
Effective Compilation Support for Variable Instruction Set Architecture

Jack Liu, Timothy Kong, Fred Chow
Cognigine Corporation
6120 Stevenson Blvd.

Fremont, CA 94538, USA
fjackl,timk,fredcg@cognigine.com

Abstract

Traditional compilers perform their code generation
tasks based on a fixed, pre-determined instruction set. This
paper describes the implementation of a compiler that de-
termines the best instruction set to use for a given pro-
gram and generates efficient code sequence based on it. We
first give an overview of the VISC Architecture pioneered
at Cognigine that exemplifies a Variable Instruction Set Ar-
chitecture. We then present three compilation techniques
that, when combined, enable us to provide effective com-
pilation and optimization support for such an architecture.
The first technique involves the use of an abstract opera-
tion representation that enables the code generator to op-
timize towards the core architecture of the processor with-
out committing to any specific instruction format. The sec-
ond technique uses an enumeration approach to schedul-
ing that yields near-optimal instruction schedules while still
adhering to the irregular constraints imposed by the archi-
tecture. We then derive the dictionary and the instruction
output based on this schedule. The third technique super-
imposes dictionary re-use on the enumeration algorithm to
provide trade-off between program performance and dic-
tionary budget. This enables us to make maximal use of
the dictionary space without exceeding its limit. Finally,
we provide measurements to show the effectiveness of these
techniques.

Keywords: configurable code generation, dictionary,
embedded processor, enumeration, instruction scheduling,
program representation, resource modeling, variable in-
struction set.

1. Introduction

In recent years, processors with configurable instruction
sets are becoming more and more widely used, due to the
never ending effort to provide ever greater performance for

running embedded applications. these application specific
instruction set processors (ASIPs) [1, 2] use instruction sets
customized towards a specific type of application so they
can deliver efficient run-time performance for typical pro-
grams written for that application area. Because the instruc-
tion set is pre-determined, the compiler is built and config-
ured to generate code based on a custom, fixed instruction
set [16].

The Variable Instruction Set Communications Architec-
ture (VISC ArchitectureTM) from Cognigine represents a
very different approach in the attempt to provide greater
configurability in compiling embedded software. The VISC
Architecture can perform a complex set of instructions con-
sisting of multiple, fine and coarse grain operations that op-
erate on multiple operands at the same time in one fixed
hardware implementation. It also provides the capability for
the compiler to tailor the instruction set to the program be-
ing compiled. In this situation, the instruction set the com-
piler chooses to use in compiling program A may be differ-
ent from the instruction set it chooses to use for program B.
In addition to coming up with the most efficient instruction
sequence, the compiler also takes on the additional task of
determining the best instruction set from which to derive the
instruction sequence, based on its analysis of the contents
of the program being compiled. This amounts to adding an-
other dimension to the compilation problem space. Under
this scenario, the design of the compiler is key to exploit-
ing the performance advantages made possible by the VISC
Architecture.

In this paper, we address the challenges in designing
such a compiler for the VISC Architecture. The rest of this
paper is organized as follows. Section 2 gives a brief survey
of prior related work. In Section 3, the Cognigine VISC
Architecture and its implementation in the CGN16000TM

family of network processing devices are described in more
detail. In Section 4, we describe how using an abstract op-
eration representation allows the compiler’s code genera-
tor to optimize towards the core target architecture with-
out committing to any specific instruction format. In Sec-

tion 5, we present our implementation of the IDF phase
that determines the final instruction set and the generated
code sequences while adhering to various constraints in the
hardware. In Section 6, we describe our extension to the
IDF framework to promote dictionary re-use and to sup-
port trade-off between program performance and dictionary
budget. In Section 7, we assess the effectiveness of these
techniques via data collected on the compilation of a set of
application programs. We conclude in Section 8 and point
out areas of ongoing and future work.

2. Prior Work

Most prior work related to compile-time-configured in-
struction set architecture has been limited to the research
arena. Most of the research efforts were focused on the ar-
chitectural aspects, and there are little published work that
addresses the compilation techniques. In his Ph.D. thesis,
Talla [15] provides a good survey of the major reconfig-
urable computing research efforts. He defines Dynamic In-
struction Set Architectures (DISA) as “a class of micropro-
cessor architectures that provide an interface (a base ISA)
that allows higher level software (such as the running pro-
gram or the compiler) to extend the base ISA with addi-
tional instructions.” He then defines Adaptive Instruction
Level Parallel (AILP) architectures as DISA that incorpo-
rate superscalar or VLIW characteristics. Talla’s work fo-
cused on a member of the AILP space called Adaptive Ex-
plicitly Parallel Instruction Computing (AEPIC) architec-
tures. He presented a basic compilation framework that
involves analyzing the program to identify portions of the
code that might benefit from execution via configured hard-
ware, followed by an instruction synthesis phase that gener-
ates “custom operations” and updates the machine descrip-
tion with the synthesized instructions. Subsequent phases
of their compilation process are not much different from the
back-end phases of typical ILP compilers. Their framework
to supporting compile-time-configured instruction sets is to-
tally different from ours, because we do not introduce syn-
thesized instructions until the very end of the compilation.
Most of our efforts are concentrated on the code generation
phases of the compiler, and our approach does not require
any modification to the earlier compilation phases.

3. VISC Architecture

The CGN16000 is a family of single-chip network pro-
cessing devices produced by Cognigine [3]. The latest
chip, the CGN16100, consists of sixteen interconnected Re-
configurable Computation Units (RCUs), each capable of
supporting up to four threads. Each RCU implements the
VISC Architecture, and can be regarded as a processing el-
ement for packets in the network. A program compiled from

64

RCU Switch Fabric(RSF)

256

64 64 64 64

64

D
at

a
Fl

ow
 S

yn
ch

ro
ni

za
tio

n

C
al

cu
la

tio
n

A
dd

re
ss

D
ic

tio
na

ry
D

ec
od

e

Pi
pe

lin
e

&
 T

hr
ea

d
C

on
tr

ol

Instruction
Cache

Data
Memory

Packet Buffers

Registers, Scratch Memory

RSF Connector

Source
Route

Source
Route

Source
Route

Source
Route

Unit Unit Unit Unit
Execution Execution Execution Execution

128128

Pointer
File

Dictionary

Figure 1. RCU architecture.

C can be loaded to run on any individual RCU. The rest of
this paper will focus on a single RCU. We’ll deal with the
multi-processing and multi-thread aspects of the chip in a
separate setting.

VISC represents a brand-new approach to processor ar-
chitecture. The RCU incorporates four execution units,
each of which is capable of performing either two concur-
rent 32-bit or one 64-bit arithmetic, logical or bit manipula-
tion operation. There is memory space internal to the RCU
that serves as instruction cache, data cache and dictionary
store. Figure 1 gives the block level structure of the RCU in
the CGN16100.

3.1. Instructions

Instructions for the RCU are either 32-bit or 64-bit long.
Each CPU cycle fetches and executes one 64-bit instruc-
tion or two adjacent 32-bit instructions. In the CGN16100
implementation, each instruction has an 8-bit opcode field
that indexes an entry in the dictionary. The rest of the in-
struction is for specifying up to four operands for the op-
erations defined in the indexed dictionary entry (Figure 2).
The operands can be encoded as either memory operands
accessed via some addressing mode or immediates stored in
the instruction. Of the four operands specified, two of them
can also be targets for writing the results of the operations.
The four memory operands have access to the memory via
one of four ports according to the operands’ positions in the
instruction. The four ports are referred to as port0, port1,
port2 and port3. Each instruction contains room to store at
most two immediates.

The RCU does not need to provide a separate register
file, because it can access the memory space internal to the
RCU without delay in performing each operation. Thus,
the architecture does not require any load or store opera-
tion. The basic addressing mode is the pointer-based ad-

DICTIONARY

OPCODE operand 0 operand 1 operand 2 operand 3

FORMAT
SPEC

Figure 2. General form of a variable instruc-
tion

dressing mode, in which the addressed location is given by
a pointer register1 plus an offset. In addition, there are 256
locations that can be addressed directly, without involving a
pointer register. This form of addressing can be regarded as
the register addressing mode, and the 256 locations can be
viewed logically as the register file, though they can also be
indirectly addressed.

There are a number of instructions specified as fixed in-
structions because they are needed by all programs. A small
section of the dictionary is hard-coded to support these fixed
instructions. These instructions perform branches, calls,
DMA2 and thread control.

3.2. Dictionary

The dictionary is the key component of the VISC Ar-
chitecture. It contains a fixed number of entries of pre-
determined lengths. Because CGN16100 uses an 8-bit op-
code field in the instruction, the number of entries in the
dictionary is fixed at 256. The content of each dictionary
entry is used to specify from one to eight different opera-
tions. Each dictionary entry can be up to 128 bits long. The
128 bits are partitioned into four segments. Each of these
segments can specify up to two operations to be performed
in each of the four execution units by encoding the follow-
ing information:

1. Operation performed.
2. Fetch path for first operand.
3. Fetch path for second operand.
4. Store path for result.

Apart from specifying the type of operation to be per-
formed, the encoded operation also configures the execu-
tion units to work with different sizes of operands and re-
sults (8-bit, 16-bit, 32-bit and 64-bit), different signedness

1There are 15 locations specially designated as pointer registers.
2DMA (direct memory access) is the only means of communications

between each RCU and the outside world.

and different shapes of vector3. There are 26 different types
of operations supported. When the configuration is taken
into account, the number of possible operations exceeds a
thousand.

The fetch and store paths for the operands and result are
specified by encoding one of the following possibilities:

1. Memory operands accessed via one of the four ports,
referred to as port0, port1, port2 and port3.

2. First or second immediate stored in the instruction.
3. First or second immediate stored in the dictionary en-

try.
4. One of the eight transients registers.

The transients are the special registers that hold the outputs
of the eight execution units. They can be used to overcome
the imbalance between the four operands provided in the
instruction and the eight operations that can be performed.
They are called transients because their values are overwrit-
ten each time the execution units perform operations. The
transients are the cheapest to address, since they do not oc-
cupy bits in the instruction. They are best used for holding
the intermediate results in a series of computations. (In the
example of Figure 4(d), trans0, trans1 and trans2 are
transients.)

An operand can be shared (i.e. used multiple times)
among the different operations specified in the same dic-
tionary entry. A memory operand can also be both source
and target in the same instruction.

The dictionary can be viewed as serving two important
functions. First, it is clear from the above description that
the core architecture has the capability to support a myr-
iad of operations, and each of these operations can fetch its
operands and write its results in a variety of ways. Encoding
all of these forms of operations in the instruction will take
up a large part of the instruction space, and is not feasible in
the embedded processing environment where code density
is very important. By introducing the dictionary space to
store the static templates for the exact forms of operations
to be used, the saved space in the instruction can be used
more effectively for providing operands during execution.
Second, since multiple operations can be specified in a dic-
tionary entry, this provides a new way to achieve instruction
level parallelism without requiring the complex instruction
fetch and decoding circuitries inherent in superscalar imple-
mentations.

3.3. VISC as Compilation Target

Traditionally, compilers play the important role of pro-
viding the means for programmers in high level languages

3The vector shapes supported are 32v8, 32v16, 64v8, 64v16 and 64v32,
where the number before the ’v’ is the total bit size of the vector and the
number after the ’v’ is the bit size of each vector element

to get at the capability of the underlying machines. The
enormous capability of the RCU architecture has made it
even more crucial for the compiler to live up to this role.
In our case, the compiler plays the dual role of determin-
ing the best operation templates to define in the dictionary,
and generating the best instruction code sequence based on
these templates. In the process of doing this, the compiler
also has to cater to various parameters exposed by the hard-
ware:

1. Dictionary limit — The number of entries in the dic-
tionary is fixed based on the size of the opcode field in
the instruction.4 There is greater chance of hitting this
limit as larger programs are compiled, because they
contain more operation variants.

2. Number of operands — Each instruction can provide at
most four operands. Additional operands can be in the
form of the transient registers, but their values are only
available for one cycle. Using transients often incurs
additional move instructions, which degrades perfor-
mance.

3. Number of ports — In the current implementation,
each instruction can fetch only four operands from
memory and store two results to memory. There is also
a portion of the data cache that has only a one-port con-
nection, allowing only one access per instruction. We
designate this data area as singleport and the rest of the
data area as multiport.

4. Execution units — Of the four execution units in the
current implementation, two are for handling arith-
metic and logical operations, and two are for handling
bit manipulation operations. Each dictionary entry is
divided into segments, and there are specific mappings
from segments to the execution units that they control.

5. Instruction encoding — Because the instructions are of
fixed widths (either 32- or 64-bit), there are restrictions
as to what combination of operands can be encoded in
each instruction. In general, four memory operands
can be specified in a 64-bit instruction, of which two
of the operands can be replaced by two 16-bit imme-
diates or one 32-bit immediate. The format spec field
in the instruction indicates how the operands are to be
decoded at run-time (see Figure 2).

6. Dictionary operation encoding — The dictionary en-
tries can be of different sizes: 32 bits, 64 bits or 128
bits. Operations are divided into two general classes:

4In the current implementation, the dictionary is fixed throughout the
entire program execution. In future, the mechanism will be provided to
allow dynamic reloading of dictionary entries so that different parts of the
program can have their own dictionaries. There is also the potential to
increase the size of the opcode field so it can index more dictionary entries.

basic and extended. A basic operation requires only
16 bits to be encoded, whereas an extended operation
requires 32 bits to be encoded. Thus, a 128-bit dic-
tionary entry can encode the maximum of eight opera-
tions only if all eight operations are basic. In addition,
the types of operands allowed are not symmetric be-
tween the first and second operands of each operation,
due to the limited number of bits used in the encoding.

The above parameters are not inherent to the architecture,
and they will likely change in future implementations. But
they become constraints to the compiler as it strives to im-
prove the generated code sequences. At Cognigine, we have
developed three separate techniques to tackle the compila-
tion problems. We describe these techniques in the follow-
ing sections.

4. Abstract Operation Representation

The Cognigine C Compiler is implemented by retarget-
ing the SGI Pro64 Compiler [8]. Pro64 was evolved from
the MIPSPro compiler designed originally for the MIPS
R10000 processor. In the process of retargeting to Intel
IA64, the Pro64 code generation structure was extended
so that target-dependent parts are isolated out into target-
specific sub-directories. This laid the groundwork for re-
targeting to other processors. The process of bringing up
the compiler for a new target involves mainly putting up the
contents of functions located in the sub-directories created
for the new target.

Pro64 uses an internal representation called CGIR in the
code generation phases. CGIR is a low-level machine op-
eration representation designed so that there is a one-to-one
mapping between a CGIR operation and an instruction in
the target machine. As such, CGIR is target-dependent, and
its exact format is defined through the retargeting process.
All the optimization phases in the code generator perform
their work by operating on CGIR. The one-to-one mapping
between CGIR operations and target machine instructions
ensures that any improvement in CGIR will be reflected in
the generated code.

To implement a compiler that generates code for a vari-
able instruction set, one logical choice is to come up with
a variable CGIR. However, this is difficult to achieve, be-
cause CGIR is derived from a pre-defined target descrip-
tion, and the compilation infrastructure cannot accommo-
date a dynamically changing instruction set. There is also
the chicken-and-egg problem that the instruction set used
has to be determined based on the outcome of various op-
timizations, and these optimizations have to be performed
based on some instruction set.

We solve this compilation problem by coming up with an
abstract operation representation for our compilation target,

with the objective that multiple operations would eventu-
ally be compacted into single instructions in the process of
arriving at the templates to enter into the dictionary. Each
execution unit in the RCU inputs two operands and com-
putes one result. Accordingly, our abstract operations are
all of the format such that they take two register operands
and write one register result. We also provide some opera-
tions that are not real operations in the RCU, which perform
loads and stores to and from memory, and load immediate
values. We refer to these operations as subsumable opera-
tions, because they could be subsumed into the instruction
using special addressing modes, including immediate ad-
dressing.5 (In the example shown later in Figure 4, op1, op2
and op7 are subsumable operations.) Loads and stores are
designated as either multiport or singleport according to the
areas of memory accessed. The input program is thus trans-
lated into an expanded sequence of these abstract opera-
tions. The code generator performs peephole optimizations,
control flow optimizations, loop unrolling, local instruction
scheduling and register allocation based on this abstract op-
eration representation. After performing these optimiza-
tions, we introduce a post-code-generation phase, called In-
struction and Dictionary Finalization (IDF), that performs
the dual functions of compiling the dictionary contents and
the instructions to be generated for the program code.

The use of the abstract operation representation does not
preclude the compiler from using any instruction format in
its final output. On the other hand, it does not pre-dispose
the compiler towards any specific format either. Its use en-
ables the code generator to optimize program code towards
the core architecture of the RCU. The responsibility to pro-
duce the real program output that recognizes the various
constraints in the RCU is deferred to the IDF phase, which
we’ll describe in the next section. Figure 3 shows the com-
pilation scheme in the Cognigine C Compiler.

5. IDF Phase

The Instruction and Dictionary Finalization (IDF) phase
is the final phase of the compiler. The input of IDF is a
sequence of basic blocks generated from previous compiler
stages, and the output of IDF is the assembly program that
specifies the content of the dictionary and the optimized in-
struction sequence referring to the dictionary entries. IDF
works on its input on a per basic block basis. Figure 4 gives
an example to illustrate the processing performed by IDF.
We’ll refer to this example as we describe IDF’s operations.
The discussion of this section will focus on the goal of max-
imizing the performance of the output code. In the next sec-
tion, we’ll discuss how we trade-off program performance
in order to accommodate the fixed dictionary size.

5If they are not subsumed, move operations will be used for them.

GNU/Pro64 Front−end

WHIRL Optimizer

Code Generator

IDF Phase 1

IDF Phase 2

Back−end
Pro64

Dictionary Instructions
(Assembly Program)

C Program

WHIRL IR

IDF OPs

Abstract CGIR

Figure 3. Structure of the Cognigine C Com-
piler

5.1. The IDF Approach

In our implementation, IDF is broken up into two sep-
arate phases. In the scheduling phase, we model IDF as
a scheduling problem, in which we identify the multiple
operations that can be performed in each cycle. The sec-
ond phase is the emission phase, which scans the result of
the scheduling phase on a cycle by cycle basis. Based on
the operations being performed in each cycle, the emission
phase generates the dictionary entry that specifies those op-
erations, and the instruction that holds the operands for the
operations performed in that cycle. The dictionary entries
and the instructions together constitute the assembly output
of the compiler. The emission phase is straightforward, be-
cause it just performs mechanical translation based on the
result of the scheduling phase. For the rest of this section,
we’ll focus our discussion on the scheduling phase.

In instruction scheduling, instructions are re-ordered to
minimize the overall execution time while adhering to the
data dependency and resource constraints. The code of a ba-
sic block is represented as a directed acyclic graph (DAG)
[11]. In a DAG G = (N;E), the set of nodes N repre-
sents the set of operations and the set of edges E represents
the set of dependencies among the operations. Each edge
(j; k) of the DAG is labeled with a latency denoted as lj;k.
Data dependency constraints state that for any two opera-
tions j and k such that k has data dependency on j, k can-
not be scheduled unless j is scheduled lj;k cycles earlier.
Resource constraints state that for any given clock cycle i,
the hardware must be able to provide sufficient resource for
operations which are scheduled at cycle i. The DAG for the

op1: r1 = load 4(p2)

Abstract CGIR:

op2: r2 = move 5
op3: r4 = and r1, r3
op4: r5 = rshift r1, r2
op5: r4 = add r4, r5
op6: r5 = xor r2, r5
op7: store 0(p3), r4

assuming r1, r2 and r4 have
no more use afterwards.

(c) IDF scheduling output(a) Input program (b) Program DAG

dict1:

dict2:

insn1: dict1 4(p2),5,r3
insn2: dict2 0(p3), r5

and trans0 = port0 port2 move trans1 = imm

xor port3 = trans1 trans2add port1 = trans0 trans2

rshift trans2 = port0 imm
operands mapping:
4(p2) port0
5 imm
r3 port2
r4 trans0
r2 trans1
r5 trans2

(d) Generated dictionary entries and instructions

0(p3) port1
r5 port3

insn1: op1 op2 op3 op4 (op1 subsumed)

insn2: op5 op6 op7 (op7 subsumed)

op7

op5

op6

op3

op1

op4

op2
0 0

0

0

00

1
1

1

Figure 4. Example to illustrate IDF’s processing

program example of Figure 4(a) is shown in 4(b).
However, the resemblance of IDF to instruction schedul-

ing stops here. First, IDF also has to identify operations that
can be folded into instructions via special instruction for-
mats. Second, in packing multiple operations into the same
cycle, IDF needs to find ways to adhere to the irregular en-
coding, operand and port constraints imposed by the hard-
ware implementation to make the parallelism possible (see
Section 3.3). These irregular constraints cannot be modeled
as resources, and can only be taken into account based on
the operations being scheduled into the same cycle. Third,
IDF needs to make efficient use of the transients as scratch
registers. Since a transient’s value is overwritten when the
same execution unit performs another operation, traditional
scheduling algorithms cannot easily be made to use tran-
sients effectively.

We found that the IDF scheduling problem is best solved
using an enumeration approach to instruction scheduling.
There have been prior efforts to solve the problem of finding
the optimal schedule for a basic block. Generally speaking,
determining an optimal schedule of a basic block is known
to be NP-Complete [5]. Wilken et al. [17] used an integer
programming formulation combined with numerous tech-
niques to produce optimal instruction schedules in reason-
able time. Davidson et al. [7], Jonsson and Shin [9] and
Narasimhan and Ramanujam [12] used branch-and-bound
algorithms to find optimal solutions to resource-constrained

scheduling problems. Abraham et al. [4] showed that im-
plementing backtracking in a scheduler allows them to ad-
dress certain processor features more effectively. In our
case, finding the optimal schedule is not the main mo-
tivation for using enumeration, though near-optimal code
sequences are highly desirable because the accompanying
smaller memory footprints allow fitting more functionalities
into the embedded processor. Instead, our main motivation
is based on the fact that enumeration allows us to address
a complicated machine model comprehensively and effec-
tively. We also found that we can turn various irregular ma-
chine constraints to our advantage by using them to prune
the search space, thus speeding up the enumeration.

5.2. IDF Scheduling Algorithm

Given a program in the form of a DAG, IDF tries to find
the best schedule of the operations. For a schedule that is
being formed, the scheduling process determines the next
instruction to add to the schedule. We define xop;c such
that xop;c = 1 if operation op is scheduled at cycle c, and
xop;c = 0 otherwise. The scheduling problem is to con-
struct a minimum length schedule, which assigns a value (0
or 1) to each variable while satisfying all the constraints.

We can model the scheduling solution space in the
form of a binary decision tree called enumeration tree
[13, 18, 19], as illustrated in Figure 5. Each node of the

op2,1x =1

op3,2x =1

S0

S1

S3

S6S5

op3,2x =0

op2,1x =0 S2

S9
op1,1x =0

op2,0x =0

op1,0x =1 op1,0x =0

op3,0x =0

S4

S8S7

op3,1x =0

S12S11 S14S13

S10

op2,0

op1,1x =1

x =1

op3,1x =1 op3,0x =1

Figure 5. An enumeration tree.

tree represents partial schedules at various stages of forma-
tion. At the root of the tree, no decision has been made,
and the schedule is empty. As each edge is traversed, the
scheduling decision represented by the edge label is made,
and is applied to all its successor tree nodes. This two-way
branching scheme was originally used by Darkin [6].

The key to improving the performance of such a search
algorithm is to reduce the number of valid schedules that are
actually examined, in effect pruning the search space. We
use an absolute lower bound of the schedule length, com-
puted by analyzing the resources consumed on the critical
path via relaxed scheduling[14, 10], as our initial goal, de-
noted as boundsch. We prune off a search path at the first
indication that the shortest schedule that can be attained in
the current path cannot be shorter than or equal to bound sch.

The IDF Scheduling Algorithm is given in Figures 6
and 7, in which function IDF-Scheduling() drives the enu-
meration process and function Schedule-Op() traverses each
edge in the search tree. To schedule an input DAG, IDF uses
s to maintain the partial schedule being formed. s is empty
at the beginning, and operations will be inserted into s one
by one in increasing cycle number as they are scheduled.
To model the resource constraints, IDF uses a reservation
table to monitor the hardware resources which are occupied
by the scheduled operations at each cycle. boundsch repre-
sents the current goal of the schedule length; the algorithm
will halt and return the final schedule s, if all the opera-
tions are scheduled and s is not longer than boundsch. If
the scheduling is unsuccessful, boundsch is lengthened by
1 cycle and the scheduling is restarted.

An operation is said to be ready if (1) this operation has
not been scheduled yet; (2) all the data dependency con-
straints imposed on this operation are satisfied; and (3) the
hardware resources consumed by this operation are avail-
able at this cycle. For each operation op, we compute and
update the following three parameters:

1. release time (rop) — This is the earliest cycle at which
op can be scheduled.

2. deadline (dop) — This is the latest time op can be
scheduled in order for the final schedule to be not
longer than boundsch cycles.

3. scheduling forms (formsop) — This lists the possible

function IDF-Scheduling
Input: program DAG G = (N;E)
Output: a feasible schedule s

begin
schedule s ;
initialize boundsch
loop forever

for each op 2 N

initialize rop; dop and formsop
endfor
op Select-Op(N)
for each f 2 formsop

if Schedule-Op(G; s; op; true; f) = true then
return s

endif
endfor
if Schedule-Op(G; s; op; false) = true then

return s

endif
boundsch boundsch + 1

endloop
end

Figure 6. The IDF scheduling algorithm

forms of scheduling op, which includes scheduling it
as a standalone operation, or subsuming it into the in-
struction via special address modes. If maintained as
a standalone operation, this also indicates if its result
will be left only in a transient (see Section 3.2).

Function Select-Op() is invoked to select an operation
op from a set of ready operations. If more than one ready
operations exist, the operation with the earliest deadline is
picked. The selected op is always scheduled at the cycle rop.
After selecting op, Schedule-Op() is called to explore each
method of handling it. The possibilities are: (1) scheduling
it at the current cycle, in which case it in turn explores all
the possible forms given by formsop; (2) not scheduling
it at the current cycle. Schedule-Op() is a recursive func-
tion that corresponds to descending each edge in the enu-
meration tree. Schedule-Op() returns true if it successfully
completes the scheduling without exceeding boundsch.

In function Schedule-Op() shown in Figure 7, if the pa-
rameter schedule-it is true, it will schedule op to the current
partial schedule s at cycle rop, set its form according to the
parameter form and mark op as a scheduled operation. To
reflect the resource consumed by op, the reservation table
is updated. If the parameter schedule-it is false, op is not
scheduled at the current cycle, and the release time rop is in-

function Schedule-Op
Input: G; s; op, schedule-it, form
Output: true if s is feasible; otherwise, false

begin
if schedule-it = true then

append op to s

mark op as a scheduled operation
formop form

dop rop
update reservation table

else
rop rop + 1

endif
if Tighten-Bounds(G) = false then

return false

endif
op0 Select-Op(N)
if op0 = null then

return true

endif
if rop < rop0 then

insn set of operations in s scheduled at rop
if Compile-Dict-Entry(insn) = null then

return false

endif
endif
save current state
for each f 2 formsop0

if Schedule-Op(G; s; op0; true; f) = true then
return true

endif
restore state

endfor
if Schedule-Op(G; s; op0; false) = true then

return true

endif
return false

end

Figure 7. The edge traversal algorithm

cremented by one. Given the scheduling (or unscheduling)
decision that has been made, there exists the opportunity to
tighten the release times and deadlines for the upcoming un-
scheduled operations. Function Tighten-Bounds() is called
to perform this function. Tighten-Bounds() will return true

if there is no operation whose release time is later than its
deadline; otherwise, it will return false, because this indi-
cates that no feasible schedule exists. Bounds tightening al-
lows us to detect and abandon infeasible search paths early,
thus speeding up the enumeration process. In performing
bounds tightening, we take into account the various limita-
tions imposed by the architecture (see Section 3.3). 6

At this point, function Select-Op() invoked as before will
choose another ready operation, say op 0, to schedule next. If
no more operation is available, the complete schedule s has
been successfully formed, and Schedule-Op() returns true.
If op0 exists and rop0 > rop, it means we have determined
all the operations to be performed at cycle rop. As a re-
sult, all the operations at cycle rop will form an instruction
insn. Compile-Dict-Entry() is called to compile the dictio-
nary entry for insn. The details of Compile-Dict-Entry()
will be described in Section 6.2. If Compile-Dict-Entry()
is successful in compiling insn, Schedule-Op() will move
on to schedule op0. This again involves exploring the differ-
ent methods of handling it, as in function IDF-Scheduling().
The difference here is that it has to save the state of the
scheduling tables and parameters so it can restore the state
each time it backs up to take another path in the search.

Figure 4(c) shows the result of the IDF scheduling phase
with our program example. The seven abstract operations
are scheduled into the two instructions insn1 and insn2.
The second emission phase of IDF will compile these two
instructions into the two dictionary entries and two variable
instructions shown in Figure 4(d).

6. Dictionary Compilation

In this section, we describe the techniques we use to ad-
dress the fixed dictionary size in the VISC architecture. The
dictionary can be viewed as performing two different roles
in program execution: the functionality role and the per-
formance role. The functionality role refers to the fact that
it defines the different types of operations that can be per-
formed during execution. The performance role comes from
the fact that operations can be performed in parallel only if
they are so specified in the dictionary. Because large pro-
grams are likely to exhibit a greater variety of operations to
be performed, they will use up more dictionary space be-
fore performance is even considered. Likewise, an entry
that specifies many operations has less probability of being

6It is beyond the scope of this paper to get into a detailed discussion
of bounds tightening. General discussion of this topic can be found in
[14, 17].

re-used, because it is hard to come up with exactly the same
combination of operations. In our experience, we found that
between 60 to 70 entries are enough to meet the functional-
ity demand. On the other hand, under aggressive scheduling
performed by IDF, dictionary entries can be used up very
quickly. Thus, it is necessary to come up with techniques
to minimize dictionary consumption while still generating
efficiently scheduled code.

We implement this dictionary minimization functionality
by extending the IDF framework presented in the last sec-
tion. This is done by biasing the IDF scheduling algorithm
towards re-using existing dictionary entries instead of cre-
ating new ones. To do this, IDF builds and maintains a table
of the dictionary entries that have been generated as com-
pilation progresses. At the beginning of compilation, the
dictionary is empty, and IDF adds entries to it as it creates
new ones.7 During its scheduling, IDF performs efficient
dictionary lookup as it tries to re-use previously generated
entries.

6.1. Dictionary Lookup

To speed up the dictionary lookup, we build sets of exist-
ing dictionary entries based on operation names. Denoting
the operation name of op by opcodeop, Entries[opcodeop]
then gives the set of existing dictionary entries that perform
opcodeop as one of its operations. All the dictionary entries
of a set Entries[opcodeop] are sorted in increasing opera-
tion count order, so that entries with larger operation count
are placed later. Via this setup, the first dictionary entry
found that satisfies all the requirements of the operations
performed in an instruction will contain minimal extra op-
erations.

Figure 8 gives the dictionary lookup algorithm. Given
an instruction insn formed during IDF’s scheduling, the al-
gorithm starts by quickly computing a much smaller set of
entries S via:

S
\

op2insn

Entries[opcodeop]

The rest of the algorithm searches for the best entry. If the
entry contains operations not performed in insn, those op-
erations must be rendered harmless by providing dummy
operands to them. This implies: (1) the operation must not
create any extra constraint to scheduling by its resource us-
age; and (2) its output must not overwrite any memory, live
register or transient value.

7We also provide the facility whereby dictionary entries in previously
compiled object files and libraries can be extracted and used in the current
compilation.

Algorithm Dictionary-Lookup
Input: instruction insn
Output: a dictionary entry for insn

begin
S all the dictionary entries
for each opi 2 insn

S S \ Entries[opcodeopi]
endfor
for each dictionary entry entryi 2 S

for each opi 2 insn

found false

for each unmarked opj 2 entryi
if opi matches opj then

found true

mark opj
break

endif
endfor
if not found then

break
endif

endfor
if not found then

continue
endif
if an unmarked op in entryi cannot be dummy

then continue
endif
return entryi

endfor
return null

end

Figure 8. The dictionary lookup algorithm

6.2. Dictionary Usage

To make the best use of the fixed dictionary space, the
compiler should use up the entire dictionary as it completes
the compilation of the entire program. But because the com-
piler does not know when it is compiling the last code seg-
ment of the program, it always has to reserve some unused
dictionary space for later use. Without any help from the
user, the compiler can only estimate the progress of com-
pilation by keeping track of how full the dictionary is. But
program varies greatly in size. In general, it is impossible
for the compiler to guarantee that it will not overflow the
dictionary while it tries to maximize dictionary usage.

We provide the dict usage compilation option to let the
user control dictionary usage during compilation. This

same option is also provided as a pragma so its value can be
set differently at various points in the program. The value
of this option ranges from 0 to 10. The default value of 10
designates maximum dictionary usage, and IDF is allowed
to freely create new dictionary entries as it searches for the
best schedule. The value of 0 indicates minimal dictionary
usage, and IDF will avoid creating new dictionary entries at
all cost. The values from 1 to 9 represent gradual gradation
of the dictionary usage strategy between the two extremes.
By experimenting with the dict usage option, the user can
control IDF to produce good code while getting the most
out of the fixed dictionary space.

We incorporate dictionary usage decisions into the IDF
scheduling algorithm by strengthening its search criteria.
The IDF scheduling algorithm given in Figure 6 uses
boundsch as the search goal in order to achieve low cy-
cle counts. We impose an additional search goal called
bounddict, which represents the number of new dictionary
entries allowed to be created in scheduling a basic block.
The exact value of bounddict depends on the state of the
dictionary: with more pre-existing dictionary entries, it is
easier to find re-usable entries, and bounddict will be ad-
justed lower.

The additional constraints related to dictionary usage are
dealt with in the function Compile-Dict-Entry() called in
the edge traversal algorithm of Figure 7. Whenever IDF’s
scheduling creates a new instruction insn, it calls this func-
tion to check if the instruction being created satisfies the
current dictionary creation criteria. If there is a pre-existing
dictionary entry for insn, Compile-Dict-Entry() will always
return true. If creating a new entry will cause bounddict to
be exceeded, it will return false; otherwise, it will go ahead
to create a new entry and return true.

We can greatly speed up IDF’s enumeration under low
values of dict usage by adopting some strategies as to what
kind of dictionary entries are allowed to be created. When
dict usage is 0, only single operation dictionary entries
with no immediate addressing mode or transient addressing
mode are allowed. Under this mode, we can guarantee that
dictionary overflow will never occur regardless of program
size. When dict usage is 1, we start to allow immediates in
instructions. At 2, we allow at most two operations per en-
try. At 3, we start to allow use of transients in the schedul-
ing. At 4, we start to allow more than two operations per
entry. These additional restrictions shrink the search space
substantially while promoting dictionary re-use.

7. Results

The techniques we presented in this paper have been im-
plemented in the Cognigine C Compiler. In this section, we
provide measurement data to show the effectiveness of the
techniques. Our measurements are focused on our imple-

Benchmark Program function

A. ProcessSOP identifies and collects various attributes of
the packet

B. ProcessIPv4 performs RFC1812 processing along with
forwarding and classification lookups

C. ProcessMpls MPLS label lookup and processing on
packets

D. ProcessL2 switches the packet based on MAC address
lookup

E. ProcessVlan extracts and performs lookup of Vlan tag for
a packet

Table 1. Network processor benchmarks

mentation of the IDF phase as a standalone module in the
compiler (see Figure 3) that accepts input produced by the
Pro64 code generator. The output of the IDF phase is an
assembly program in the form of the Cognigine Assembly
Language. Since the CGN16100 is a network processor, we
have selected five application programs, developed in house
and written in C, that perform different network processing
functions. These benchmarks are described in Table 1.

7.1. Performance Evaluation

Our first set of data, given in Table 2, helps us evalu-
ate the effectiveness of IDF in generating high-performance
output. The dict usage option is set to 10 to direct IDF to
generate the shortest possible schedules regardless of the
number of dictionary entries created. In the first row, the
benchmarks are referred to via the letters A through E. The
second row, denoted Operations Count, gives the total num-
ber of abstract operations in CGIR form as output by the
Pro64 code generator for each respective benchmark. The
third row, boundsch, gives the absolute lower bounds com-
puted via relaxed scheduling, which are used as starting
points in IDF’s enumeration algorithm. The fourth row,
Subsumable Ops, gives the number of operations that are
subsumable out of the operations for each benchmark. The
remaining rows in Table 2 gives data related to IDF’s per-
formance. The fifth row, Subsumed Ops, gives the num-
ber of operations actually subsumed in IDF’s output. The
sixth row, Static Cycles, gives the number of static cycles
that IDF schedules each benchmark into.8 The seventh row,
Insns, gives the number of instructions in IDF’s output ex-
cluding nop’s and fixed instructions. The eighth row, Dict
Entries, gives the number of dictionary entries required in
the optimized output of each benchmark.

8We use static instead of dynamic cycle counts as our performance cri-
terion because code size is of greater concern in the embedded processing
space. A smaller code size enables more functionalities to be fitted into the
final product.

Benchmark A B C D E

Operations Count 803 907 916 785 758
boundsch 537 617 620 505 483
Subsumable Ops 369 410 425 364 352
Subsumed Ops 87 88 92 81 86
Static Cycles 589 673 678 559 533
Insns 491 552 563 468 446
Dict Entries 177 215 211 182 175
Time (sec.) 151 155 150 156 147

Table 2. Compilation data at dict usage = 10

Comparing the data for Static Cycles with boundsch, it
can be seen that the output of relaxed scheduling is too op-
timistic, because it ignores all the data dependency con-
straints and does not include various machine limitations
in its model. Comparing Subsumed Ops with Subsumable
Ops indicates that 23% of them are actually subsumed. This
is not high because subsumption is less advantageous if the
value appears more than once, and also because of limita-
tions on what can fit in the instruction. Comparing the data
for Static Cycles with Operations Count shows that IDF
on average schedules 1.38 operations per instruction cycle.
This includes nop’s inserted to satisfy certain latency re-
quirements in the hardware. This is quite respectable given
that the output of relaxed scheduling yields 1.51 operations
per instruction, and given that there are only two write ports
in the processor.

In the data for Dict Entries, none of the benchmarks ex-
ceeds the current 256 entry limitation in the dictionary. On
average each dictionary entry is referred to by 2.63 instruc-
tions, even though the compilation is done with dict usage
set at 10.

The last row of Table 2 gives the time taken by IDF in
compiling each benchmark on an 800 MHz Pentium III ma-
chine. Due to the enumeration approach, the compilation
time spent in the IDF phase is on the order of 100 times the

Benchmark A B C D E

dict usage Insns 491 552 563 468 446
= 10 Entries 177 215 211 182 175

dict usage Insns 497 565 570 479 453
= 8 Entries 170 204 204 174 168

dict usage Insns 505 576 585 490 463
= 3 Entries 163 193 191 166 163

dict usage Insns 543 615 623 523 500
= 2 Entries 114 126 129 120 117

dict usage Insns 751 856 862 735 709
= 0 Entries 63 68 68 64 62

Table 3. Results at different dict usage levels

10 8 3 2 0

dict_usage

0

200

400

600

800

Instructions
Entries

Figure 9. Instruction count vs. dictionary en-
tries

compilation time spent in the Pro64 compiler. Because IDF
is applied on a per-basic-block basis, the compilation time
varies greatly based on the size of the basic blocks. Our
benchmarks have been tuned to yield large basic blocks to
minimize branch overhead. It is possible to substantially re-
duce the compilation time by starting with a less optimistic
lower bound (boundsch in Table 2) so it can reach the final
schedules sooner. Because the sizes of our application pro-
grams are limited by what can fit into the embedded pro-
cessing chips, they are generally not large. Since we are
targeting the embedded processing market, compilation ef-
ficiency is only secondary in importance compared to the
quality of the generated output.

7.2. Effects of dict usage

In our second set of data, we look at the effects on the
compilation output as we vary the dict usage compilation
option. We compile our five benchmark programs with
dict usage set at 10, 8, 3, 2 and 0. The results are given
in Table 3. The rows denoted by Insns give the number
of instructions that the programs compile to, while the rows
denoted by entries give the number of dictionary entries cre-
ated for each compilation. The data indicates that our im-
plementation of the dict usage option successfully allows
the user to trade-off between dictionary consumption and
program performance. In Figure 9, the averages over the
five benchmarks are plotted and the trends are clearly dis-
played.

8. Conclusion

In this paper, we present the implementation of three
innovative techniques in a production compiler to allow it

to support a commercial network processor that provides
a compile-time-configurable instruction set. The resulting
compiler is successful in allowing the user to exploit the
benefits of this architecture without resorting to assembly-
level programming, which would have been painstaking and
time-consuming.

The development of our compiler for Cognigine’s VISC
architecture was not started until after the CGN16100 chip
has been designed and fabricated. The irregular parame-
ters in the chip are hard problems for compilers to solve in
general. With the completion of the compiler, it is now pos-
sible to evaluate the impacts of various architecture features
on performance by feeding different hardware parameters
to the compiler and analyzing the results. Such data will
be used to influence the design decisions in future versions
of the VISC architecture to further improve performance.
There is potential for more interesting results to come in
this area.

9. Acknowledgements

The authors would like to thank Kannan Narayanan for
his implementation efforts in various parts of the compiler,
Mike Bershteyn for his supervision and support of this
project, and Gagan Gupta and Rupan Roy for insights into
the VISC architecture. The application benchmarks used in
this paper were contributed by Suresh Govindachar, Pavan
Gupta, Sukhesh Halemane and Rick Reitmaier.

References

[1] The ARCtangent-A4 Microprocessor Core. ARC Interna-
tional.

[2] Xtensa Overview Handbook. Tensilica Inc.
[3] CGN16100 Network Processor User Manual. Cognigine

Corp., 2002.
[4] S. Abraham, W. Meleis, and I. Baev. Efficient backtracking

instruction schedulers. In Intl. Conf. on Parallel Architec-
tures and Compilation Techniques, pages 301–308, October
2000.

[5] D. Bernstein, M. Rodeh, and I. Gertner. On the com-
plexity of scheduling problems for parallel/pipelined ma-
chines. IEEE Transaction on Computers, 38(9):1308–1313,
September 1989.

[6] R. Darkin. A tree search algorithm for mixed integer pro-
gramming problems. Computer Journal, 8:250–255, 1965.

[7] S. Davidson, D. Landskov, B. Shriver, and P. Mallett. Some
experiments in local microcode compaction for horizontal
machines. IEEE Transaction on Computers, C-30(7):460–
477, July 1981.

[8] G. Gao, J. Amaral, J. Dehnert, and R. Towle. The sgi pro64
compiler infrastructure. Tutorial, International Conference
on Parallel Architectures and Compilation Techniques, Oc-
tober 2000.

[9] J. Jonsson and K. Shin. A parameterized branch-and-bound
strategy for scheduling precedence-constraint tasks on a
multiprocessor system. In Proc. of the Int’l Conf. on Par-
allel Processing, pages 158–165. IEEE, August 1997.

[10] M. Langevin and E. Cerny. A recursive technique for
computing lower-bound performance of schedules. ACM
Transactions on Design Automation of Electronic Systems,
1(4):443–456, October 1996.

[11] S. Muchnick. Advanced Compiler Design and Implementa-
tion. Morgan Kaufmann, 1997.

[12] M. Narasimhan and J. Ramanujam. A fast approach to com-
puting exact solutions to the resource-constrained schedul-
ing problem. ACM Transactions on Design Automation of
Electronic Systems, 6(4):490–500, October 2001.

[13] G. Nemhauser and L. Wolsey. Integer and Combinatorial
Optimization. John Wiley & Sons, Inc., 1988.

[14] M. Rim and R. Jain. Lower-bound performance estima-
tion for the high-level synthesis scheduling problem. IEEE
Transactions on Computer-Aided Design, 13(4):451–458,
April 1994.

[15] S. Talla. Adaptive explicitly parallel instruction computing.
PhD thesis, New York University, December 2000.

[16] J. Wagner and R. Leupers. C compiler design for an indus-
trial network processor. In Proceedings of the ACM SIG-
PLAN Workshop on Languages, Compilers and Tools for
Embedded Systems (LCTES 2001), June 2001.

[17] K. Wilken, J. Liu, and M. Heffernan. Optimal instruc-
tion scheduling using integer programming. In Program-
ming Language Design and Implementation, pages 121–
133. ACM SIGPLAN, June 2000.

[18] H. Williams. Model building in mathematical programming.
John Wiley & Sons, Inc., 1993.

[19] L. Wolesey. Integer Programming. John Wiley & Sons, Inc.,
1998.

