
Cost Effective Memory Dependence Prediction using Speculation Levels and
Color Sets �

Soner Önder
Department of Computer Science

Michigan Technological University
Houghton, MI 49931-1295

fsoner@mtu.edug

Abstract

Memory dependence prediction allows out-of-order is-
sue processors to achieve high degrees of instruction level
parallelism by issuing load instructions at the earliest time
without causing a significant number of memory order vi-
olations. We present a simple mechanism which incorpo-
rates multiple speculation levels within the processor and
classifies the load and the store instructions at run time to
the appropriate speculation level. Each speculation level is
termed as a color and the sets of load and store instructions
are called color sets. We present how this mechanism can
be incorporated into the issue logic of a conventional super-
scalar processor and show that this simple mechanism can
provide similar performance to that of more costly schemes
resulting in reduced hardware complexity and cost. The
performance of the technique is evaluated with respect to
the store set algorithm.

At very small table sizes, the color set approach pro-
vides up to 21 % better performance than the store set algo-
rithm for floating point Spec-95 benchmarks and up to 18 %
better performance for integer benchmarks using harmonic
means.

Keywords: load speculation, memory dependence pre-
diction, store sets, wide issue superscalar, speculative exe-
cution.

1 Introduction

Future generation superscalar processors will attempt to
exploit even higher degrees of instruction level parallelism
(ILP) than what is deemed possible today. By employing
a larger fetch, decode and issue width, these processors
will expose a larger number of load and store instructions

�Supported by DARPA, Power Aware Computing/Communications
Program, Award no. F29601-00-1-0183.

which need to be disambiguated and scheduled for execu-
tion. In such a setting, the traditional approach of delaying
the scheduling of load instructions until all prior store ad-
dresses become known is not appropriate as this approach
results in significant losses in attainable ILP. Although there
are a number of different ways in which early scheduling of
the load instructions can be achieved [12, 1], memory de-
pendence prediction appears to be one of the most viable
approaches, as demonstrated by the effectiveness of simple
dependence predictors deployed in some contemporary su-
perscalar processors [7]. Ongoing research suggests that
there is more to be gained beyond what is possible with
these simple predictors [2, 5, 8, 13].

Memory dependence prediction is an effective technique
since it allows early issuing of the load instructions. When
the addresses of the preceding store instructions in the in-
struction window are not yet available, brute force disam-
biguation of pending loads with respect to these addresses
is not possible. Memory dependence prediction allows the
scheduler to decide if a given load instruction is indepen-
dent of the existing store instructions without a need to have
the memory addresses ready. The scheduler can therefore
schedule a given load instruction with high confidence that
it will not collide with the existing stores. If the processor
later discovers that issuing the load caused a memory order
violation, recovery is initiated by using either re-execution
or roll-back approaches.

It is possible to classify the existing work into three main
approaches. We will refer them as the independence pre-
diction, pairing based and set based approaches. With the
independence prediction, a prediction is made for each load
instruction that is ready to issue to see if the load instruction
is independent of the existing store instructions. In other
words, an attempt is made to predict whether or not there is
a read-after-write dependency between the load instruction
and a store instruction in the instruction window. If the pre-
dictor predicts independence, the load instruction is issued.

Otherwise, the issuing of the load instruction is delayed un-
til all prior store addresses become known. Note that this
technique effectively creates two sets of load instructions;
those that can be safely scheduled early and those that were
known to collide with the unissued store instructions. As a
result, only a single bit of information per load instruction
is sufficient to represent the set in the hardware.

While independence prediction uses a very simple mech-
anism to predict if a given load instruction is independent
of the unissued store instructions, it is highly conservative.
The mere fact that a given load instruction has collided with
an unissued store instruction in the past does not necessarily
mean that it will do so in the future since the colliding store
may compute a different address or may not even be present
in the instruction window during a future execution of the
same load instruction. As a result, later work has shown that
there is great benefit in constructing dependence pairs and
identifying the memory dependences among the store and
the load instructions precisely [8].

More recent work involving the notion of store sets [2]
has shown that instead of pairing, constructing sets of con-
flicting memory instructions may be more appropriate. As
opposed to identifying precise pairs, the store set approach
maintains a set per load instruction in which all store in-
structions that collided with that load instruction are placed.
During the execution, if a load instruction’s store set is not
empty and any of the unissued store instructions is a mem-
ber of the load instruction’s store set, the issuing of the load
instruction is delayed until the condition is cleared. This
approach has been shown to yield performance close to that
of an oracle for an 8-issue processor.

In this paper, we propose a cost effective approach to
memory dependence prediction problem. The key to our
approach is to employ multiple speculation levels within
the processor, termed as speculation colors, or simply col-
ors. These colors divide the load instructions into distinct
sets, starting with the base color which corresponds to the
no violation case. In other words, this set is the set of load
instructions which have never collided with unready store
instructions in the past. Each color in the spectrum rep-
resents increasing levels of aggressiveness in load specula-
tion; a load instruction is allowed to issue only if its color
is less than or equal to the current speculation level. If the
processor later discovers that the load has collided with a
store, the color assigned to the load instruction in the pre-
dictor is increased. In summary, instead of attempting to
predict dependence/independence for a given load instruc-
tion, we predict the color (i.e., the speculation level) a given
load instruction will successfully speculate.

The processor’s speculation level is adjusted by observ-
ing the memory port utilization, as well as the presence of
the store instructions which have collided with the specu-
lative load instructions in the past. For example, if there is

ample amount of base color loads at a given point in execu-
tion, (i.e., memory ports are fully utilized without schedul-
ing the risky loads) no attempt is made to speculate the risky
loads and the processor remains at the base color. On the
other hand, if the memory ports are under utilized, the pro-
cessor allows loads to execute speculatively from the next
color level. This approach results in very effective use of
the predictor space since only a few colors are sufficient to
capture most of the ILP that can be obtained.

In the remainder of the paper, we first present some of
the related work and discuss the issues involved in memory
dependence prediction in Section 2. Next, in Section 3, the
essential elements of our algorithm are discussed. Section 4
presents an implementation of the color sets approach. Fi-
nally, in Section 5, we present an experimental evaluation
of the color sets approach with respect to the store set algo-
rithm.

2 Memory Disambiguation Problem

The problem of memory disambiguation may be stated
as deciding at any given point in time whether the execu-
tion of a given load instruction would cause a memory or-
der violation. When the store addresses of all the preceding
stores are available, a simultaneous comparison of the load
address with respect to older stores yields a decisive answer
about whether executing the load at this point in time would
be an error. On the other hand, besides the obvious hard-
ware complexity involved, waiting for all the prior store in-
structions to compute their addresses is overly conservative
since in many cases there is no dependence between a load
and the preceding store instructions. As a result, it makes
sense to predict the dependencies and to issue the load in-
structions speculatively well before the store addresses be-
come known.

The simplest form of a memory dependence predictor is
a predictor that always predicts independence. In such a set-
ting, the processor issues load instructions as soon as they
compute their addresses and rolls back as collisions hap-
pen. This approach is called blind speculation [3]. Blind
speculation almost always improves performance at the ex-
pense of increased power consumption of the processor, but
comes at no hardware cost.

A better approach is to identify the bad loads that hap-
pen to collide with the preceding stores. In this case, a one
bit predictor is used which can be implemented either as
a separate predictor, or as part of the instruction cache by
adding a single bit to each cache word. This is the ap-
proach taken in contemporary processors such as the Alpha
21264 processor. Upon detecting a memory order violation,
the processor marks the load instruction so that when the
same load instruction is encountered for the second time,
it waits for all the preceding store instructions before issu-

ing [7]. Alternatively, the processor can remember the store
instructions which happen to collide with the nearby load
instructions and the processor does not speculatively issue
load instructions until these store instructions execute. This
is the approach taken in store barrier cache approach [5].
The problem with these approaches has been that they cre-
ate a lot of false dependencies. False dependencies are a
significant reason for loss of parallelism since even a sin-
gle dependence can hold up the execution of the rest of the
load/store instructions for long time while these instructions
may be entirely independent.

Load/Store PC

Store Set ID Table
 (SSIT)

SSID

Store inum

Last Fetched Store Table
(LFST)

Index

Figure 1. Store Set Implementation.

Having realized the shortcomings of these approaches,
advanced techniques have been proposed. Instead of cre-
ating barriers which indiscriminately hold all the load in-
structions, these techniques record and utilize the actual de-
pendencies among the load and store instructions. Since the
actual dependence information is available, these predictors
not only provide an answer to whether or not there is a de-
pendence, they can be integrated with the issue logic and
tell exactly when the condition clears by chaining depen-
dent instructions using hardware pointers.

We pay special attention to one such algorithm, namely
the store set algorithm. Since it provides near oracle perfor-
mance for an 8-issue processor, we selected it as our base
case and included an outline of the algorithm here.

The basic idea behind the store set algorithm is to make
sure that if a load instruction and a store instruction col-
lides (i.e., there is a dependence between them and the load
instruction was mis-speculated), the algorithm remembers
this fact and never schedules a colliding load before the
store instruction that the load has collided with in the past.
In order to coalesce many dependencies together, the algo-
rithm constructs sets of store instructions named store sets
per load instruction. In this respect, a store set is defined to
be the set of store instructions a load has ever depended on.

The algorithm starts with empty sets, and blindly specu-
lates load instructions around stores. When memory order
violations are detected, the offending store and the load in-
structions are allocated and placed in store sets. In general,
a load may depend upon multiple stores and multiple loads
may depend on a single store. In order to obtain a sim-

ple implementation, a store instruction is allowed to be in
at most one store set at a given time. Furthermore, stores
within a store set are constrained to execute in order. With
these simplifications, only the two directly mapped struc-
tures shown in Figure 1 are needed to implement the desired
functionality [2].

At this point, it is important to note that while simple
barrier style predictors suffer from a significant number of
false dependencies, dependence based approaches typically
require large tables in order to accommodate the precise de-
pendence information. What we would like to have is the
space efficiency of simpler predictors with the performance
of dependence based predictors.

3 Color Sets

Even though it may appear that having the performance
of dependence based predictors with the space efficiency
of simple dependence predictors is not a realistic goal, a
careful analysis of the memory dependence problem yields
some hope:

1. The false dependencies imposed by simple predictors
can be alleviated by having multiple levels of barri-
ers which may provide similar performance to that of
more precise information.

2. The dependence information provided by advanced
predictors for scheduling purposes can be mimicked
by having an appropriate delay in the execution of a
load instruction.

The color sets approach utilizes both of these observa-
tions to yield a cost effective scheme. In order to address
the false dependence problem, we start with the basic sin-
gle bit independence predictor and first extend it to mul-
tiple levels. Instead of the two states, namely, speculate
and don’t speculate, we discriminate between loads which
result in many collisions and those that occasionally col-
lide. In other words, we employ multiple speculation levels
within the processor, termed as colors. These colors repre-
sent a spectrum of speculation levels starting with the base
color which corresponds to the no collisions case, whereas
each color in the spectrum represents increasing levels of
collisions in load speculation. Effectively, the scheme es-
tablishes sets of instructions and barriers for each respective
set.

Since the precise dependence information would not be
available, it is not possible to make dependent loads wait for
the corresponding store instructions using hardware point-
ers. Instead, one has to rely on some mechanism to suf-
ficiently delay the scheduling of the loads until such time
that they won’t collide with their dependent store instruc-
tions. Our approach is to use the available parallelism indi-
cators so that the processor speculates the risky instructions

only when there is not enough supply of safer ones. This
technique in most cases provides the required delay as most
collisions occur within a window frame of just a few cy-
cles. In case the provided delay through this mechanism is
not sufficient, these loads collide again and are pushed to
the next set which is polled less often. Unfortunately, this
simple mechanism alone is not sufficient to provide the nec-
essary delay. In practice, we observed that there are many
cycles during which there is not enough supply of less risky
load instructions. Therefore, the processor rapidly moves to
the next set and starts scheduling risky load instructions. If
during this time colliding store instructions are also present
in the instruction window, collisions happen repeatedly.

Our solution to this problem is to make use of the col-
liding store information to adjust the speculation level. For
this purpose, we developed two policies. In the first pol-
icy, when a store instruction enters the instruction window,
it does not let the processor color move beyond its own. By
assigning a lower color to colliding stores and the current
processor color to safer ones, the processor speculates only
those sets of loads which are not likely to cause memory
order violations with the existing store instructions. We re-
fer to this policy as color set basic policy. In the second
policy, we specifically mark the colliding store instructions
using the highest color value. In this policy, when a collid-
ing store instruction enters the instruction window, it decre-
ments the processor color and the processor moves to the
highest color as soon as these store instructions compute
their addresses. We refer to this policy as color set aggres-
sive. In the evaluation section, both policies are evaluated
and each are shown to have benefits depending on the avail-
able hardware resources.

Having described how the scheduling of the load and
store instructions can be controlled without having precise
dependence information, we now outline the basic con-
straints and the steps of the algorithm for the basic policy:

1. Initially, all the loads and the stores have the base color.

2. The current scheduling color is increased when the
memory port utilization is low, i.e., there are not
enough ready, well-behaved load instructions in the in-
struction window.

3. When there are preceding store instructions in the in-
struction window whose addresses are not yet known,
the processor schedules only those load instructions
which have a color less than or equal to the current
scheduling color. When all the preceding store ad-
dresses are known, a load instruction issues regardless
of its color.

4. Upon completion, a load instruction that is executed
successfully updates its color to the current schedul-

ing color. A colliding load instruction sets its color
to a value larger than the current scheduling color. If
the load is already at the maximum available color, the
current color is maintained.

5. Upon completion, a store instruction sets its color en-
try to the current scheduling color if it did not collide
with a speculated load instruction.

6. A colliding store instruction sets its color entry to one
less than the color assigned to the load which collided
with the store. In other words, a colliding store and
a colliding load instruction are assigned to different
color sets such that the load instruction gets the higher
color and the store instruction gets the lower color.

7. When a store instruction enters the instruction window,
the current scheduling color is set to the store instruc-
tion’s color if store instruction has a lower color. Oth-
erwise, the current scheduling color is unaffected.

The purposes of steps 1 and 2 have already been ex-
plained. Constraints 3 and 4 together make sure that load
instructions speculate at the color they have been known to
successfully speculate, as well as make sure that load in-
structions with a high color will not starve. Also, if a load
instruction occasionally collides, it will first be assigned to
a high color. If, during a later execution it is successfully
executed at a lower color because of constraint 3, it will be
placed into a lower ranking color. In this way, an occasional
collision will not limit parallelism during the future execu-
tions of the same load.

Constraints 5, 6 and 7 operate in tandem; a non-colliding
store instruction maintains the scheduling color where it
is known to execute without a collision (and hence the
scheduling of risky load instructions which do not collide
with the scheduled store instruction). On the other hand, a
colliding store instruction lowers the scheduling color and
thus inhibits the scheduling of the loads it had collided with
in the past.

For the aggressive policy, we modify the steps 2, 5, 6 and
7 as follows:

1. The current scheduling color is set to maximum when
the memory port utilization is low, i.e., there are not
enough ready, well-behaved load instructions in the in-
struction window.

2. Upon completion, a store instruction does not modify
its color entry if it did not collide with a speculated
load instruction.

3. A colliding store instruction sets its color entry to the
maximum color. In other words, the maximum color
for a store instruction means colliding store.

4. When a colliding store instruction enters the instruc-
tion window, the current scheduling color is decre-
mented. Otherwise, the current scheduling color is un-
affected.

Having laid out the fundamental aspects of the algorithm
and the details of both policies, we present an implementa-
tion of the algorithm in the next section.

4 Color Set Implementation

Color set implementation consists of a global color reg-
ister, a simple two-bit predictor shown in Figure 4 and a
chain of or gates in the issue window of the processor.

Load / Store PC

Color predictor

Fetch/Decode

Color Assignment

To the instruction window

Basic policy
0 0 − No speculation
0 1 − Speculation level 1
1 0 − Speculation Level 2
1 1 − Speculation Level 3.

Aggressive policy
0 0 − No speculation
0 1 − Speculation level 1
1 0 − Speculation Level 2
1 1 − Colliding store.

Figure 2. Color Set Predictor.

The color set predictor is similar to the predictors used
for branch prediction. When a load or store instruction is
fetched and decoded, its PC is used to access the predictor.
The instruction copies the color value obtained and carries
the value as part of the control information associated with
the instructions. In a reservation station, in addition to the
usual data dependencies, a load instruction has to watch for
the value in the global scheduling register versus its own
color. A load is ready to execute if it has satisfied its data
dependencies and either all prior store addresses are known
or the global scheduling color is greater than or equal to the
load’s own color.

The necessary changes that need to be incorporated into
the instruction window logic is shown in Figure 3. For the
purpose of clarity, we show the additional logic for a single
entry of the issue logic in the figure. Instructions enter the
window from the bottom, but any instruction in any posi-
tion may be issued at any time. It is also assumed that the
window is collapsed after performing a dispatch, much like
the Alpha 21264 processor. When a slot is occupied by a
store instruction, the inhibit flag is set as long as the store

instruction has not yet computed its address. This signal is
propagated to younger cells in a chain of or gates. Each cell
therefore performs a color compare and performs a logical
or of the result and the negation of preceding store instruc-
tions’ inhibit signal. As a result, a load instruction is ready
to issue when all the preceding store instructions have com-
puted their addresses, or it has a color less than or equal to
the global scheduling color.

+

+

+

+

+

+

instructions entering window

global
color

<=

0

issue?
Instruction Window

color compare

not inihibit inh
ibi

t

co
lor

ins
tru

cti
on

 w
ind

ow
 de

tai
ls

Figure 3. Instruction window extensions.

As described before, the handling of the store instruc-
tions is different for the two policies. For the basic policy,
a store instruction upon entering the reservation station sets
the global scheduling color if its color is less than the global
scheduling color. With the aggressive policy, only a collid-
ing store instruction affects the scheduling color. In both
policies however, the store instruction waits in the reserva-
tion station for any data dependencies normally and issues
when it becomes ready. No specific ordering of the store
instructions is maintained since we also employ the out-of-
order store issuing mechanism [10, 11]. For completeness,
we include a brief summary of the technique here:

1. The checking for exceptions in case of memory refer-
ences is delayed until the store retires.

2. Each load that is issued speculatively makes an entry
in a table called the speculative loads table where the
address and the value the load instruction obtained are
stored.

3. In the reorder buffer, each load instruction is associated
with an exception bit. As a store instruction retires, its
address is compared to those in the speculative loads
table as well the value it has stored.

If the addresses match and values differ, it sets the
exception bit associated with the load.

If the addresses match and values match, it resets the
exception bit associated with the load.

If the addresses do not match, no action is taken.

4. Once the load is ready to retire, it checks its excep-
tion bit. If the bit is set, a roll-back is initiated and the
fetch starts with the excepting load instruction. Oth-
erwise, the load instruction’s entry is deallocated from
the speculative loads table.

As it can be easily seen, the exception bit may be set
by a number of store instructions if they reference the same
memory location, but store a different value. However, if
there is no memory order violation, the last store to the
memory location will have both an address and a value
match and will reset the exception bit. In other words, this
mechanism precisely identifies the provider store instruc-
tion.

For an implementation using a two bit predictor as out-
lined above, the set of color states for the processor and the
load instructions for the basic policy are shown in Figure 4.
In the figure, the set of load instructions eligible for schedul-
ing when the processor color is 01 are shown in the shaded
region.

Collission

Successful speculation eligible for execution
Load instructions

����
����
����
����

����
����
����
����

00 01 10 11
Processor

Color

Low port utilization

Colliding stores ��
��
��
��

Current processor

color

00 01 10 11
Load Color

Figure 4. Load instructions and Processor
Color States.

As it can be seen from the figure, with the basic policy,
the processor increases its color only when the memory port
utilization is low, but may jump from any state to any state
upon encountering a store instruction that demands a lower
speculation level. Similarly, the color assigned to a given
load instruction will be increased upon a collision, but may

be set to any lower value upon successful execution at a
lower color.

5 Experimental Evaluation

In order to evaluate the performance of the color sets
approach, three processor descriptions written in the ADL
language [9] have been developed and the simulators have
been automatically generated from these descriptions using
the FAST simulation system. Simulators model the basic
superscalar pipeline shown in Figure 5 and are cycle accu-
rate.

CommitFetch Decode
Rename

Wakeup
Select

Execute Memory
Access

ISSUE

WINDOW

D
is

am
bi

gu
at

or

M
em

or
y

Array

in
st

ru
ct

io
n

ca
ch

e

in
st

ru
ct

io
n

bu
ff

er
s

de
co

de
re

na
m

e
di

sp
at

ch
R

eg
is

te
r

Fi
le

������������������������

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
���������

����
����
����
����

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��������������������������������������

������

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
����������������

M
E

M
O

R
Y

Reorder and Commit

Functional

Unit

Figure 5. Machine Model.

We kept the machines with the store set predictor and
the color set implementations identical in all aspects except
the memory disambiguator. Modeled superscalar proces-
sors employ an aggressive multi-block instruction fetcher
that delivers up to 8 instructions every cycle. Similarly,
the issue window is a large central window implementation
which can schedule instructions as soon as the data depen-
dencies for an instruction are satisfied.

(b) Functional Unit latencies(a) Machine parameters

Retire width

Instruction Window

Fetch width

16 Instructions

8 instructions

64 Instructions

Issue width

Functional Units Issue width Symmetric
Functional units.

Instruction fetch

Memory ports 2

Dcache Perfect

Multiblock Gshare

Load

Integer division

Integer multiply

Other integer

Float multiply

Float addition

Float division

Other float

2

8

4

1

4

3

8

2

Latency (cycles)Functional Unit

8 Instructions

Figure 6. Machine Configurations.

In order to show the effects of the predictor table size
on the performance, we considered table sizes ranging from

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

40
96

20
48

10
24 51
2

25
6

12
8

IP
C

SPEC95 FP

color set basic
color set aggressive

store set

(a) Mean IPC

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

40
96

20
48

10
24 51
2

25
6

12
8

IP
C

SPEC95 FP

color set basic
color set aggressive

store set

(b) Harmonic Mean IPC

Figure 7. Spec-95 Float.

four kilobytes down to 128 bytes. Other machine parame-
ters used in the simulations are shown in Figure 6. We used
the SPEC-95 benchmark suite with their test inputs.

Instructions per cycle. For the measurement of the in-
structions per cycle figures, we compare both the harmonic
means of the IPC values as well as the arithmetic means.
The performance of the algorithm as a function of the pre-
dictor sizes is shown in Figure 7 and Figure 8.

As it can be seen from both graphs, the basic policy is
superior to both the aggressive policy and the store set at
small predictor sizes. Specifically, when equipped with a
predictor of 1 KB or less, basic policy loses very little per-
formance as the predictor size is decreased. On the other
hand, this policy cannot take advantage of larger predictor

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

40
96

20
48

10
24 51
2

25
6

12
8

IP
C

SPEC95 Integer

color set basic
color set aggressive

store set

(a) Mean IPC

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

40
96

20
48

10
24 51
2

25
6

12
8

IP
C

SPEC95 Integer

color set basic
color set aggressive

store set

(b) Harmonic Mean IPC

Figure 8. Spec95 Integer.

sizes. In fact, the performance of the algorithm does not
change much when the predictor size is reduced from 4KB
to 512 bytes.

For larger tables, the aggressive policy closely matches
the performance of the store set algorithm. For both poli-
cies, harmonic means and arithmetic means follow similarly
shaped curves and is indicative of uniform performance
across the benchmark suite.

The performance of the algorithm using the basic policy
for individual benchmarks is shown in Figure 9 and Fig-
ure 10 and the performance of the algorithm using the ag-
gressive policy for individual benchmarks is shown in Fig-
ure 11 and Figure 12.

101.tomcatv

102.swim

103.su2cor

104.hydro2d

107.mgrid

110.applu

125.turb3d

141.apsi

145.fpppp

146.wave5

A−Mean

H−Mean
0.0

2.0

4.0

6.0

IP
C

store set 128
color set 128
store set 256
color set 256

(a) 128 and 256 bytes

101.tomcatv

102.swim

103.su2cor

104.hydro2d

107.mgrid

110.applu

125.turb3d

141.apsi

145.fpppp

146.wave5

A−Mean

H−Mean
0.0

2.0

4.0

6.0

IP
C

store set 512
color set 512
store set 1024
color set 1024

(b) 512 and 1024 bytes

Figure 9. Spec-95 Float: Basic policy.

Analysis. The superior performance of the algorithm with
the basic policy at smaller predictor sizes is based on two
factors:

1. The space requirement per entry is much smaller than
the dependence based approaches. Therefore, the algo-
rithm can use more entries for a given hardware bud-
get.

2. The algorithm takes advantage of the positive interfer-
ence that is occurring and minimizes the effects of neg-
ative interference.

While the first point is easy to see, the interference as-
pect deserves some closer look. As opposed to dependence
based predictors which need to periodically clear the tables
and restart fresh, in case of color set approach, entries are
self healing. For example, a successful speculation of a
load instruction will result in the entry being refreshed with
a lower color value, whereas an unsuccessful attempt will
heal the entry with a higher color value. Unless the col-
lisions on the predictor entries are too closely spaced, oc-

099.go

124.m88ksim
126.gcc

129.compress
130.li

132.ijp
eg

134.perl

147.vortex

A−Mean

H−Mean
0.0

2.0

4.0

6.0

IP
C

store set 128
color set 128
store set 256
color set 256

(a) 128 and 256 bytes

099.go

124.m88ksim
126.gcc

129.compress
130.li

132.ijp
eg

134.perl

147.vortex

A−Mean

H−Mean
0.0

2.0

4.0

6.0

IP
C

store set 512
color set 512
store set 1024
color set 1024

(b) 512 and 1024 bytes

Figure 10. Spec95 Integer: Basic policy.

casional overwriting of the entry by some other instruction
will be repaired quickly.

The most important source of negative interference from
the performance perspective is the loss of colliding store in-
formation. Such an entry may be overwritten by another
load instruction, or a non-colliding store instruction. This
may result in a mis-speculation if the global scheduling
color is set to high and a dependent load instruction is ready
and accounts for a significant percentage of the performance
loss.

Another source of negative interference occurs when an
independent load instruction’s entry is overwritten by a de-
pendent load instruction. In this case, the independent load
instruction is forced to carry a higher color and will not
be scheduled at the earliest time. However, upon observ-
ing that the machine does not have enough supply of ready
loads at the given scheduling color, the processor will move
rather quickly to higher colors and make those load instruc-
tions eligible again. In the experiments, we observed that
both types of negative interference contribute to the perfor-

101.tomcatv

102.swim

103.su2cor

104.hydro2d

107.mgrid

110.applu

125.turb3d

141.apsi

145.fpppp

146.wave5

A−Mean

H−Mean
0.0

2.0

4.0

6.0

IP
C

store set 512
color set 512
store set 1024
color set 1024

(a) 512 and 1024 bytes

101.tomcatv

102.swim

103.su2cor

104.hydro2d

107.mgrid

110.applu

125.turb3d

141.apsi

145.fpppp

146.wave5

A−Mean

H−Mean
0.0

2.0

4.0

6.0

IP
C

store set 2048
color set 2048
store set 4096
color set 4096

(b) 2048 and 4096 bytes

Figure 11. Spec-95 Float : Aggressive policy.

mance loss, especially at very small predictor sizes.
In summary, the basic policy makes very effective use of

limited information, but cannot make use of additional in-
formation. On the other hand, the aggressive policy makes
too many mistakes when the information at hand is im-
precise because of significant degrees of interference, but
works perfectly when the interference is minimal. This sug-
gests a two tiered approach to memory dependence predic-
tion which is discussed further in the conclusion section.

Load Misspeculations. When we analyze the misspecu-
lation data, we observe that the store set approach consis-
tently out-performs the color set approach. In fact, the num-
ber of misspeculations with the store set approach does not
change as the predictor size is decreased. Due to the space
limitations, we do not include the store set misspeculation
data here and the reader is referred to the original publi-
cation [2]. On the other hand, at small predictor sizes the
store set merging process creates too many false dependen-
cies and the algorithm simply does not speculate when it is

099.go

124.m88ksim
126.gcc

129.compress
130.li

132.ijp
eg

134.perl

147.vortex

A−Mean

H−Mean
0.0

2.0

4.0

6.0

IP
C

store set 512
color set 512
store set 1024
color set 1024

(a) 512 and 1024 bytes

099.go

124.m88ksim
126.gcc

129.compress
130.li

132.ijp
eg

134.perl

147.vortex

A−Mean

H−Mean
0.0

2.0

4.0

6.0

IP
C

store set 2048
color set 2048
store set 4096
color set 4096

(b) 2048 and 4096 bytes

Figure 12. Spec95 Integer : Aggressive policy.

indeed safe to do so. On the contrary, the color set yields
more misspeculations but also yields better performance at
these small predictor sizes.

The misspeculation data for the color set basic policy is
given in Table 1 and Table 2. As it can be seen from these ta-
bles, some floating point benchmarks such as 101.tomcatv,
102.swim and 146.wave5 actually show somewhat signifi-
cant number of misspeculations. Among these benchmarks,
the worst benchmark, 102.swim at a predictor size of 128
bytes results in 9.42 misspeculations per thousand load in-
structions executed, yielding a figure slightly less than 1
percent. Even though this is a small figure in terms of per-
centages, these figures indicate that there is still room for
improvement for these benchmarks. One important obser-
vation is the variation with some of the benchmarks where
a smaller table actually yields a smaller number of misspec-
ulations. This is due to the aliasing and illustrates that there
is more to be gained by applying well known branch pre-
diction table access techniques in this context.

Spec-95 Predictor Size in Bytes
Integer 128 256 512 1024 2048 4096

099.go 0.42 0.09 0.22 0.08 0.03 0.00
124.m88ksim 0.07 0.02 0.03 0.02 0.01 0.01

126.gcc 1.01 0.21 0.46 0.04 0.02 0.01
129.compress 0.01 0.00 0.01 0.00 0.00 0.00

130.li 0.63 0.00 0.62 0.00 0.00 0.00
132.ijpeg 0.04 0.01 0.02 0.01 0.01 0.01
134.perl 2.90 0.06 1.57 0.07 0.07 0.04

147.vortex 1.39 0.49 0.84 0.09 0.02 0.02

Table 1. Misspeculations per 1000 Loads

Spec-95 Predictor Size in Bytes
Float 128 256 512 1024 2048 4096

101.tomcatv 5.95 2.26 4.64 1.86 1.66 0.93
102.swim 9.42 0.00 1.54 0.00 0.00 0.00

103.su2cor 1.10 0.55 0.55 0.55 0.55 0.00
104.hydro2d 1.57 0.51 0.97 0.39 0.34 0.18
107.mgrid 0.01 0.01 0.01 0.00 0.00 0.00
110.applu 0.00 0.00 0.00 0.00 0.00 0.00
125.turb3d 0.76 0.19 0.30 0.08 0.07 0.04
141.apsi 0.74 0.22 0.41 0.10 0.07 0.01

145.fpppp 3.94 0.87 1.72 0.50 0.05 0.04
146.wave5 8.45 2.09 2.63 1.86 0.00 0.00

Table 2. Misspeculations per 1000 Loads

6 Conclusion and Future Work

We have presented a cost-effective mechanism for load
dependence prediction. The proposed algorithm requires
very small hardware budgets for dependence prediction,
making the budget available for use elsewhere.

The design space of the color predictor has not yet been
explored fully. In this regard, we will be studying the effects
of the number of colors versus the number of entries trade-
off, as well as various techniques that can be deployed for
the minimization of negative interference. Because of the
similarity of the color predictor to the well known branch
prediction techniques, we believe the established base of
branch prediction mechanisms will enable us to improve
the algorithm further. In its current form, the algorithm is
particularly suitable for the application of various forms of
confidence mechanisms [6, 4].

We will be exploring the design space from the power
consumption perspective as well. It should be remembered
that the two policies we have developed for the color set ap-
proach are close enough to each other such that both can be
reasonably implemented within the same processor. Such a
processor can choose the appropriate policy depending on
the available power and performance requirements. Specif-
ically, it is possible to equip the processor with a large
predictor but disable a significant portion of the predictor
when the available power is limited. In this case, the pro-
cessor may employ the basic policy and still provide com-

petitive performance. Similarly, when better performance
is desired, the rest of the predictor can be enabled and the
processor may switch to the aggressive policy.

References

[1] B. Calder and G. Reinman. A comparative survey of load
speculation architectures. Journal of Instruction Level Par-
allelism, May 2000.

[2] G. Z. Chrysos and J. S. Emer. Memory dependence pre-
diction using store sets. In Proceedings of the 25th Inter-
national Conference on Computer Architecture, pages 142–
153, June 1998.

[3] K. Gharachorloo, A. Gupta, and J. Hennessy. Two tech-
niques to enhance the performance of memory consistency
models. In Proceedings of the International Conference on
Parallel Processing, pages 245–257, August 1991.

[4] D. Grunwald, A. Klauser, S. Manne, and A. Pleszkun. Con-
fidence estimation for speculation control. In Proceedings
of the 25th International Conference on Computer Architec-
ture, pages 122–131, 1998.

[5] J. Hesson, J. LeBlanc, and S. Ciavaglia. Apparatus to dy-
namically control the Out-Of-Order execution of Load-Store
instructions. US. Patent 5,615,350, Filed Dec. 1995, Issued
Mar. 1997.

[6] E. Jacobsen, E. Rotenberg, and J. E. Smith. Assigning con-
fidence to conditional branch predictions. In Proceedings of
the 29th Annual International Symposium on Microarchitec-
ture, pages 142–152, December 1996.

[7] R. Kessler, E. McLellan, and D. Webb. The alpha 21264
microprocessor architecture. In International Conference on
Computer Design, December 1998.

[8] A. I. Moshovos, S. E. Breach, T. N. Vijaykumar, and G. S.
Sohi. Dynamic speculation and synchronization of data de-
pendences. In Proceedings of the 24th International Confer-
ence on Computer Architecture, pages 181–193, June 1997.

[9] S. Önder and R. Gupta. Automatic generation of microar-
chitecture simulators. In IEEE International Conference on
Computer Languages, pages 80–89, Chicago, May 1998.

[10] S. Önder and R. Gupta. Dynamic memory disambiguation
in the presence of out-of-order store issuing. In 32nd Annual
IEEE-ACM International Symposium on Microarchitecture,
November 1999.

[11] S. Önder and R. Gupta. Dynamic memory disambiguation
in the presence of out-of-order store issuing. Journal of In-
struction Level Parallelism, 2002 (to appear).

[12] G. Reinman and B. Calder. Predictive techniques for ag-
gressive load speculation. In The 31st Annual IEEE-ACM
International Symposium on Microarchitecture, pages 127–
137, December 1998.

[13] S. Steely, D. Sager, and D. Fite. Memory reference tagging.
US. Patent 5,619,662, Filed Aug. 1994, Issued Apr. 1997.

