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Abstract

A static memory reference exhibits a unique property
when its dynamic memory addresses are congruent with re-
spect to some non-trivial modulus. Extraction of this con-
gruence information at compile-time enables new classes
of program optimization. In this paper, we present meth-
ods for forcing congruence among the dynamic addresses
of a memory reference. We also introduce a compiler algo-
rithm for detecting this property. Our transformations do
not require interprocedural analysis and introduce almost
no overhead. As a result, they can be incorporated into real
compilation systems.

On average, our transformations are able to achieve a
five-fold increase in the number of congruent memory oper-
ations. We are then able to detect 95% of these references.
This success is invaluable in providing performance gains
in a variety of areas. When congruence information is in-
corporated into a vectorizing compiler, we can increase the
performance of a G4 AltiVec processor up to a factor of
two. Using the same methods, we are able to reduce energy
consumption in a data cache by as much as 35%.

1. Introduction

Memory address congruence is depicted in Figure 1.
Here, consecutive addresses are low-order interleaved
across four banks. The shaded cells represent dynamic ad-
dresses of a static memory reference. In contrast to the loca-
tions in part (a), those in part (b) are congruent with respect
to the total bank width. As a result, the reference only ac-
cesses a single bank. The importance of this property was
first recognized in the early 1980s with the advent of the
first VLIW architectures [7, 8]. These designs consisted of
clusters of processing units divided among multiple boards.
Memory was also clustered, with each cluster gaining fast
access to its local bank. In this design, compile-time knowl-
edge of the bank location meant the associated memory op-
eration could be placed on the local cluster, thereby improv-
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Figure 1. Consecutive words are low-order in-
terleaved across memory banks. (a) A refer-
ence whose dynamic instances are not con-
gruent with respect to the bank width. (b) All
dynamic references are congruent.

ing performance.
This partitioning of memory operations is only possi-

ble when the dynamic addresses generated by a static ref-
erence are congruent with respect to the bank width. Unfor-
tunately, this property is rare in programs. Our experiments
indicate that only 14% of dynamic accesses exhibit this con-
gruence property. To improve the situation, we have devel-
oped a comprehensive set of program transformations that
improve memory address congruence. These techniques are
able to increase the number of congruent references to 84%
in the SPECfp95 benchmarks and 64% in the MediaBench
benchmarks. When congruent references are present, we
are then able to resolve the bank number, or offset, with a
success rate of 95%.

In addition to its applicability to banked memory de-
signs, congruence information is central to optimizations
that target the cache. When congruence is determined rel-
ative to cache line size, the offset and datatype precisely
specify which locations are accessed within the line. Since
the width of a cache line is conventionally a power of two,
congruence detection essentially determines the low-order
bits of an address at compile-time.

This paper makes the following contributions:

� Introduces a simple formulation for a congruence de-
tection algorithm.



� Provides an extensive suite of congruence-enhancing
optimizations.

� Shows that a profile-based system is capable of extract-
ing the necessary global information without reliance
on whole-program analysis.

� Demonstrates the effectiveness of obtaining congru-
ence information for two benchmark suites.

� Establishes the importance of congruence information
in improving performance and energy consumption.

The remainder of this paper proceeds as follows: In the
next section we overview the areas in which congruence in-
formation is already being used. In Section 3 we discuss
the details of the congruence detection algorithm we have
developed. Section 4 describes our suite of transformations
for increasing the number of congruent memory references
in a program. In Section 5 we present results of our tech-
niques and the effect they have on improving performance.
Finally, we outline related work and conclude.

2. Applications of Congruence Information

Congruence information is central to a variety of
memory-related compiler optimizations. These range from
techniques for increasing parallelism to methods for reduc-
ing energy consumption. The following subsections discuss
some of the areas in which our compiler system is already
being employed.

2.1. Multimedia Compilation

Multimedia instructions are now common among
general-purpose microprocessors. These extensions add a
set of short SIMD or vector instructions to the ISA in or-
der to exploit the data parallelism available in multimedia
and scientific applications. One of the key benefits provided
by these extensions is the ability to load or store multiple
data items using a single wide memory instruction. In order
to achieve the best performance, however, these operations
must be naturally aligned, meaning that a transfer of n bytes
must fall on an n-byte boundary.

Architectures such as Motorola’s AltiVec do not directly
support unaligned data accesses. If alignment can not be
guaranteed, software must explicitly merge data from two
consecutive regions. Under these circumstances, proper
alignment can improve performance by as much as a fac-
tor of two, with an average improvement of 20% [1]. Even
architectures that are capable of accessing misaligned data
can incur a performance penalty. For example, the wide
load instructions offered in the Pentium II and Pentium III
require six to nine extra cycles if the data cross a cache line
boundary [11].

In previous work, we presented a compiler algorithm
that automatically extracts SIMD parallelism from sequen-
tial programs without using complicated vectorization tech-
niques [13]. Recently, this effort has been extended by Shin
et al. [16]. One of the main objectives of our approach is to
combine multiple sequential memory references into a sin-
gle wide operation. Since congruence information specifies
the cache line locations of memory references, it is used
to ensure that the resulting wide operations are naturally
aligned.

2.2. Compilation for Banked Memory

Global wire delay will soon become a significant prob-
lem for conventional microprocessor designs [2, 10]. Large,
centralized structures will limit cycle time, making it diffi-
cult to provide performance improvements. To deal with
this, future architectures will likely consist of clusters or
tiles [15, 18]. Among other things, these architectures
replace a centralized memory with a series of indepen-
dent banks. Compared to a monolithic memory, decentral-
ized memory banks operate with lower latency and provide
higher aggregate bandwidth.

In a clustered design it is typical that each processing
unit has fast access to a subset of the memory banks. Data
that are close to a processing unit can be accessed quickly,
whereas communication to a remote bank is slower. In this
situation, it is desirable that computation be placed near its
data. Furthermore, memory operations that access differ-
ent banks are guaranteed to be distinct and can be executed
safely in parallel. Congruence information is used to deter-
mine which bank is accessed at runtime.

The prototype compiler for the Raw machine [18] is cur-
rently using our analyses to help parallelize sequential ap-
plications across clusters of processing units. In addition
to the obvious performance improvement, maximizing the
number of local memory operations seems to provide the in-
struction scheduler with a good initial seed for partitioning
non-memory operations as well [17].

2.3. Compilation for Low-Power

Low-power microprocessors are garnering more atten-
tion due to the proliferation of mobile computing devices.
One way to decrease energy consumption is to eliminate tag
checks in the data cache. This can have a significant effect
on total performance since low-power caches, such as the
one found in the StrongARM microprocessor, expend over
50% of their energy in the tag checks [21].

Tag checks can be eliminated when the location of a data
item is known beforehand. As discussed, congruence in-
formation reveals the cache line location of a memory op-
eration at compile-time. A simple architectural enhance-
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Figure 2. Dataflow lattices for problems with moduli of eight and six.

ment can use this information to eliminate data cache tag
checks [20]. The techniques described in this paper are es-
sential in the resulting reduction of energy consumption.

3. Congruence Detection

We have developed a simple and robust analysis for de-
tecting congruence in programs. The algorithm operates on
arbitrary control flow and low-level address calculations.
As such, it is not dependent on language or programming
style.

The set of locations accessed by a particular static mem-
ory operation is represented using a stride and an offset. If
we denote the stride as a and the offset as b, then this set
is characterized by the linear equation an + b, where n is
a non-negative integer. Under this scheme, we say that a
memory reference is resolved if its stride is equal to the
modulus of the given application. For example, an address
with a value of 32n + 4 always accesses the fourth byte in
a 32-byte cache line.

We have implemented congruence detection as an itera-
tive dataflow analysis. For every point in a procedure, we
associate each address variable with a linear equation of the
form described above. The elements present in the dataflow
lattice and the structure of the lattice itself are dictated by
the modulus associated with the specific problem. Figure 2
shows lattices for problems with moduli of eight and six. In
order to successfully resolve memory references, the max-
imum stride represented in the lattice must be equal to the
modulus. The other strides seen in the lattice include all
factors of this value.

In the lattices for congruence detection, the ? element
typically seen in dataflow analysis is equivalent to n + 0.
This element is used when nothing is known about the value
of a variable. In these cases, we must assume the variable
can take on any value. The > element has its usual repre-
sentation; it is associated with variables that have yet to be
assigned during iteration over the control-flow graph.

Element values are propagated using the transfer func-
tions listed in Table 1. Addition, subtraction, and multipli-
cation are the operations generally found in address calcu-

lations. The meet operator is used to merge control flow.
Any operations not listed in the table result in the element
n + 0. This includes load operations which are present in
indirect memory references. For any constant, D, we as-
sign the element Mn + d, where M is the modulus and
d = D mod C. While this describes values beyond the
constant itself, it captures the appropriate information.

It may be possible to derive transfer functions for other
arithmetic or logical operations. However, we have not
found any instances in the benchmarks we surveyed where
this would be profitable.

4. Improving Memory Address Congruence

In order for detection to be useful, congruent memory
references must exist in programs. In Section 5, we present
data that show this is not the case. The primary reason for
this is illustrated in the simple loop of Figure 3(a). Here, the
array reference within the loop accesses consecutive cache
line locations on each iteration. This section discusses the

u
a = gcd(a1; a2; jb1 � b2j)

b = b1 mod a

+
a = gcd(a1; a2)

b = (b1 + b2) mod a

-
a = gcd(a1; a2)

b = (b1 � b2) mod a

�
a = gcd(a1a2; a1b2; a2b1;M)

b = b1b2 mod a

Table 1. Transfer functions for congruence
detection. The result of operating on any el-
ement e and > is e. Otherwise, new elements
are computed using the modulus, M , and the
inputs a1n+ b1 and a2m+ b2.



double a[100];
for (i=0; i<100; i++) {
  a[i] = 0.0;
}

(a)

double a[100];
for (i=0; i<100; i+=4) {
  a[i+0] = 0.0;
  a[i+1] = 0.0;
  a[i+2] = 0.0;
  a[i+3] = 0.0;
}

(b)
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Figure 3. (a) The memory reference addresses
consecutive cache line locations. (b) After
unrolling, each reference accesses only a sin-
gle offset.

transformations we have implemented to increase the num-
ber of congruent memory references.

The next three subsections discuss the transformations
that form our core approach to increasing congruence. In all
of the benchmarks we surveyed, these transformations were
universally effective in creating congruent memory refer-
ences. In addition, these techniques do not require global or
whole-program analysis.

4.1. Congruence Conventions

To improve congruence when accessing aggregate data
such as arrays and structures, we regulate where these data
are placed. This requires that we allocate stack frames in
blocks that are a multiple of the modulus. In the absence
of this constraint, the offset of stack-allocated data can vary
depending on the depth of the call stack. Intelligent stack
allocation forces local data to have the same offset for every
call to the enclosing procedure. RISC compilers already
perform this type of padding in order to ensure that all basic
data types are aligned on a natural boundary.

The compiler is responsible for placement of data within
the stack. As such, we can force the offset of local data to an
arbitrary value. This is important for congruence detection
since the analysis can not determine the offset of an array
reference if the offset of the base is unknown. The same is
true for an access to a structure field. For this reason, we
force all aggregate data structures to start on a zero offset.
When the detection analysis encounters an immediate value
representing the base of an aggregate, it can assume an ele-

ment value of Mn+ 0.

The same discipline is used for global and heap-allocated
data. It is simple for the compiler to allocate global data on
whatever boundary it chooses. For data allocated from the
heap, it is necessary to modify the malloc library routine
to ensure that it always returns pointers with zero offset.

4.2. Loop Unrolling

Since the majority of dynamically executed instructions
are located within loops, it is crucial that most memory op-
erations within inner loops exhibit the congruence property.
The Bulldog compiler [7] was the first to use loop unrolling
as a means towards this end. An example of this is shown
in Figure 3(b). When the loop is unrolled by a factor con-
sistent with the modulus, each memory reference in the un-
rolled body accesses a single offset. We unroll each loop by
a factor ofM=w whereM is the modulus andw is the width
of the smallest datatype loaded or stored in the loop body.
When the iteration count is unknown or is not a multiple of
the unroll factor, a post-loop is required to execute the fi-
nal iterations. For simplicity of illustration, the post-loop is
omitted from our examples.

4.3. Enforcing Congruence with a Pre-loop

After loop unrolling, we are able to resolve the offset of
most accesses to a local or global array. This relies on the
fact that the bases of these arrays are placed at zero off-
sets. However, programming languages such as C allow ar-
bitrary pointers into the middle of an array. If an array base
is passed as a pointer to a procedure, the offset of an access
derived from the pointer is unknown.

We can overcome this difficulty using a pre-loop. An ex-
ample of this is shown in Figure 4. The pre-loop is used to
execute a few iterations of the original loop until the mem-
ory reference within the loop reaches a known offset. At this
point, we exit the pre-loop and begin execution of the un-
rolled version. This has two consequences. First, we guar-
antee that the memory references within the unrolled loop
exhibit the congruence property. Second, the offset can be
communicated to the congruence detection analysis since
the compiler is responsible for choosing the exit condition.

The pre-loop was first proposed in [7]. It was discussed
in simple cases such as the one shown in Figure 4. How-
ever, as we will demonstrate below, effective pre-loop con-
struction is complicated for realistic applications. Our so-
lution employs a profile-based scheme to observe memory
addresses at runtime. We can then analyze these data offline
to construct an efficient pre-loop.



void init(double *x)
{
  int i;
  for (i=0; i<100; i++) {
    if ((int)&x[i] % 32 == 0)
      break;
    x[i] = 0.0;
  }
  for (; i<100; i += 4) {
    x[i+0] = 0.0;
    x[i+1] = 0.0;
    x[i+2] = 0.0;
    x[i+3] = 0.0;
  }
}

int main()
{
  double x[200];
  init(&x[0]);
}

Figure 4. A pre-loop is used to iterate until
a known offset is reached. This guarantees
congruence within the unrolled loop.

4.3.1. Non-Unit Strides

At first glance, it may seem as though the choice of exit con-
dition is arbitrary. In the example of Figure 4, the pre-loop
exits when the offset of the memory access reaches zero.
Regardless of how the array is passed, the pre-loop will ex-
ecute a small number of iterations until the desired value is
reached. As long as the total iteration count is sufficiently
high, the majority of dynamic memory references take place
in the unrolled loop.

However, an arbitrary choice for the exit condition can
lead to a situation in which the exit condition is never sat-
isfied. Consider the example shown in Figure 5 where the
index variable has non-unit stride. For the first call to the
procedure, an offset of zero is never reached. This means
that all iterations take place in the pre-loop and we gain no
useful congruence information.

Assuming the iteration count is sufficiently high, the exit
condition is satisfied under the following condition:

Theorem 4.1 Given a memory reference with stride s, ini-
tial access to location x0, and modulus M , there will be an
access to offset b iff

x0 � b (mod gcd(s;M)):

The idea is that the memory reference will access exactly
the locations x0 + sn (mod M), for integer n. Thus, we
are trying to determine if the equation

sn � (b� x0) (mod M)

void init(double *x)
{
 int i;
 for (i=0; i<100; i+=2) {
   if ((int)&x[i] % 32 == 0)
     break;
   x[i] = 0.0;
 }
 ...
}

int main()
{
 double x[200];
 init(&x[1]);
 init(&x[0]);
}

first call
i &x[i]%32

0 8
2 24
4 8
� � � � � �

second call
i &x[i]%32

0 0
2 16
4 0
� � � � � �

Figure 5. A memory access with non-unit
stride complicates the choice of exit condi-
tion. In this example, the exit condition is
never satisfied for the first call.

has any solutions for n given s, b, x0 and M . This oc-
curs exactly under the conditions given in the theorem. The
proof can be found in any text covering elementary number
theory, for example [5].

4.3.2. Calls with Conflicting Offsets

The choice of exit condition becomes more complicated
when a pointer parameter is assigned different offsets for
different invocations of the enclosing procedure. An exam-
ple of this is also shown in Figure 5. In this situation, it is
not possible to find an exit condition that is satisfied for both
invocations of the procedure. If the exit condition is set to
eight, the pre-loop will exit for the first call, but not for the
second. If it is left at zero, the reverse is true.

4.3.3. Multiple Variables

The final consideration in constructing the pre-loop exit
condition is the inclusion of multiple variables. In real ap-
plications, most loops contain accesses to multiple pointer
variables. A check has to be made for each variable whose
congruence we wish to guarantee in the unrolled loop. A
simple example of two variables is shown in Figure 6. Here,
the discrepancies in offsets between different invocations of
the procedure lead to two possible courses of action. First,
we could exit from the pre-loop based on the offset of both
variables. This guarantees congruence in only one of the
procedure calls. For the other call, the exit condition is
never be met. Alternatively, we could exit from the pre-
loop contingent on the offset of x[i] or y[i] alone. With this
scheme, we guarantee congruence for only one of the refer-
ences.



void copy(double *x, double *y)
{
  int i;
  for (i=0; i<100; i++) {
    if ((int)&x[i] % 32 == 0 &&
        (int)&y[i] % 32 == 0)
      break;
    x[i] = y[i];
  }
  ...
}

int main()
{
  double x[200];
  double y[200];
  copy(&x[0], &y[0]);
  copy(&x[0], &y[1]);
}

first call
i x%32 y%32

0 0 0
1 8 8
2 16 16
3 24 24
4 0 0
� � � � � � � � �

second call
i x%32 y%32

0 0 8
1 8 16
2 16 24
3 24 0
4 0 8
� � � � � � � � �

Figure 6. A pre-loop with multiple variables.
The exit condition can be satisfied for only
one of the procedure calls.

4.3.4. Choosing the Exit Condition

Having outlined some of the intracies of pre-loop construc-
tion, we now discuss our specific implementation. The goal
is to maximize the number of congruent references executed
at run-time. The best choice depends on the number of
memory references in the loop, their initial offset and stride,
and the total number of loop iterations. The major difficulty
in solving this optimization problem is the presence of mul-
tiple variables, each having a different offset for different
procedure invocations.

Our solution is to use a profile-based approach. The tech-
nique is as follows. Before each inner loop, we insert code
to record the initial offset of every memory reference in the
loop. Each set of offsets is then augmented with the to-
tal iteration count across all invocations of the loop. After
executing the application, this information can be analyzed
offline.

In the worst case, profiling data could grow unmanage-
ably large. Specifically, in a loop with n memory refer-
ences, there are Mn possible sets of offsets for a modulus
of M . If profiling data become too large, we could choose
to store only the most frequently encountered sets of offsets.
However, we have not observed this problem in the applica-
tions we surveyed. All of our benchmarks require less than
28 kilobytes of text to store all profiling information.

In order to determine the upper limit on performance we
can achieve with profiling, we have implemented an algo-
rithm that chooses the exit condition using an exhaustive
search. For each memory reference in the original loop
body, we need to decide if it will be included in the pre-
loop exit condition. If not, then we can not guarantee its

congruence in the unrolled loop. If it is included, we need to
choose the offset against which to compare. The exhaustive
search iterates over all possible exit conditions. For a given
set of offsets, we compute the other sets that are satisfied
using Theorem 4.1. Based on the profile data, we calculate
the number of iterations that would be spent in the unrolled
loop versus the pre-loop. This number is then multiplied
by the number of references having guaranteed congruence
in the unrolled body. The exit condition with the highest
resulting value maximizes congruence information.

The exhaustive search finishes quickly for most of our
benchmarks. However, it requires an unreasonable amount
of time for two loops in applu. Since an exhaustive search
requires exponential running time, a heuristic algorithm
is needed for a general solution. The simplest approach
merely chooses the set of offsets with the highest associ-
ated iteration count. Here, all memory references within
the loop are included in the exit condition. With this ap-
proach, we are able to detect over 97% of the congruent
references detected with the exhaustive search. Since this is
near-optimal, we do not explore other heuristics.

A potential shortcoming in any profile-based scheme is
that program transformations are based on the results of a
single data set. If congruence characteristics vary widely
with input data, profiling will not produce good results.
In Section 5, we present data showing that our results are
highly immune to the particular choice of profile data set.
In fact, we achieve nearly identical results regardless of the
input data. As such, we believe that profiling is particularly
well-suited to the congruence problem.

An alternative to profiling is a completely static ap-
proach that employs interprocedural analysis. We have im-
plemented a version of our algorithm that propagates con-
gruence information across call boundaries. However, we
strongly believe that whole-program analysis is not prac-
tical for real applications. Traditionally, whole-program
analyses do not scale to large program sizes. Further-
more, they usually require the entire source to be avail-
able. This makes it difficult to use separate compilation
or dynamically-linked libraries. Even when whole-program
analysis is practical, the presence of pointer aliasing makes
it difficult to maintain precise congruence information.

4.4. Secondary Transformations

The transformations described above form the basis of
our approach for increasing the number of congruent mem-
ory references. These techniques are generally applicable
and provide large improvements for all of our benchmarks.
This section covers other techniques that can be used to fur-
ther increase our effectiveness. The transformations listed
here are more specialized, increasing congruence in specific
situations.



a[0][0] a[0][1] a[0][2] a[1][0] a[1][1]

a[0][0] a[0][1] a[0][2] a[1][0]

(a)

(b)

Figure 7. Memory layout of a two-dimensional
array with three elements in the low-order di-
mension. (a) The same index into the low-
order dimension has a different offset for dif-
ferent indexes into the high-order dimension.
(b) After padding, they have the same offset.

4.4.1. Padding Multidimensional Arrays

When accessing multidimensional arrays, it may be useful
to pad the array in the lowest dimension. A particular ref-
erence into the low-order dimension of the array will have
the same offset only if the size of the lowest dimension is a
multiple of the modulus. For example, consider the memory
layout depicted in Figure 7. Part (a) shows the layout with-
out padding. Here, an index into the low-order dimension
has different offsets for different indexes into the high-order
dimension. Part (b) shows the layout after padding. In this
case, the offset is dependent only on the low-order index.

Padding of multidimensional arrays must be handled
carefully. In Fortran, common block reshapes can be used
to view an array with an arbitrary number of dimensions,
regardless of how it is used elsewhere. In C, type casting
achieves the same effect. We have implemented an analysis
that determines when padding can be applied safely. Since
the algorithm must look at all uses of an array, it necessarily
requires whole-program analysis. Fortunately, we have dis-
covered that we can obtain the same benefits of padding us-
ing the pre-loop transformation. When multiple loop nests
are used to iterate over the elements of a multidimensional
array, a pre-loop is placed before the innermost loop. This
has the effect of resetting the offset of memory references
within the inner loop on every iteration of the outer loop.
Since the majority of memory references take place in the
inner loop, most references are resolved to a single offset.
In our experiments, we were able to obtain the same results
without padding.

4.4.2. Duplicating Constant Tables

Many multimedia codes contain references to arrays of con-
stants. These tables are often accessed in non-uniform pat-
terns, making their runtime addresses unpredictable. Since

these arrays are usually small, we can duplicate them for
each possible offset. For any reference to the table, we can
arbitrarily choose which copy to access.

This approach is effective, but has some limitations. The
first is an increased use of memory. If the array elements
are b bytes, then we require M=b copies of the array. Also,
we must ensure that the table is never written. Otherwise,
modifications would have to be duplicated for every offset.

We have implemented a simple transformation that du-
plicates constant arrays that are below a size of our choos-
ing. The analysis only duplicates arrays that are local to the
source file and for which no modifications are performed. In
practice, these tables were small enough that the increased
memory usage was unnoticeable.

4.4.3. Other Loop Transformations

For situations in which an inner loop does not iterate over
the low-order dimension of an array, unrolling will not cre-
ate congruent memory references. Under certain circum-
stances, it may be possible to rearrange the order of loops
in a loop nest such that the innermost loop ranges over the
low-order dimension. This transformation is known as loop
interchange [3]. While powerful, it has implications in ar-
eas such as cache behavior that can seriously impact per-
formance. Also, loop-carried dependences may render the
transformation unsafe.

Another way to create congruent memory references
when loop nests are not conveniently ordered is to unroll
outer loops. Barua et al. [4] developed precise equations for
computing the unroll factors of loops in a loop nest. This
technique has the advantage that it can create congruent ref-
erences in the presence of unpadded multidimensional ar-
rays. The only drawback to this approach is a potentially
large increase in code size due to excessive unrolling.

In the benchmarks we surveyed, we found limited oppor-
tunities for improving congruence using these loop transfor-
mations. If future investigations reveal a need, we will add
them to our toolchain.

5. Results

In this section, we present the results of our congruence
transformations and analyses. All compiler passes were im-
plemented in the SUIF infrastructure [19]. Where possi-
ble, results are shown for two benchmark suites: Media-
Bench [14] and SPECfp95. For MediaBench, we have ex-
cluded ghostscript since our toolchain does not handle
its complex compilation process.
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Figure 8. Congruence results for the MediaBench and SPECfp95 benchmark suites with a modulus
of 32 bytes. The left bar for each benchmark shows the percentage of congruent memory references.
The right bar shows the percentage detected by our analysis. Results are shown after successive
application of each congruence-increasing transformation.

5.1. Effectiveness

We first show the ability of our transformations to in-
crease the number of congruent references and the success
of our analysis in detecting them. For both suites, congru-
ence was determined relative to 32 bytes. This is a typical
cache line size, making it the likely candidate for the appli-
cations discussed in Section 2. Since our analysis and trans-
formations depend on the particular modulus, all bench-
marks are compiled specifically for a 32-byte cache line
size.

In Figure 8, the left bar for each benchmark shows the
number of congruent references as a percentage of the to-
tal dynamic memory operations. A single dynamic memory
reference is considered congruent if its offset is the same
as all other dynamic instances of the same static instruc-
tion. For example, a static load that accesses the same off-
set twice is counted as two congruent accesses. A static
load that accesses the same offset nine times and a different
offset once is counted as ten non-congruent accesses. We
report results in this fashion since we consider an operation
congruent only when every dynamic instance accesses the
same offset.

Results were obtained by instrumenting each benchmark
to record the offset of every memory reference at run-time.
The transformed code was converted to C, compiled na-
tively, and then executed. For the SPECfp95 benchmarks,
the profile data set was used for profiling and the reference
data set was used to gather the numbers shown in the graphs.
The MediaBench benchmarks do not have a standard profile
data set, so the same input was used for both runs.

The graphs in Figure 8 show congruence before modifi-
cation (original), and after successive application of each
core transformation. These include congruence conven-

tions (conven), inner loop unrolling (unrolling), pre-loop
using the simple heuristic (simple), and pre-loop using the
exhaustive search (exhaust). For the MediaBench bench-
marks, we also include duplication of constant tables (du-
plicate). This transformation is particularly important for
adpcm. Padding of multidimensional arrays did prove use-
ful for some of the SPECfp95 benchmarks. However, we
have not included the effect of this transformation since we
were able to obtain the same results using the pre-loop.

As seen from the figures, we rely heavily on the
congruence-enhancing techniques. Before the transforma-
tions are applied, only fpppp has a significant percentage
of congruent memory references. After the transformations,
64% and 84% of the dynamic memory references exhibit
congruence in the MediaBench and SPECfp95 benchmarks,
respectively. It is interesting to note the high contribution of
the pre-loop transformation in many of the benchmarks. For
applu, hydro2d, and mgrid, arguments to key proce-
dures are passed with different offsets for different invoca-
tions of the procedure. For swim and tomcatv, important
multidimensional arrays have a size that is inconsistent with
the modulus and would otherwise require padding. Even in
cases where the pre-loop is not needed to generate congru-
ent accesses, it is usually required for detection. This is be-
cause most array accesses are based on parameters whose
offset we can not guarantee without whole-program analy-
sis.

Figure 8 also presents the percentage of dynamically
congruent memory references that are detected by our
dataflow analysis. This is shown on the right bar for each
benchmark. Without our transformations, we are unable to
detect any congruence. At a minimum, congruence con-
ventions are needed to guarantee the position of array and



Code size Execution time
Unrolling + Pre-loop Unrolling + Pre-loop

applu 2.26 2.79 -6.27% -5.28%
apsi 1.46 1.49 0.93% 1.13%
fpppp 1.67 1.85 0.00% 0.00%
hydro2d 1.42 1.58 0.99% 0.39%
mgrid 1.23 1.31 0.72% 0.72%
su2cor 1.78 1.98 -0.32% 0.11%
swim 1.39 1.49 -0.96% -0.17%
tomcatv 1.09 1.14 -0.18% 0.65%
turb3d 1.28 1.31 -0.80% 1.72%
wave5 2.05 2.05 3.75% 4.58%

Table 2. Factor increase in code size and per-
centage increase in execution time due to un-
rolling and pre-loop.

structure bases. After application of every transformation,
the analysis is able to detect nearly all of the congruent
references. The average percentage detected across each
benchmark suite was 60% for MediaBench and 82% for
SPECfp95. Overall, the congruence detection algorithm
was able to uncover 95% of the congruent references avail-
able in the transformed benchmarks.

Our compiler infrastructure does not include a back-end.
Therefore, the results presented in this section do not ac-
count for memory operations generated from register spills
and parameter passing. Since we already require padded
stack frames, any scalar stack accesses are guaranteed to
exhibit congruence. Furthermore, the compiler is responsi-
ble for placement of these data within the stack, meaning
their offset is known at compile-time. As a result, the num-
bers presented here are a conservative estimate of what can
be achieved.

5.2. Overheads

Next, we analyze the overheads associated with our
transformations. The most worrisome is a possible increase
in execution time. This could nullify any performance gains
achieved using congruence information. There are two po-
tential sources for such an increase. The first is unrolling,
which can negatively impact instruction cache performance
through an increase in code size. The second is the pre-loop,
which introduces runtime checks.

To test the impact of our transformations, we timed the
execution of the benchmarks in the SPECfp95 suite after
applying each transformation. Benchmarks were converted
to C from SUIF, compiled natively with gcc using full op-
timization, and timed using the Unix time command. The
MediaBench benchmarks execute too quickly in compari-
son to the precision offered by the time command, prohibit-
ing us from gathering meaningful results for these bench-
marks.

Increases in code size and execution time are shown
in Table 2. As seen, the execution time overheads for

Run data test train ref
Profile data train ref test ref test train

applu 0.02% 0.02% 0.35% 0.04% 0.00% 0.00%
apsi 11.48% 11.48% 6.53% 6.53% 0.00% 0.00%
fpppp 0.07% 0.00% 0.11% 0.11% 0.00% 0.02%
hydro2d 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
mgrid 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
su2cor 0.00% 0.02% 0.00% 0.02% 0.01% 0.01%
swim 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
tomcatv 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
turb3d 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
wave5 0.00% 1.21% 0.00% 1.19% 0.99% 0.99%

Table 3. Percentage of dynamic congruent ref-
erences undetected when different data sets
are used for profiling and execution.

both transformations are extremely low. For many of the
benchmarks, unrolling actually decreases execution time.
The only benchmark that shows a noticeable overhead is
wave5. Unrolling increases execution time by 3.75%.
Combined with the pre-loop, execution time is increased by
4.58%.

Another possible overhead is an inflated use of data
memory due to stack frame padding. To see if this occurs,
we monitored the memory usage of each benchmark with
and without congruence conventions. On our host platform,
memory is allocated by the operating system in pages of 4
kilobytes. In no cases did the use of conventions require
extra pages.

5.3. Profiling Accuracy

Next, we examine the effect of the profile data set on the
percentage of congruent memory references detected by the
analysis. The SPECfp95 benchmarks are distributed with
three data sets, providing nine possible pairings of profile
and execution data sets. Since results are best when the
same data set is used for both runs, we computed the differ-
ence in detected congruent references when a different data
set is used. The percentages are shown in Table 3.

As seen from the table, apsi is the only benchmark in
which a noticeable number of memory references go unde-
tected when a different data set is used. This occurs when
the test or ref data sets are used to gather final results. In
all other cases, the differences are negligible. This sug-
gests that profiling works exceptionally well for the con-
gruence problem. In contrast, when profiling is used in the
traditional application of branch prediction, results can vary
greatly for different profile data sets [9].

5.4. Scalability

Figure 9 shows the percentage of dynamic congruent ref-
erences observed and detected over a range of moduli. For
both benchmark suites, congruence information degrades
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Figure 9. Percentage of dynamic congruent
references present and detected as the mod-
ulus is increased.

gracefully as the modulus is increased. The downward trend
can be attributed to two phenomena. First, larger unroll fac-
tors are required to guarantee congruence with respect to a
larger modulus. At some point, the unroll factor becomes
larger than the iteration count, causing all iterations to ex-
ecute in the post-loop. More importantly, a larger modulus
allows for a greater number of possible offsets. This makes
discovery of a good pre-loop more difficult. In both cases,
fewer total iterations take place in the unrolled body.

5.5. Application of Congruence Information

Finally, we evaluate the impact of congruence informa-
tion on two real systems. The following two subsections
describe the importance of congruence techniques in pro-
viding energy savings on a low-power architecture, and in
providing performance improvements on a multimedia pro-
cessor.

5.5.1. Energy Savings

Congruence information is a key component in a design
that has been shown to reduce energy consumption in a
low-power architecture [20]. In this approach, architectural
extensions use compile-time information to eliminate tag
checks in the data cache.

The compiler attempts to identify pairs of memory refer-
ences that access the same cache line. If the first dominates
the second, it is guaranteed that the second will hit in the
cache. In this case, two special memory operations are is-
sued. The first performs a normal load or store, but records
the way in which the cache line is located. The second uses
this information to access the cache line directly, skipping
the expensive tag check.
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Figure 10. Data cache energy savings for the
MediaBench and SPECfp95 benchmarks. Re-
sults are shown with and without the use of
congruence information.

Tag checks can be eliminated using this mechanism
when it can be proven that a pair of memory references
access the same location. These are guaranteed to access
the same cache line. In the majority of situations, however,
more information is necessary. When two references are
separated by a non-zero amount that is less than the width
of a cache line, congruence information is required to deter-
mine whether or not the references access the same line.

Reduction in energy consumption was computed by in-
strumenting the benchmarks with calls to a cache simulator.
The cache line size was set to 32 bytes. The simulator de-
tected when tag checks were successfully eliminated. En-
ergy consumption for tag-checked and tag-unchecked ac-
cesses were computed using a detailed hardware model
based on physical layout information [12].

Figure 10 shows the energy savings with and without our
techniques. When the offset is unknown, tag checks can be
eliminated only when a pair of references is guaranteed to
access the same location. It is seen from the graph that most
of the energy savings are a result of congruence informa-
tion. Data cache energy savings ranged from about 12% to
40% for the MediaBench benchmarks and 10% to 35% for
the SPECfp95 benchmarks. In the best case, our analyses
are responsible for a 35% reduction in energy consumption.

5.5.2. SIMD Compilation

As discussed in Section 2, the SIMD memory operations
available in popular multimedia extensions are more effi-
cient when data are naturally aligned. To measure the im-
pact of our techniques on performance, we targeted a G4
PowerMac workstation running Linux. The G4 micropro-
cessor incorporates the AltiVec multimedia extension which



datatype vector speedup speedup improve-
length (unaligned) (aligned) ment

float 4 3.25 4.75 46%
int 4 2.15 2.93 36%

short 8 2.98 5.87 97%
char 16 5.21 11.53 121%

Table 4. Speedup of a vector addition oper-
ation after vectorization. Results are com-
pared for data that are unaligned and aligned.

supports 128-bit SIMD operations. AltiVec instructions op-
erate on various datatypes packed into a 128-bit superword.
Therefore, the effective vector length depends on the size of
the elements.

Ideally, we would like to compare parallelization in
the presence of congruence information to parallelization
when it is absent. The SIMD compiler we presented
in [13] is completely dependent on congruence information
to achieve parallelization. As a result, it is impossible to iso-
late its contribution to the speedups we observe. Instead, we
have chosen to use a commercial vectorizer for this study.
The VAST compiler [1] can still provide performance gains
in the absence of congruence information by producing ef-
ficient code for merging two consecutive unaligned regions.

Unfortunately, the mechanism for communicating con-
gruence information to the VAST compiler is limited. Pro-
cedures can be designated as aligned using command line
arguments or pragmas. This asserts that every memory ref-
erence on the first iteration of a loop will have a zero offset.
This narrow channel allows us to communicate only a small
fraction of the information we are able to extract. As a re-
sult, we are forced to limit our study to a vector addition op-
eration. This kernel has simple congruence characteristics
which allow us to effectively communicate the information
via pragmas.

Table 4 shows the speedup obtained with different vec-
tor lengths. Results are shown when data are unaligned and
when natural alignment is enforced using a pre-loop. The
VAST compiler generates C code with AltiVec macros in-
serted where vectorization is successful. This output is then
compiled natively using gcc. We compiled with full opti-
mization in both stages.

The vector addition operation is easily vectorized by the
VAST compiler and makes full use of the AltiVec execu-
tion unit. As a result, the numbers shown in Table 4 repre-
sent an upper bound on the performance improvement we
can expect from congruence information. Nonetheless, the
speedups are considerable. It is clear that congruence tech-
niques are necessary to achieve the best performance from
multimedia architectures.

6. Related Work

To the best of our knowledge, Fisher [8] and Ellis [7]
were the first to discuss the importance of congruence infor-
mation. They used loop unrolling as a method for increasing
the number of congruent memory references. Their work
was done in the context of the Bulldog compiler that tar-
geted a clustered VLIW. In their architecture, main mem-
ory was distributed across a set of banks. Bank location
was important because local memory accesses had lower
latency than remote accesses. In addition, each bank could
be accessed in parallel, provided that every cluster accessed
a local bank. The use of a pre-loop was also proposed to en-
sure congruent references in cases where an array base was
unknown. However, this transformation was done by hand
and apparently only used in simple cases. This research did
not propose a mechanism for choosing the exit condition au-
tomatically, particularly when a loop body contains several
references, each with different initial offsets.

In order to determine which bank was accessed by a par-
ticular memory reference, a constraint-based system called
Memory Bank Disambiguation was used. In order to be
successful, this system required the programmer to provide
hints about the offset of certain variables. Comparatively,
our congruence detection algorithm requires no program-
mer intervention in order to resolve congruent references.

Barua et al. proposed a more complicated form of
loop unrolling [4] to aid in compilation for the Raw ma-
chine [18]. The Raw architecture is composed of a mesh
of identical tiles, each with a local memory bank. In this
design, data access time is a function of the distance to
the bank containing the data. Unrolling was used to cre-
ate memory references that are guaranteed to access a sin-
gle bank. Precise equations were presented to determine the
unroll factors of arbitrary loop nests.

Davidson et al. [6] discussed alignment issues in their
work on Memory Access Coalescing. This research focused
on combining narrow width load and store instructions into
wide memory operations. The goal was to provide better
memory bus utilization. Since RISC architectures typically
require memory operations to be naturally aligned, dynamic
checks were inserted to ensure that wide memory operations
were aligned properly. In our approach, all information is
determined by the compiler.

7. Conclusion

A static memory reference is considered congruent if its
dynamic memory addresses are all congruent with respect
to some non-trivial modulus, typically the size of a cache
line. In this paper, we presented practical methods for both
improving and detecting address congruence. With almost
no overhead, these techniques increase the percentage of



congruent memory references by a factor of five. Our con-
gruence detection algorithm is then able to resolve the offset
for 95% of these operations.

At the heart of our approach is a profiling technique that
allows us to construct highly optimized pre-loops for the
complex loops found in real applications. Imperical results
suggest that profiling is particularly effective since congru-
ence information varies little among data sets.

The methods discussed in this paper are being used to
improve performance in radically different systems. These
include the prototype Raw compiler, SIMD compilation,
and compilation for energy reduction. When congruence
information is used in conjunction with a commercial vec-
torizer for a G4 AltiVec processor, it is possible to improve
performance by as much as a factor of two. When combined
with a design for a low-power data cache, our techniques
are responsible for reducing energy consumption by up to
35%.
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