

Eliminating Exception Constraints of Java Programs for IA-64

Kazuaki Ishizaki, Tatsushi Inagaki, Hideaki Komatsu, Toshio Nakatani
IBM Research, Tokyo Research Laboratory

ishizaki@trl.ibm.co.jp

Abstract

Java exception checks are designed to ensure that any
faulting instruction causing a hardware exception does not
terminate the program abnormally. These checks, however,
impose some constraints upon the execution order between an
instruction potentially raising a Java exception and a faulting
instruction causing a hardware exception. This reduces the
effectiveness of instruction reordering optimization. We pro-
pose a new framework to effectively perform speculation for
the Java language using a direct acyclic graph representation
based on the SSA form. Using this framework, we apply a
well-known speculation technique to a faulting load instruc-
tion to eliminate such constraints. We use edges to represent
exception constraints. This allows us to accurately estimate
the potential reduction of the critical path length for applying
speculation. We also propose an approach to avoid extra
copy instructions and to generate efficient code with minimum
register pressure. We have implemented the technique in the
IBM Java Just-In-Time compiler, and observed performance
improvements up to 25% for micro-benchmark programs, up
to 10% for Java Grande Benchmark Suite, and up to 12% for
SPECjvm98 on an Itanium processor.

1 Introduction

The type safety feature of Java language calls for its byte-
code to make quite a few runtime exception checks in order to
eliminate error-prone situations. These runtime checks ensure
that a Java program cannot execute unsafe operations that
may cause the program to be terminated abnormally. Excep-
tions in Java programs can be categorized into two types:
hardware exceptions and Java exceptions. Hardware excep-
tions are those which the hardware may throw as the result of
program execution such as segmentation faults and invalid
operations. Java exceptions are those software exceptions
which Java bytecode may throw such as NullPointerExcep-
tion and IndexOutOfBoundsException. An instruction that
may throw an exception is called a potentially excepting in-
struction (PEI) [1]. Furthermore, we call the instruction a
hardware-initiated potentially excepting instruction (H-PEI)
if it can cause a hardware exception. Although a hardware-
initiated exception does not occur in normal Java programs, it
may occur when a compiler applies speculation. In contrast,
we call the instruction a software-initiated potentially except-
ing instruction (S-PEI) if it may throw a Java exception as the
result of its execution. A Java exception is always recoverable
in the sense that it can be caught by a catch clause in the Java
program. It must be thrown before any hardware exception
occurs. A load instruction that may cause a hardware excep-

tion by reading an invalid effective address or a TLB miss,
called a faulting load instruction [2] (one of the H-PEIs), can-
not be scheduled across an S-PEI. This limitation prevents
instruction reordering optimizations from being applied in a
wider region.

This paper focuses on the problem of preventing instruction
reordering optimizations of Java programs on IA-64. We pro-
pose a technique to eliminate the constraints between S-PEIs
and H-PEIs by using speculative code motion. Our approach
depends upon special hardware features of IA-64 to support
speculative code motion. Here, speculative execution refers to
executing an instruction before execution is required. Two
speculative execution techniques have been proposed. One is
called control speculation [1, 2, 3, 4, 5, 6, 7] which is a tech-
nique to alleviate control dependence, between a branch and
its succeeding instructions, by estimating the branch direction.
Control speculation allows the compiler to aggressively
schedule instructions across a branch. The other is called data
speculation [8, 4, 6, 7] which is a technique to alleviate data
dependence, between a store instruction and its succeeding
load instructions, by estimating that the load will access a
different memory location from the store. Data speculation
allows the compiler to aggressively schedule instructions
across a store. We propose exception speculation as a third
speculation technique to alleviate exception dependence be-
tween the S-PEI and its succeeding H-PEIs by estimating that
an exception does not occur when moving the H-PEI across
the S-PEI. Exception speculation allows the compiler to
aggressively schedule instructions across an S-PEI.

Our approach uses a directed acyclic graph (DAG) repre-
sentation based on the static single assignment (SSA) form
[9]. We use an edge in the DAG to represent an exception
dependence relationship between each S-PEI and each of its
succeeding H-PEIs [10]. We call this an exception depend-
ence edge. Every exception dependence edge can be also in-
cluded in the critical path length to estimate the gain when the
target instruction is scheduled earlier across the S-PEI. After
the decision is made to apply exception speculation, the fault-
ing load instruction is replaced with the non-faulting load
instruction to prevent it from throwing a hardware exception
when it is scheduled earlier across the S-PEI.

Supporting exception speculation in an intermediate repre-
sentation (IR) to distinguish exception speculation from con-
trol speculation yields the following two advantages:

1. Unlike Arnold’s approach [11], which converts an S-PEI
to a pair of compare and branch instructions and thus in-
creases the number of control dependence edges for sub-
sequent instructions, our approach needs only one excep-
tion dependence edge between an S-PEI and an H-PEI.
This reduces the size of the IR as well as the number of

edges to be traversed for determining speculation and
performing instruction scheduling. The compilation time
can be reduced since it avoids global optimizations such
as percolation scheduling or trace scheduling.

2. Unlike general percolation, by introducing exception
speculation we can easily estimate the benefit of excep-
tion speculation along an exception dependence edge.

We also address two compilation issues for exception
speculation: how to select a sequence of instructions, called a
speculative chain [6], to move across an S-PEI, and how to
generate the recovery code. We propose a selection mecha-
nism for a speculative chain without inserting any additional
copy instructions. We also propose code generation tech-
niques to minimize the register pressure in the original code
by saving registers killed in recovery code, and to minimize
the impact on the code scheduling (bundle formation) phase
by duplicating instructions in the recovery code.

We implemented our approach for eliminating exception
constraints using the IBM Java Just-In-Time (JIT) compiler
[12] for IA-64. We conducted experiments by running micro-
benchmarks, and two industry standard benchmarks, the Java
Grande Benchmark Suite and SPECjvm98. Our preliminary
results show that exception speculation improves the per-
formance, by up to 25% (with an average of 12.8%) for mi-
cro-benchmark programs, up to 10% (with an average of
1.7%) for Java Grande Benchmark Suite, and up to 12% (with
an average of 2.3%) for SPECjvm98, with only a modest code
size growth on an Itanium processor. In a few cases in the
Java Grande Benchmark Suite and SPECjvm98, we observed
a small performance degradation. We suspect that it is possi-
bly due to the performance penalty caused by a small increase
in TLB misses. Furthermore, we also observed that creating a
partially exception-eliminated (safe) loop, using the loop ver-
sioning [12] technique, is also effective with exception specu-
lation. In some cases, our results show that exception specula-
tion increases the performance even after loop versioning has
been applied. We also observed that our framework can save
space for the DAG-based IR.

This paper makes the following contributions:
� A new framework to handle exception speculation us-

ing the SSA-based DAG representation.
� An efficient method to select speculative chains and

generate the corresponding recovery code.
� Experimental results to validate the effectiveness of

eliminating exception constraints in Java programs us-
ing IBM’s Java JIT compiler for IA-64.

The rest of the paper is structured as follows. Section 2 dis-
cusses the related work. Section 3 gives the system overview.
Section 4 describes the technique to eliminate the exception
constraints between S-PEIs and H-PEIs using exception
speculation. Section 5 describes compilation issues for specu-
lation and their solutions. Section 6 gives our experimental
results. Finally, section 7 presents our conclusions.

2 Related Work

Ebcioglu et al. [13] proposed an out-of-order translation
technique. It assumed architectural support for non-faulting
load instructions. Since it renames a target register when the
original load instruction is speculatively replaced with a non-
faulting load instruction, an extra copy instruction must be
inserted to recover the value in the original register at the
original position of the corresponding load instruction. Extra
copies increase the critical path length.

Le [2] also described a runtime binary translation technique
that reorders instructions without any special architectural
support. However, it requires the generation of some check-
point code, which increases the critical path length even when
no exception occurs.

Ju et al. [6] described a unified framework for control and
data speculation on IA-64. Their target language is C, thus
they do not deal with runtime exception speculation for a
type-safe language. Their framework is similar to ours, in the
sense that an SSA-based DAG is used and extra copy instruc-
tions are avoided. Their experiments were limited to an IA-64
architecture simulator.

Arnold et al. [11] described the impact of Java exceptions
on a VLIW architecture based on superblock scheduling and a
general percolation technique, by assuming architectural sup-
port for non-faulting load instructions. His experiments were
also limited to a simulator.

Manish et al. [14] described some optimizations to reorder
different S-PEIs or reorder an S-PEI with respect to an in-
struction affected by precise exception semantics using soft-
ware solutions. We also propose a complementary technique
to reorder S-PEIs and H-PEIs with an architectural support.

3 System Overview

This section describes an overview of the IA-64 architec-
ture and our compiler. Section 3.1 describes the important
architectural features which the compiler relies on. Section
3.2 describes the optimization framework for our compiler.

3.1 Architectural Features of IA-64

In this paper, we assume the following three architectural
features to effectively support speculation using recovery
blocks [5]:

Feature 1: A non-faulting load instruction that defers the
exception and sets deferred bits to destination registers if the
instruction causes hardware exceptions. When any instruction
reads source registers with the deferred bits, it does not cause
hardware exceptions but propagates the deferred bits.

Feature 2: A low-overhead instruction that checks
whether the deferred bits are set in a register and if so, then
executes the provided recovery code.

Feature 3: Many registers to hold the values the recovery
code can use.

These features could also be implemented by software us-
ing the support of an operating system. However, the IA-64
architecture [15] supports the above features by hardware. For
Feature 1, the IA-64 architecture provides non-faulting load
instructions as ld.s instructions in the instruction set archi-
tecture. A Not a Thing (NaT) bit of the destination register is
set if an ld.s instruction reads an invalid address or causes a
TLB miss. Wehn the NaT bits of one or more source registers
are set, the instruction propagates only the NaT bits to a des-
tination register. For Feature 2, the IA-64 architecture pro-
vides a check instruction (we refer to it as chk.s) to quickly
see whether a hardware exception has been deferred. If no
exception has been deferred, the instruction takes no cycles. If
an exception has been deferred, the execution branches to
recovery code. For Feature 3, the IA-64 provides 128 general
purpose registers and 128 floating point registers. Therefore,
registers are rarely spilled out even if their liveness is ex-
tended by recovery code.

3.2 Optimization Framework

In Figure 1, we show an overview of our Java JIT compiler.
First, the compiler builds a DAG in the SSA form after it

translates the bytecode to our IR. Second, it performs excep-
tion elimination optimizations such as loop versioning [12]
and nullcheck elimination [16] to remove redundant runtime
exception checks. The nullcheck elimination algorithm using
forward dataflow and partial redundancy elimination removes
most of the nullchecks for references of instance variables.
Loop versioning elevates an individual array index exception
check outside a loop by creating a safe loop and an unsafe
(original) loop. The code for exception checks is generated at
the entry of the loop by examining the whole range of the
index within the loop. Therefore, all the array bound checks
against the first dimension of the array are eliminated in the
safe loop. As a result, many exception checks have already
been eliminated in this phase. Although these optimizations
are effective, the exception checks against the higher dimen-
sions of arrays cannot be eliminated.

Third, it eliminates the exception constraints against re-
maining exception checks, as described in Section 4, and it
performs DAG scheduling based on the list scheduling [17].
After it translates out of the SSA form, it allocates physical
registers and generates the native code. In the code generation
phase, the S-PEI is converted to native compare and branch
instructions. Finally, it generates a recovery code, as de-
scribed in Section 5, corresponding to each speculative chain.

4 Exception Speculation

In this section, we propose a technique to eliminate an ex-
ception constraint between an S-PEI and an H-PEI using
speculation in order to reduce the critical path length. After
eliminating the constraint and replacing the H-PEI with a non-
faulting instruction, the non-faulting instruction and the suc-
ceeding instructions can be executed earlier than the S-PEI.
We call this exception speculation.

Example 1 shows an example of our technique. It shows an
IR and a DAG. Here, we assume that each ld instruction (N2
and N6) takes three cycles and all other instructions take one
cycle each, except for the chk instruction (N9). A chk in-
struction takes 0 cycles. Unlike Arnold’s work [11], our DAG
representation does not generate a pair of compare and jump
instructions corresponding to an S-PEI. Instead, we represent
an S-PEI as a single instruction and add an exception depend-
ence edge. This allows the compiler to accurately estimate the
potential change of the critical path length. Exception
speculation can eliminate all the exception dependence edges
between S-PEIs and H-PEIs. Exception speculation consists
of the following five steps:

Step 1: Decide whether a load instruction can be specu-
lated: The compiler compares the two earliest times to initiate
the execution of the load instruction. One time is constrained
by data dependence, and the other is constrained by an excep-
tion dependence. If the time by exception dependence is
longer, the compiler decides to speculate the instruction by
replacing a faulting load instruction with a non-faulting one.
This decision can avoid unnecessary speculation that executes
recovery code caused by a small increase in TLB misses.

In Example 1, the time set for the data dependence edge at
N6 is three, and the time set for the exception dependence
edge at N6 is four. Therefore, N6 is selected as the candidate
for speculation, and N6 is replaced with a non-faulting load
instruction.

Step 2: Reconnect incoming exception dependence edges
of a load instruction to a chk instruction: A check instruction
is inserted at the original position of the corresponding load.
Then, the exception dependence edges from the S-PEIs to the
ld instruction are eliminated. If there is an edge constrained
by the access order from a write instruction to a read instruc-
tion, it will not be eliminated. Although data speculation can
eliminate the access order edge, that is beyond the scope of
this paper. These exception edges eliminated from the S-PEIs
are connected to a chk instruction. This safeguards the exe-
cution order of the original program by the execution of the

Build DAG Exception elimination
optimizations

Exception constraint
eliminations

Bundle formation

Code
generation

Recovery code
generation

bytecode

native
code

Register
allocation

DAG
scheduling

Translating
out of SSA

Translate
bytecode to IR

Figure 1. An overview of the JIT compiler

recovery code after executing the S-PEIs. The recovery code
is generated by the compiler to recover the correct program
status if the speculative load instruction defers any exception
associated with the instruction.

In example 1, a chk instruction (N9) is inserted into the
DAG. The edge from N3 to N6 is eliminated in the Example 1
b), and then an edge is added from N3 to N9 in the Example 1
c).

Step 3: Select a sequence of instructions as a speculative
chain: We define a speculative chain as an instruction se-
quence that is constructed by those data dependence chains
preceded by the speculative load instruction which do not
include the instructions with side effects such as a store in-
struction on the IA-64 architecture. The compiler selects in-
structions by excluding any instruction that causes side effects
while traversing instructions that depend on the result of the
load instruction through the true dependence chains. The
compiler marks the selected instructions as a speculative
chain. We discuss the selection process in more details in Sec-
tion 5.1.

In example 1, N6 and N7 are selected as a speculative
chain.

Step 4: Build edges for the live-in and live-out sets of the
recovery code: If the recovery code is to be represented ex-
plicitly in the DAG, a Φ instruction is inserted after a chk
instruction. The Φ instruction causes problems for other op-
timizations including register allocation. Therefore, our repre-
sentation marks the instructions on a speculative chain, and
then the compiler generates the recovery code from the
marked instructions in the last phase. The compiler has to add
the live-in and live-out sets of the recovery code as operands
for the chk instruction. Algorithm 1 shows the algorithm to
determine the live-in set li and live-out set lo from the cor-

responding speculative chain.
In example 1, the compiler adds operands t4 and t6 to N9

as live-in and live-out sets, respectively.
Step 5: Build edges among selected instructions and the

chk instructions: Instructions on a speculative chain have to
have edges to a chk instruction so that all speculated instruc-
tions precede the chk instruction. The chk instruction has to
have edges to all the instructions that use the live-out set to
schedule the chk instruction before these instructions. These
edges insure the correct execution when a deferred exception
occurs and the recovery code recalculates the live-out set.

In example 1, a data dependence edge from N5 to N9 is
added for the live-in set of that block of recovery code. Then,
an order dependence edge from N7 to N9 is added to execute
a chk instruction after N6 and N7 are executed, and an order
dependence edge from N9 to N8 is also added. A data de-
pendence edge from N7 to N9 is added in order to test
whether an exception has been deferred.

After exception speculation, the compiler performs DAG
scheduling. As a result, N4, N5, N6, and N7 can be scheduled

N1: newarray t1 = n
N2: ld t2 = [t1]
N3: indexcheck i, t2
N4: add t3 = t1, 16
N5: shadd t4 = t3, i<<2
N6: ld.s t5 = [t4]
N7: add t6 = t5, 1
N9: chk.s t6, Recovery, t4, t6
N8: ret t6

int foo(int n, int i) {
 int a[] = new int[n];
 return a[i] + 1;
}

a) Sample program c) IR and DAG
after exception speculation

N1: newarray t1 = n
N2: ld t2 = [t1] // len
N3: indexcheck i, t2
N4: add t3 = t1, 16
N5: shadd t4 = t3, i<<2
N6: ld t5 = [t4] // a[i]
N7: add t6 = t5, 1
N8: ret t6

N1 N1

N2 N4

N3

N5

N6

N7

N6

N7

N9

d) IR after DAG scheduling

N1: newarray t1 = n
N2: ld t2 = [t1]
N4: add t3 = t1, 16
N5: shadd t4 = t3, i<<2
N6: ld.s t5 = [t4]
N7: add t6 = t5, 1
N3: indexcheck i, t2
N9: chk.s t6, Recovery, t4, t6
N8: ret t6

b) IR and DAG
before exception speculation

A normal instruction

A S-PEI

A data dependence edge

An exception dependence edge

An order dependence edge

N8

N2 N4

N3

N5

N8 Bold lines show the critical path.

1 1

0

0 1

1

1

3

3

1 1

0

1

1

1

3

3

0 1

1

0

0

An instruction on
a speculative chain

A H-PEI

Example 1. An example of eliminating an exception constraint between H-PEIs and S-PEIs

sc<IN> : set of statements in the speculative chain
li<OUT>: set of src operands for live-in set
lo<OUT>: set of dst operands for live-out set
SCOTH : set of statements in other speculative chains

li = lo = φ
for (s ⊂ statements(sc)) {
 for (o ⊂ dst operands(s))
 if ((Succ(o) ∩ src operands(sc) ≠ φ) ||

// destination is used out of the chain
 (Succ(o) ∩ src operands(SCOTH) ≠ φ))
// destination is used in other chain

lo ∪= o
 for (o ⊂ src operands(s))
 if (Pred(o) ∩ dst operands(sc) == φ) li ∪= o
}
Algorithm 1. Determination of the live-in and live-out sets

before N3. Since a chk.s instruction takes 0 cycles on the
IA-64 architecture if no exception has been deferred, excep-
tion speculation reduces the critical path length (in bold) from
9 to 8. Since the example is simplified for the sake of
explanation, the reduction is small. In general, for an access to
an array element, two load instructions for the array length
and the array element can be moved speculatively across S-
PEIs such as NullPointerException and
IndexOutOfBoundsException checks. Therefore, the reduc-
tion in the critical path length will be more significant.

5 Compilation Issues for Speculation

In this section, we address two compilation issues using
speculation. One is how to select a sequence of instructions as
a speculative chain to avoid extra copy instructions during the
phase of translating out of the SSA form [9, 18]. The other is
how to generate the recovery code to minimize the live-in
registers set needed by the recovery code and the impact on
the bundle formation.

5.1 Select a Speculative Chain

Here, we describe a method to select a sequence of instruc-
tions as a speculative chain. The method is guaranteed not to
insert extra copy instructions during the phase of translating
out of the SSA form. If extra copy instructions are inserted,
they might cancel out the advantages of speculation, since
each such copy would require an additional hardware execu-
tion unit. For example, a move instruction between floating-
point registers takes 5 cycles on the Itanium processor [19].
Therefore, this selection method is important.

We propose a method to generate the longest possible
speculative chain, while avoiding the generation of extra in-
structions, preventing non-cyclic graphs, and excluding
instructions with side effects such as store instructions on the
IA-64 architecture. We assert two conditions to generate the
correct recovery code, along with two additional conditions to
prevent the insertion of extra copy instructions. One of them
was already proposed by Ju et al. [6]. If all of the conditions
are satisfied while traversing the instructions depending on
the results of the load instructions or preceding from the

source of the load instructions through the true dependence
edges, the compiler can add instructions to the speculative
chain.

Condition 1: Do not choose any instruction that would re-
sult in a cyclic graph: If the graph becomes cyclic, it would
preclude list scheduling. Since the IR of a Java program has
many exception dependence edges, the compiler must insure
this condition when selecting any sequence of instructions as
a speculative chain. Example 2 shows an example of generat-
ing a cyclic graph by speculation. We could decide to apply
speculation to N2 and select N2 and N4 as a speculative chain.
A node N6 is created for a chk instruction. An exception
edge from N1 to N2 is eliminated, and an exception edge
from N1 to N6 is added to retain the original exception se-
mantics. A data dependence edge from N3 to N6 is added
since the recovery code refers to a variable defined in N3, and
a data dependence edge from N6 to N3 is added since a
variable defined in the recover code is referred to in N3. At
that point, nodes N3 and N6 form a cyclic path.

Condition 2: Do not select any instruction that causes a
side effect in a speculative chain: A NaT bit in the registers of
a speculative chain is propagated if a speculative load instruc-
tion defers an exception. Except for store instructions, no in-
structions will raise a hardware exception even when a NaT
bit is encountered in their source operands. Thus, store in-
structions must be excluded from the speculative chain.

Condition 3: Do not choose any instruction that overrides
another version of the same variable involved in a web: A
web is defined as a maximal union of true dependence chains
that consist of the following two types of links. One type of
the link is the one from the definition operand in Φ or non-Φ
instruction to the use operand in another Φ instruction. The
other type of the link is the one from the definition operand in
Φ or non-Φ instruction to the use operand of another non-Φ
instruction, but this use operand of the non-Φ instruction ter-
minates a web. A web must include one or more Φ instruc-
tions. Any variable that consists of a web will be assigned to
the same name during the translation out of the SSA form.

If the compiler selects an instruction that extends the life-
time of another version of that variable, which will be part of
the live-in set of a recovery code block, up to a chk instruc-

N1

N4

N3

N5

N2

A normal instruction

A S-PEI

A data dependence edge

An exception dependence edge

An order dependence edge

An instruction on
a speculative chain

A H-PEI

N1

N4

N3

N5

N2

N6

Apply speculation
to N2 and select
N4 as a speculation
chain.

chk
instruction

Example 2. An example of making a cyclic path by speculation

tion within a web, then the two live ranges of the variable
interfere with each other at the chk instruction. It requires an
extra copy instruction to avoid the interference between mul-
tiple versions of the variable during the translation out of the
SSA form. Therefore, the compiler should not select any in-
struction that causes this interference. We give an example in
Example 3. To simplify the explanation, we do not specula-
tively move any instructions across S-PEIs in this figure.

In Example 3, S1, S2, S5, and S7 form a web involving the
variable w. When speculation is applied to S3 and S5 (in ital-
ics), w1 must be live at a chk instruction (S6) since w1 will
be accessed in the recovery code. The variables w1, w2, and
w3 are assigned the same name as w during the translation out
of the SSA form. Since w1 is live at S6 and w2 overrides w1
at S5, w1 and w2 interfere at S6. Therefore, S4 (in bold) is
generated to save the value of w1 as t, and t is used in the
recovery code. In this case, S5 should not be chosen as an
instruction in a speculative chain to avoid inserting an extra
copy instruction.

Condition 4: Avoid interference between the destination
registers of speculative instructions: This was already sug-
gested in [6]. A compiler must not move the definitions in the
same web if their live ranges interfere with one another. Nor-
mally, only one path is speculated over a particular branch
based on the execution probability of each path.

5.2 Recovery Code Generation

Here, we describe a method to generate recovery code. The
compiler should minimize negative effects on the main code
since the recovery code is rarely executed when exceptions
have been deferred. To achieve this goal, there are three is-
sues to address: minimization of the live-in registers set, the
generation of recovery code from the speculative chain, and
avoiding constraints when forming bundles. The bundle for-
mation identifies a group of instructions, which should be
executed simultaneously, for instruction scheduling. In this
section, we offer solutions for these issues.

In our framework, we identify the instructions on a specu-
lative chain by traversing the DAG since the recovery code is
not represented explicitly. The instructions on a speculative
chain are marked in the main code. To generate recovery code,
the compiler duplicates the marked instructions in Section 5.1
while converting non-faulting load instructions to faulting
load instructions. The recovery code is generated after the

main code has been generated. The register assignment for the
recovery code is the same as that for the main code. Bundles
within the recovery code can be formed using the information
from the code generation phase of the main code. Therefore,
the compiler can minimize the increase in the code size. The
code generation consists of the following four steps:

Step 1: Generate the prolog and epilog for the recovery
code: In the recovery code, all killed registers except for the
live-in and live-out register sets are written to persistent
memory in a prolog, and the registers are restored from mem-
ory by the epilog. We call this the registers spill set, denoted
as sp. The Algorithm 2 shows an algorithm to determine the
spill set sp.

In Example 4, the compiler made two speculative chains.
One involves I1 and I4, and the other contains I2, I3, and I4.
There is an opportunity to minimize the number of chk in-
structions, but this is beyond the scope of this paper. In Re-
covery Block 2, r2 and r11 are the live-in set, and r12 and r21
are the live-out set. Then, r12, r13, and r21 are the kill set. As
a result, r13 is the spill set to be saved in the prolog and re-
stored in the epilog. Therefore, r13 is free for register alloca-
tion after I4.

Step 2: Generate the recovery code: The compiler dupli-
cates the marked instructions from the corresponding specula-
tive chain between the prolog and the epilog while converting
non-faulting load instructions to faulting load instructions. A
valid value will be written in the destination register since the
faulting load reloads the value without setting a NaT bit in the

S1: add w1 = v1, 1
S2: if (w1 == 0) goto S7
S3: ld y1 = (z0)
S5: add w2 = y1, w1
S7: w3 = Φ(w1, w2)

S1: add w1 = v1, 1
S2: if (w1 == 0) goto S7
S3: ld.s y1 = (z0)
S5: add w2 = y1, w1
S6: chk.s w2, Recovery, z0, w1, w2
S7: w3 = Φ(w1, w2)
..
Recovery:
 ld y1 = (z0)
 add w2 = y1, w1
 goto S7

Before speculation on a SSA form After speculation on a SSA form After translating out of SSA

S1: add w = v, 1
S2: if (w == 0) goto S7
S3: ld.s y = (z)
S4: mov t = w
S5: add w = y, w
S6: chk.s w, Recovery, z, wt, w
S7:
..
Recovery:
 ld y1 = (z)
 add w = y, wt
 goto S7

Example 3. Examples in which a compiler generates extra copy instructions

sc<IN> : set of instructions in the speculative chain
li : set of registers for live-in set
lo : set of registers for live-out set
kl : set of registers for kill set
sp<OUT> : set of registers for spill set
SCOTH : set of instructions in all the speculative
 chains except sc

kl = li = lo = φ
for (s ⊂ instuctions(sc)) {
 for (r ⊂ dst registers(s)) {
 kl ∪= r
 if ((Succ(r) ∩ src operands(sc) ≠ φ) ||
 (Succ(r) ∩ src operands(SCOTH) ≠ φ)) lo ∪= r
 }
 for (r ⊂ src registers(s))
 if (Pred(r) ∩ dst registers(sc) == φ) li ∪= r
}
sp = kl ∩ (li ∪ lo)

Algorithm 2. Calculation of the spill set

recovery code, even if the non-faulting instruction sets the
NaT bit in the destination register in the main code.

In example 2, I9 and I10 are generated from I1 and I4,
while I14, I15, and I16 are generated from I2 to I4.

Step 3: Duplicate instructions within the same bundle of
the corresponding chk instruction: Since VLIW machines
such as the IA-64 processor issue several instructions simul-
taneously, bundle formation is important to extract instruction
parallelism from a program. Therefore, speculation should not
impose any constraints on bundle formation. Since a branch
instruction can specify only the first instruction of a bundle as
a target address, the return address from a recovery code
block is the first instruction of the next bundle. If the recovery
code of the corresponding chk instruction returns to the next
bundle in the main code, the successor instructions for that
chk instruction within the same bundle would be skipped. To
avoid this situation, the successor instructions within the same
bundle are duplicated at the end of the recovery code block.

In the example, we assume that I1, I2, and I3 are included
within a bundle, and I4, I5, and I6 are linked within another
bundle. Recovery1 cannot return to the address of I6 since it
can only return to the addresses of I1, I4, or I7 as the tops of
bundles. Therefore, I6 within the same bundle is duplicated as
I11 at the end of the recovery code.

Step 4: Generate a branch instruction to return to the ad-
dress of the next bundle: The compiler terminates the recov-
ery code with the branch instruction, which goes back to the
address of the next bundle containing a chk instruction.
In the example of Recovery1, the compiler generates a branch
instruction I12 to the address of I7.

6 Experiments

Our experiments were performed using a product version
of the IBM Developers Kit for IA-64, Java Technology Edi-
tion, Version 1.3. We implemented the exception speculation
that we described here in the Just-In-Time Compiler. The
measurements were performed on an IA-64 Itanium processor
[19] with 1GB of RAM.

6.1 Efficiency of Representation

Table 1 shows the space efficiency of the DAG repre-
sentations with and without exception edges. For the case of
the DAG representation without exception edges, explicit
control flow edges are used to represent exception depend-
ence. We ran seven programs from the SPECjvm98 suite [20]
with the size of 100. The 1070 methods were compiled. The
statistics for DAG without exception edges were estimated by
increasing or decreasing nodes and edges that would be re-
quired. A BB node represents a basic block, while a statement
node represents a statement in a basic block.

The second row of the table shows that the DAG with ex-
ception edges drastically reduced the total number of nodes.
The third row shows a BB node with exception edges in-
cludes more than four instructions while a BB node without
exception edges includes nearly one instruction. Thus, it in-
creased the opportunity to apply local (intra-block) optimiza-
tions. We can also apply speculation using only local optimi-
zations, as we described in Section 1. It is important for a
dynamic compiler to avoid applying time-consuming global
optimizations such as trace scheduling or percolation schedul-
ing.

The fourth and fifth rows show that the DAG with excep-
tion edges reduced the total number of edges between BB
nodes while it increased the number of edges between state-
ment nodes in a graph. This reduces the space for the DAG
representation during the compilation. The similar result has
been obtained in other work [21].

6.2 Micro-Benchmarks

We measured the effectiveness of exception speculation us-
ing two micro-benchmarks, described in Table 2. In all these
benchmarks, two-dimensional arrays are frequently accessed
in kernel loops. Figure 3 shows the performance improve-
ments, where the four bars in each benchmark present the
performance improvement relative to our baseline for four
possible combinations of enabling exception speculation (ES)
and loop versioning (LV). Our baseline is to avoid applying

I1: ld r2 = (r1)
I2: ld r12 = (r11)
I3: add r13 = r12, 1
I4: add r21 = r2, r13

I7: mov .., r12
I8: mov .., r21

I1: ld.s r2 = (r1) // bundle 0
I2: ld.s r12 = (r11) // bundle 0
I3: add r13 = r12, 1 // bundle 0
I4: add r21 = r2, r13 // bundle 1
I5: chk.s r2, Recovery1 // bundle 1
I6: chk.s r12, Recovery2 // bundle 1
I7: mov .., r12 // bundle 2
I8: mov .., r21 // bundle 2

Recovery1:
I9: ld r2 = (r1) // copy of I1
I10: add r21 = r2, r13 // copy of I4
I11: chk.s r21, Recovery2 // copy of I6
I12: goto I7

Recovery2:
I13: spill r13
I14: ld r12 = (r11) // copy of I2
I15: add r13 = r12, 1 // copy of I3
I16: add r21 = r2, r13 // copy of I4
I17: fill r13
I18: goto I7

Before speculation After speculation

Example 4. Recovery code generation

Table 1. Comparison of DAG representations
with and without exception edges

 DAG without
exception edges

DAG with excep-
tion edges

Total number of BB nodes 142679 37327
Average number of statement nodes
per BB node

1.23 4.71

Total number of edges between BB
nodes

262791 54669

Total number of edges between
statement nodes

80190 145952

Table 2. Benchmarks characteristics of the micro-
benchmarks

Benchmarks Description

All-pairs Shortest-path Find the shortest path from the start vertex
to each of the other vertices.

Matrix Multiply Multiply two two-dimensional matrices.

exception speculation and loop versioning (denoted as “no ES
and no LV“). Loop versioning [12] is a technique to eliminate
all the exceptions in the nested loop. Within a safe region, the
compiler is free to apply optimizations such as instruction
reordering.

When loop versioning is not performed, exception specula-
tion improves the performance from 1% to 24% (with an av-
erage of 12.8%). It is effective for all benchmarks, since there
are many S-PEIs in these kernel loops, as typical in Java pro-
grams.

When loop versioning is performed, exception speculation
improves the performance from 5% to 25% (with an average
of 14.5%). The improvement by exception speculation is al-
most the same as that without loop versioning. The reason is
simple in that loop versioning eliminates almost all S-PEIs
that may throw Java exceptions in the kernel loops.

Figure 4 shows the static code size increase for each kernel
method relative to that of our baseline (no ES and no LV) for
four possible combinations. The size grew from 32% to 64%
without loop versioning, and the size grew from 32% to 61%
with loop versioning. The largest code growth is observed for
Matrix Multiply with the best performance improvement. The
code growth is mainly due to recovery code, and the critical
path is not affected.

6.3 Java Grande Benchmark Suite

We also measured the effectiveness of exception
speculation using the Java Grande Benchmark Suite [22]. We
choose the kernels of Section II with SizeA. Each benchmark

the kernels of Section II with SizeA. Each benchmark is de-
scribed in Table 3. Figure 5 shows the performance improve-
ment for the optimizations relative to our baseline (no ES and
no LV) for four possible combinations.

When loop versioning is not applied, exception speculation
alters the performance from -1% to 10% (with an average of
1.8%). It is especially effective for SOR and SparseMatmul.

When loop versioning is applied, exception speculation
improves the performance from -2% to 10% (with an average
of 1.7%). It is effective for SOR and SparseMatmul. This is
because the kernel loop of SOR accesses two-dimensional
arrays frequently, and the kernel loop of SparseMatmul has
indirect accesses to the array element. In LUFact, loop ver-
sioning improve the performance by 25% even without
exception speculation.

In Crypt, the performance degrades a little. The reason is
that the check code to guarantee a safe region is executed at
the loop entry, and results in significant overhead. In FFT, the
performance also degrades slightly. The reason is that the
TLB misses cause deferred exceptions, which lead to the exe-
cution of the recovery code. Since NullPointerException and
IndexOutOfBoundsException never occur in these bench-
marks, no non-faulting load instruction with an invalid effec-
tive address will be executed. Figure 6 shows the static code
size increase relative to our baseline (no ES and no LV) for
four possible combinations. The size grew from 0% to 7%
when applying loop versioning. Unlike the micro-benchmarks,
the code growth is not significant.

0.9

1

1.1

1.2

1.3

All-pairs Shortest-path Matrix Multiply

S
pe

ed
 u

p
(h

ig
he

r
ba

rs
 m

ea
ns

 b
et

te
r

No ES and no LV ES and no LV No ES and LV ES and LV

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

All-pairs Shortest-path Matrix Multiply

C
od

e
ex

pa
ns

io
n

(S
ho

rt
er

 b
ar

 m
ea

ns
 b

et
te

r

No ES and no LV ES and no LV No ES and LV ES and LV

Figure 3. Runtime performance measurements Figure 4. Static code size expansion of a kernel method
for the micro-benchmarks for the micro-benchmarks

Table 3. Benchmarks characteristics of the Java Grande
Benchmark Suite

Benchmarks Description

Series Compute the first N Fourier coefficients.

LUFact Solves an N x N linear system using LU factorization.

HeapSort Sorts an array of N integers using a heap sort algorithm.

Crypt Performs IDEA encryption and decryption.

FFT Computes FFT's of complex, double precision data.

SOR Solve an equation by Successive Over Relaxation.

SparseMatmul Multiply two one-dimensional sparse matrices.

Table 4. Benchmarks characteristics of the SPECjvm98
benchmarks

Benchmarks Description

compress LZW compression and decompression.

jess NASA's CLIP expert system.

db Search and modify a database.

javac Source to bytecode compiler.

mpegaudio Decompress audio file.

mtrt Multi-threaded image rendering.

jack Parser generator generating itself.

6.4 SPECjvm98

We measured the effectiveness of exception speculation us-
ing SPECjvm98 with the size of 100. Each benchmark is de-
scribed in Table 4. Figure 7 shows the performance improve-
ment for the optimizations relative to our baseline (no ES and
no LV) for four possible combinations.

When loop versioning is not applied, exception speculation
improves the performance from 0% to 10% (with an average
of 2.4%). It is particularly effective for compress,
mpegaudio, and mtrt, which include many S-PEIs.

When loop versioning is applied, exception speculation
changes the performance from -1% to 12% (with an average
of 2.3%). It is effective for compress, mpegaudio, and mtrt.
For mpegaudio, this is because its kernel loop accesses two-
dimensional arrays frequently. As we described in Section 3.2,
our production compiler aggressively eliminates exception
checks against the references to instance variables and array
elements in the first dimension. Therefore, exception specula-
tion is not effective in our implementation for a program that
accesses one-dimensional array or instance variables fre-

quently. Example 5 shows a part of the kernel loop from
mpegaudio. Since the value of the first dimension of the
array C is loop-variant and a two-dimensional array consists
of linked pointer vectors, no optimization can remove the S-
PEIs for the element accesses of the second dimension of the
array C. As a result, exception speculation effectively elimi-
nates the exception dependence associated with these accesses.
In fact, exception speculation reduces the critical path length
from 31 to 25 cycles for the entire kernel loop. In jess, the
performance degrades a little. The reason is that TLB misses
cause deferred exceptions, which lead to the execution of the
recovery code. Since NullPointerException and IndexOu-
tOfBoundsException never occur in these benchmarks, no
non-faulting load instruction with an invalid effective address
is ever executed.

for (int j = 0; j < n; j++) {
 float B[] = A[i++];
 f += C[j][k+16] * B[0];
}

Example 5. A part of the kernel loop of mpegaudio

Figure 8 shows the static code size increase relative to our

0.9

1

1.1

1.2

Series LUFact HeapSort Crypt FFT SOR SparseMatmul

S
pe

ed
 u

p
(h

ig
he

r
ba

rs
 m

ea
ns

 b
et

te
r

No ES and no LV ES and no LV No ES and LV ES and LV

0.9

1

1.1

Series LUFact HeapSort Crypt FFT SOR SparseMatmul

C
od

e
ex

pa
ns

io
n

(S
ho

rt
er

 b
ar

 m
ea

ns
 b

et
te

No ES and no LV ES and no LV No ES and LV ES and LV

 Figure 5. Runtime performance measurements Figure 6. Static code size expansion
for the Java Grande Benchmark Suite for the Java Grande Benchmark Suite

0.9

1

1.1

1.2

compress jess db javac mpegaudio mtrt jack

S
pe

ed
 u

p
(h

ig
he

r
ba

rs
 m

ea
ns

 b
et

te
r)

No ES and no LV ES and no LV No ES and LV ES and LV

0.9

1

1.1

1.2

compress jess db javac mpegaudio mtrt jack

C
od

e
ex

pa
ns

io
n

(S
ho

rt
er

 b
ar

 m
ea

ns
 b

et
te

r)

No ES and no LV ES and no LV No ES and LV ES and LV

 Figure 7. Runtime performance measurements Figure 8. Static code size expansion
for the SPECjvm98 benchmarks for the SPECjvm98 benchmarks

baseline (no ES and no LV) for four possible combinations.
The size grew from 0% to 10% with the application of loop
versioning. Unlike the micro-benchmarks, the code growth is
not significant. The largest code growth was observed for
mpegaudio along with its significantly better performance
improvement. This indicates that exception speculation is
applied aggressively here.

7 Conclusions

We have presented an exception speculation technique that
shortens the critical path length constrained by exception de-
pendence for Java programs. By using exception dependence
edges and associating the critical path length with each basic
block in the SSA-based DAG representation, speculative
chains are effectively selected to schedule a sequence of the
most profitable instructions across every Java exception check,
without generating any extra copy instructions. Unlike the
previous work [11], our approach does not introduce any con-
ditional branches. Our proposed method for the recovery code
generation does not impose any register pressure on the criti-
cal path nor any restrictions to the final code scheduling
(bundle formation) phase. Our preliminary results on an IA-
64 Itanium processor show that exception speculation im-
proves the performance by up to 25% (with an average of
12.8%) for micro-benchmarks, and up to 10% (with an aver-
age of 1.7%) for Java Grande Benchmark Suite, and up to
12% (with an average of 2.3%) for SPECjvm98. The experi-
ments show that our speculation technique is especially effec-
tive for programs that are computation intensive and access
multiple dimensional arrays frequently.

8 Acknowledgement

We thank the people in Network Computing Platform at
Tokyo Research Laboratory for implementing our JIT com-
piler. We also thank Manish Gupta for his useful feedback on
earlier drafts of this work. We also thank Shannon Jacobs for
his editorial assistance. We appropriate the insightful com-
ments from the anonymous reviewers.

References

[1] S. A. Mahlke, W. Y. Chen, R. A. Bringmann, R. E. Hank, W. W.
Hwu, B. R. Rau, and M. S. Schlansker. Sentinel scheduling: A model for
compiler-controlled speculative execution. ACM Transactions on Com-
puter Systems, 11(4), pp. 376-408, 1993.
[2] B. C. Le. An Out-of-Order Execution Technique for Runtime Bi-
nary Translators, In Proceedings of the International Conference on Ar-
chitectural Support for Programming Language and Operating Systems,
pp.151-158, 1998.
[3] M. D. Smith, M. S. Lam, and M. A. Horowitz. Boosting Beyond
Static Scheduling in a Superscalar Processor. In Proceedings of the 17th
Annual International Symposium on Computer Architecture, pp. 344-
354, 1990.
[4] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter,
R. A. Bringmann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab,
J. G. Holm, and D. M. Lavery. The superblock: An effective technique
for VLIW and Superscalar Compilation. Journal of Supercomputing,
7(1), pp. 229-248, 1993.

[5] D. I. August, B. L. Deitrich, and S. A. Mahlke. Sentinel Schedul-
ing with Recovery Blocks. Computer Science Technical Report CRHC-
95-05, University of Illinois, Urbana, 1995.
[6] R. D. Ju, K. Nomura, U. Mahadevan, and L. We. A Unified Com-
piler Framework for Control and Data Speculation. In Proceedings of the
Conference on Parallel Architectures and Compilation Techniques, pp.
157-168, 2000.
[7] R. Zahir, D. Morris, J. Ross, and D. Hess. OS and Compiler Con-
siderations in the Design of the IA-64 Architecture, In Proceedings of the
International Conference on Architectural Support for Programming
Language and Operating Systems, pp. 212-221, 2000.
[8] D. M. Gallagher and W. Y. Chen and S. A. Mahlke and J. C.
Gyllenhaal and W. W. Hwu. Dynamic memory disambiguation using the
memory conflict buffer. In Proceedings of International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems, pp. 183-193, 1994.
[9] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.
Zadeck. Efficiently Computing Static Single Assignment Form and the
Control Dependence Graph. ACM Transactions on Programming Lan-
guages and Systems, 13(4), pp. 451-490, 1991.
[10] C. Chambers, I. Pechtchanski, V. Sarkar, M. J. Serrano, and H.
Srinivasan. Dependence Analysis for Java, In 12th International Work-
shop on Languages and Compilers for Parallel Computing, pp. 35-52,
1999.
[11] M. Arnold, M. S. Hsiao, U. Kremer, and B. Ryder. Exploring the
interaction between Java's implicitly thrown exceptions and instruction
scheduling. International Journal of Parallel Programming, 29(2), pp.
111-137, 2001.
[12] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue, M. Kawahito,
K. Ishizaki, H. Komatsu, and T. Nakatani. Overview of the IBM Java
Just-in-Time Compiler, IBM Systems Journal, 39(1), pp. 175-193, 2000.
[13] K. Ebcioglu and E. R. Altman. DAISY: Dynamic compilation for
100% architectural compatibility. In Proceedings of the International
Symposium on Computer Architecture, pp. 26-37, 1997.
[14] M. Gupta, J.-D. Choi, and M. Hind. Optimizing Java Programs in
the Presence of Exceptions, In Proceedings of the 14th European Con-
ference on Object-Oriented Programming, pp. 422-446, 2000.
[15] Intel Corp. IA-64 Application Developer’s Architecture Guide,
http://developers.intel.com/design/ia64/downloads/adag.htm.
[16] M. Kawahito, H. Komatsu, and T. Nakatani. Effective Null Pointer
Check Elimination Utilizing Hardware Trap, In Proceedings of the Inter-
national Conference on Architectural Support for Programming Lan-
guage and Operating Systems, pp. 139-149, 2000.
[17] P. B. Gibbons and S. S. Muchnick. Efficient instruction scheduling
for a pipelined architecture. In Proceedings of SIGPLAN ’86 Sympo-
sium on Compiler Construction, pp. 11-16, 1986.
[18] V. C. Sreedhar, R. D. Ju, D. M. Gillies, and V. Santhanam. Trans-
lating Out of Static Single Assignment Form. In Static Analysis Sympo-
sium, LNCS 1694, pp. 194-210, 1999.
[19] Intel Corp. Itanium™ Processor Microarchitecture Reference,
http://developers.intel.com/design/ia64/downloads/245474.htm.
[20] Standard Performance Evaluation Corp. SPEC JVM98 Bench-
marks, available at http://www.spec.org/osg/jvm98/.
[21] J.-D. Choi, D. Grove, M. Hind, and V. Sarker. Efficient and pre-
cise modeling of exceptions for the analysis of Java programs. In ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering, pp. 21-31, 1999.
[22] M. Bull, L. Smith, M. Westhead, D. Henty, and R. Davey. A
methodology for benchmarking Java Grande applications. In ACM 1999
Java Grande Conference, pp. 81-88, 1999.

