this
paper we kept N �xed for the whole application. We
are planning future experiments in which the depth
may vary dynamically or even be compiler directed on
an instruction per instruction basis.

In the second case, if the instruction has no allo-
cated entry in the CLPT, the hardware assists sim-
ply allocates one (using LRU replacement policy). In
both cases, the e�ective address in the CLPT is up-
dated. Once our mechanism decides to prefetch a cache
line, the request is maintained until it e�ectively �nds
a free port to the memory hierarchy and can be exe-
cuted. Some prefetching mechanisms �lter prefetches
when the ports are busy, not to exhaust the memory

hierarchy with requests. Since our mechanism is driven
by a subset of all memory operations we do not have
this problem and do not have to introduce any hard-
ware �ltering mechanism. Moreover, the renaming by-
passing mechanism on which the hardware prefetching
relies has been shown to minimise the need of ports by
utilising them more intelligently. We also note that the
process of looking in the table and prefetching can be
divided into several stages, therefore not impacting cy-
cle time. As prefetched data is not used immediately,
we can be more lax in choosing the time to issue the
prefetch without impacting severely the performance
bene�ts.

The cost of our decoupled prefetching and memory
instruction bypassing mechanism consists of the num-
ber of entries in the CLPT and the necessary circuitry
to handle prefetches, plus the hardware associated with
the memory instruction bypassing mechanism. The
memory instruction bypassing mechanism relies on a
secondary renaming mapping table and on an increase
in the number of physical registers. The cost in size and
impact on cycle time has been shown to be minimal[8].

In �gures 6 and 7 we can see the performance results
obtained for our decoupled prefetching and memory
instruction bypassing mechanism. The �rst two bars
represent the improvement due to software prefetching
alone. The next bars represent the di�erent con�gura-
tions for our decoupled prefetching mechanism on top
of the memory instruction bypassing mechanims. The
�rst bar (0 entries) is thememory instruction bypassing
mechanism alone. The other bars represent the results
obtained by our prefetching and memory instruction
bypassing mechanism with varying number of entries
(16 and 32) and di�erent lookahead depths (1 and 2).
We can see that all applications except apsi bene�t
from our hybrid approach averaging a 43% speed-up
over an execution without software prefetching and a
15% speed-up over software prefetching in the case of
a 4-way processor. With respect to the varying depth
parameters, in average, the best combination of depths
is 1 for pref z and 2 for load z. This observation agrees
with the fact that our compiler framework usually in-
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Figure 7. Influence of the number of entries and lookahead policies (8-way)

serts prefs with iteration distances bigger than one,
while normally binding loads are inserted very near
their consuming loads. This way, having a depth of
2 for load z is compatible with the software prefetch-
ing to allow data to be in L1 at bypassing time while
for pref z software prefeching already has the correct
timeliness.

As can be seen, 16 entries are suÆcient in all cases
except swim where performance improves with an in-
creasing number of entries. We have performed a sen-
sitivity study on the number of required entries. In
�gures 8 and 9 we present results for an increasing num-
ber of entries, with the last bar being a limit analysis
in which an in�nite number of entries was simulated.
As can be seen, all programmes saturate their perfor-
mance improvement at some point, namely 16 entries
for all but for swim.

We feel that better performance could be obtained
with other con�gurations in the tables (we are now
using fully associative and LRU replacement) in the
case of a small number of entries. pref z and load z

instructions usually access the CLPT in a round robin
fashion using LRU replacement which is known not to
be good in such situations. We intend to implement
CLPT with other hardware con�gurations to establish
this point.

4 Comparison

Although we believe this is the �rst paper in which
the concept of memory instruction bypassing is de-
�ned and analysed in depth, we are aware that sev-
eral microarchitectural techniques have already been
published that partially exploit the same bene�ts of
memory instruction bypassing, in many cases without
separating them from other microarchitectural bene-
�ts. A speculative technique that uses both prefetching
and memory instruction bypassing is Address Predic-
tion for Data Prefetching (APDP) [2]. We have found
that this technique, whose conceptual roots are based
on Value Prediction, bene�ts from very similar con-
cepts as those explained previously, and is a perfect
match for comparison purposes.

APDP predicts the e�ective addresses of memory
operations (both loads and stores) and using this pre-
diction, prefetches data which is allocated in a special
table called Memory Prefetching Table (MPT). The ex-
ecution of load instructions varies from that of a nor-
mal pipeline. When a load instruction arrives at the
decode stage, its PC address is used to access the non-
tagged MPT. Each entry of the MPT has the following
�elds: (1) Last E�ective Address of the instruction, (2)
Stride, (3) Stride History Bits, which consist on two
bit saturating counters that assigns con�dence to the
prediction, (4) Value, which contains the loaded value
from memory, and (5) Valid Value Bit, which indicates
if the value has arrived from memory.

If the Stride History Bits show con�dence in the pre-
diction and if the Valid Bit is set, the predicted value
found in the Value �eld can be sent, in the decode
stage, to the register �le for dependent instructions to
use it (this is both address and value prediction). If
there is con�dence in the prediction but the Valid Bit
is not set, i.e. the data has not yet arrived, the load is
executed with this predicted address, shortcutting the
computation of the address. In both cases, the specu-
lation is resolved by computing the e�ective address of
the load. If it di�ers from the predicted one, a recovery
action must be taken.

Regardless of whether bypassing has occurred or
not, each load instruction accesses the MPT at the com-
mit phase to update its entry. The �elds Last E�ective
Address and Stride History Bits are updated accord-
ing to their semantics. In order to prevent too many
modi�cations to the stride (specially at the end and
start of loops) the Stride �eld is only updated when
the prediction is not con�dent. Prefetches are only is-
sued in the case of con�dent predictions and free ports
being available. In the original paper [2] the authors
proposed (but not implemented) to bu�er prefetch re-
quest to issue them when a free port becomes available.
We have compared these two options, and they both
seem to be very similar in performance when the num-
ber of ports is suÆcient. With few ports, issuing only
when a port is free is the best alternative.
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Figure 8. Influence of increasing the number of entries in our decoupled prefetcher (4-way)
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Figure 9. Influence of increasing the number of entries in our decoupled prefetcher (8-way)

The last issue regarding the implementation of
APDP is the recovery mechanism. A good explana-
tion of recovery mechanisms can be found in [11] where
recovery schemes are divided into: (1) squashing re-
covery, similar in spirit to branch prediction recovery
whereby all instructions following the mispredicted load
are reexecuted; and (2) selective recovery where only
those instructions dependent on the mispredicted load
are reexecuted. While neither of these two mechanisms
is easy to implement, selective recovery is much more
complex for an out-of-order processor. To our knowl-
edge, no such cost-e�ective implementation has been
proposed. We will show that APDP is very sensitive
to the choice of recovery mechanisms (only selective
recovery was analysed in [2]).

The original paper on APDP did not quantify sep-
arately the performance bene�ts due to prefetching to
those due to memory instruction bypassing. In �gure
10 we present results for various simulations with re-
spect to our 4-way base machine described previously.
The con�guration parameters for the APDP were taken
from [2]: in particular the MPT table has 2048 entries.
These results (cf. �gure 10) show the relative contribu-
tions of prefetching and memory instruction bypassing
in the APDP scheme. We did simulations with the
executables highly optimised (-O3) with and without
software prefetching. With these two executables we
run simulations for the base machine (LoadStore) and
for three versions of the APDP, namely: (1) Prefetch-
ing only; (2) Prefetching and memory instruction by-
passing with squash recovery; and (3) Prefetching and
memory instruction bypassing with selective recovery.

As can be seen in the �gure prefetching only to L1

can cover up to 75% of the total performance bene-
�ts of APDP with selective recovery. It can be noted
that APDP with squash recovery may be worse (up
to a 5% in applu) than just bringing data to the L1
cache, specially in applications with software prefetch-
ing. In these applications squash recovery mechanisms
seems to produce a very small bene�t (in avg. a 2%)
over prefetching only to L1. A possible explanation for
this behaviour is that when the compiler introduces
software prefetching, it usually unrolls loops. This un-
rolling converts one memory operation into a series of
memory operations besides cutting down the total iter-
ations of the loop. When the loop �nishes and is reexe-
cuted, in the �rst iteration, not only one, but all mem-
ory operations will fail their speculation, resulting in a
series of squashes, which, due to the shorter number of
iterations of the loop, represent a bigger handicap for
APDP. What is gained through value prediction and
speculation is almost totally counterbalanced by the
cost of the series of squashes.

In �gure 11 we compare relative performance re-
sults of a subset of the con�gurations presented so
far. In average, it can be seen that having a decoupled
prefetching and memory instruction bypassing mecha-
nism as introduced in section 3 behaves midway APDP
with squash recovery and APDP with selective recov-
ery mechanism.

In order to fully understand these results and why
we consider that our mechanism is a cost-e�ective so-
lution, we must take into consideration the costs of
both mechanisms. Cost cannot be measured in a sim-
ple way with just one number. Cost implies sizes of
tables, power consumption, potential increase in cycle
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Figure 10. Effect of only prefetching in APDP (4-way and 2 ports)
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Figure 11. Comparison of APDP and our decoupled prefetcher (4-way)

time, etc. The size of tables can be easily established
for both our mechanism and APDP. In [8] it was shown
that the cost in bytes of the renaming table associated
with the memory instruction bypassing mechanism was
less than 500 bytes. In addition, the maximum amount
of extra registers to achieve all the potential bene�ts of
this mechanism is 25. The cost of the CLPT depends
on the number of entries but never exceeds 150 bytes.
Thus the cost of the hardware to implement our de-
coupled prefetching mechanism on top of the memory
instruction bypassing mechanism of [8] is minimal, ap-
proximately 700 bytes. The whole mechanism is non-
speculative and therefore does not need any kind of
recovery mechanism, contrary to APDP. In the APDP
mechanism, just the MPT table has 2048 entries, each
one around 131 bits of width, what adds up to a total
of nearly 33 Kbytes. This would imply about 44 times
more memory than what we propose.

applu apsi hydro2d swim tomcatv

LoadStore 1.00 1.00 1.00 1.00 1.00
APDP sel. 1.14 1.14 1.24 1.21 1.21
APDP sq. 1.14 1.15 1.24 1.21 1.22
Bypassing 0.90 0.74 0.82 0.72 0.89
Proposal 0.98 0.85 0.95 0.83 0.94

Table 1. Relative memory traffic in a 4-way
machine with memory 2 ports

Besides this size constraints, each mechanism relies
on a circuitry that in some cases may a�ect proces-
sor frequencies, degrading overall performance. In our

proposal, the circuitry of the renaming has been shown
not to a�ect cycle time [8], and the circuitry for the de-
coupled prefetching does not seem to be too complex,
noted that the calculation and issue of these prefetches
may be delayed a couple of cycles. Something similar
happens with the lookup of the tables in APDP and
the following prefetch. Nevertheless, APDP relies on
a recovery mechanism with signi�cant complexity [11],
that could potentially a�ect cycle time.

In table 1 we show a relative measure of memory
traÆc incurred by each of the di�erent mechanisms. All
numbers are relative to those of the LoadStore base ma-
chine. One interesting thing to notice is the important
reduction in memory traÆc that our memory instruc-
tion bypassing mechanism gets, up to a 27.4% in swim.
This reduction is due to the fact that the memory in-
struction bypassingmechanism groupsmemory accesses
if they belong to the same cache line, thus reducing
the need for requesting several times data on the same
cache line. The number of data items brought from
L1 cache is the same, although the number of requests
is minimised. Adding our decoupled prefetcher on top
of this increases the overall memory traÆc, but always
leaving it under that of the normal base architecture.
On the contrary, APDP needs a lot more memory traf-
�c to support prefetching and speculation. In average,
our decoupled mechanism produces 35% less memory
traÆc than APDP. Knowing the relative cost in power
of memory operations, these numbers show that our
mechanism is also more power aware than APDP.

All these cost results make our proposal cost ef-
fective. Taking this into consideration, our proposal
appears to be a cost-e�ective solution to perform de-



coupled prefetching on top of memory instruction by-
passing. At much lower cost our proposal is better
than a realistic APDP (with squash recovery) and close
to a highly complex APDP (with selective recovery).
Our decoupled prefetching mechanism would get bet-
ter with better compiler technology and we are con�-
dent it would close the gap with respect to the complex
implementation of APDP.

5 Conclusions

In this paper we have presented a cost e�ective de-
coupled prefetcher driven by the compiler insertion of
special prefetching instructions. We have achieved very
good performance results while keeping the cost low be-
cause the hardware mechanism is limited by what the
compiler can predict. For a subset of SPECfp bench-
marks we have achieved a 13% speed-up in average over
a version with software prefetching and a 43% speed-up
over a version without software prefetching.

The insertion of new pref/load instructions allows
the hardware to bypass the execution of successive load
instructions, allowing subsequent instructions to have
their source operands ready earlier. As this bypassing
phase is not speculative, it needs no recovery action.
This property in conjunction with the prefetching to
L1 done by a compiler-controlled simple stride based
hardware prefetcher, makes our mechanism very easy
to implement.

Besides this main contribution, we have also dis-
cussed in detail the concept of memory instruction by-
passing and its relation with prefetching. We have
shown that memory instruction bypassing combined
with both software and hardware prefetching, can ef-
fectively increase performance, with the advantage that
it implies no recovery action since it is non-speculative.

We have also analysed a previously proposed mech-
anism, APDP [2], with respect to its prefetching
and memory instruction bypassing implementations.
APDPs motivation for improving performance came
from a di�erent angle, namely value prediction and
speculation. We have analysed APDP sources of im-
provement and compared them with those in our mech-
anism. Our mechanism can achieve better performance
than a realistic implementation of APDP with squash
recovery, and is close to a much more complex APDP.
We have also compared our mechanism in terms of
cost: sizes of tables, complexity of the hardware in-
volved, memory traÆc, etc. Our mechanism utilises
less than 40 times the amount of real estate than the
tables that APDP use, has a minimal impact in the
design of the processors pipeline and has in average a
35% less memory traÆc than a realistic APDP. More-
over, as our mechanism relies on compiler technology,
we expect that compiler improvements will eventually

increase the potential improvements of our decoupled
prefetching and memory instruction bypassing mecha-
nism, reaching those of APDP.
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