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Abstract

Energy conservation without performance degradation is an
important goal for battery-operated computers, such as lap-
tops and hand-held assistants. In this paper we determine
the potential benefits of application-supported device man-
agement for optimizing energy and performance. In partic-
ular, we consider application transformations that increase
device idle times and inform the operating system about the
length of each upcoming period of idleness. We assess the
potential energy and performance benefits of this type of ap-
plication support for a laptop disk. Furthermore, we pro-
pose and evaluate a compiler framework for performing the
transformations automatically for a disk device. Our experi-
mental results demonstrate that unless applications are trans-
formed, they cannot accrue any of the predicted benefits. In
addition, they show that our compiler can produce almost the
same performance and energy results that we obtain by hand-
modifying applications. Overall, we find that the transforma-
tions we propose can reduce disk energy consumption from
55% to 89% with only a small degradation in performance.

1 Introduction

Recent years have seen a substantial increase in the amount
of research directed towards battery-operated computers.
The main goal of this research is to develop hardware and
software that can improve energy efficiency and, as a result,
lengthen battery life.

The most common approach to achieving energy effi-
ciency is to put idle resources or entire devices in low-power
states until they have to be accessed again. The transition to
a lower power state usually occurs after a period of inactiv-
ity (an inactivity threshold), and the transition back to active
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state usually occurs on demand. Unfortunately, the transi-
tions to and from the low-power state can consume signifi-
cant time and energy. Nevertheless, this strategy works well
when there is enough idle time to justify incurring such costs.

Previous studies of device control for energy efficiency
have shown that some workloads do exhibit relatively long
idle times. However, these studies were limited to interac-
tive applications (or their traces), slow microprocessors, or
both. Recent advances in fast, low-power microprocessors
and their use in battery-operated computers are increasing the
number of potential applications for these computers. For
instance, non-interactive applications, such as movie play-
ing, decompression, or encryption, are now commonly run
on laptop computers. For most of these non-interactive ap-
plications, fast processors reduce device idle times, which in
turn reduce the potential for energy savings. Furthermore,
incurring re-activation delays in the critical path of the mi-
croprocessor now represents a more significant overhead (in
processor cycles), as re-activation times are not keeping pace
with microprocessor speed improvements.

Thus, to maximize our ability to conserve energy without
degrading performance under these new circumstances, we
need ways to increase device idle times, eliminate inactiv-
ity thresholds, and start re-activations in advance of device
use. Device idle times can be increased in several ways and at
many levels, such as by energy-aware scheduling or prefetch-
ing in the operating system, by performing loop transforma-
tions during compilation, etc. The set of possibilities for
achieving the other two goals, namely elimination of inac-
tivity thresholds and device pre-activation, is more limited.
In fact, those goals can only be achieved with fairly accu-
rate predictions of future application behavior, which can be
produced consistently with programmer or compiler involve-
ment. For these reasons, we advocate that programmers or
compilers, i.e. applications, should be directly involved in
device control in single-user, battery-operated systems such
as laptops.



To demonstrate the benefits of this involvement, in this pa-
per we evaluate the effect of transforming explicit I/O-based
applications to increase their idle times. These transforma-
tions can be performed by a sophisticated compiler, but can
also be implemented by the programmer after a sample pro-
filing run of the application. For greater benefits, the trans-
formations must involve an approximate notion of the origi-
nal and target idle times. Thus, we also evaluate the effect of
having the application inform the duration of each idle pe-
riod (hereafter referred to as a CPU run-length, or simply
run-length) to the operating system. With this information,
the operating system can apply more effective device con-
trol policies. (For simplicity, we focus on the common lap-
top or hand-held scenario that only one application is ready
to run at a time; other applications, such as editors or Web
browsers, are usually blocked waiting for user input.) In par-
ticular, we study two kernel-level policies, direct deactiva-
tion and pre-activation, that rely on run-length information
to optimize energy and performance.

As a concrete example of the use of our proposed trans-
formations, we apply them in the management of a laptop
disk. Our experiments show that several common laptop ap-
plications do not exhibit long enough run-lengths to allow
for disk energy savings. To evaluate the potential of appli-
cation transformations and application/operating system in-
teraction, we manually transform applications, implement
the policies in the Linux kernel, and collect experimental
energy and performance results. The results demonstrate
that the transformed applications can conserve a significant
amount of disk energy without incurring substantial perfor-
mance degradation. Compared to the unmodified applica-
tions, the transformed applications can achieve disk energy
reductions ranging from 55% to 89% (70% on average) un-
der our most sophisticated energy management policy with
only a small performance degradation.

Encouraged by these results, we implemented a prototype
compiler based on the SUIF2 compiler infrastructure that au-
tomates the manual code transformations, and in addition
performs run-time profiling to determine buffer sizes and
run-lengths. Our preliminary results for the compiler-based
application transformations are as good as those for the hand-
modified applications.

Based upon our hand-optimized and compiler-based ex-
perimental results, we conclude that application-supported
device management can be very useful in terms of energy and
performance.

In summary, we make the following contributions:

• We propose transformations to explicit I/O-based appli-
cations that increase their run-lengths. Another trans-
formation informs the operating system about the up-
coming run-lengths. Our main goal is to evaluate these
transformations in detail.

• We implement and experimentally evaluate our trans-
formations for real applications and a real laptop disk,
as they are applied by the programmer or with com-
piler support. We also consider the effect of operating
system-directed prefetching.

The remainder of this paper is organized as follows. The
next section discusses the related work and highlights the as-
pects that distinguish our contributions. Section 3 describes
the type of application transformation we advocate. Section
4 details the different policies we consider. Section 5 de-
scribes the disk and application workload we consider, and
presents the results of our analyses and experiments. Finally,
section 6 summarizes the conclusions we draw from this re-
search.

2 Related Work

Application support in the control of devices. There
have been several previous proposals for giving applications
greater control of power states [4, 15, 13, 17, 1, 9]. Carla
Ellis [4] articulated the benefits of involving applications in
energy management, but did not study specific techniques or
policies. Lu et al. [15] suggested an architecture for dynamic
energy management that encompassed application control of
devices, but did not evaluate this aspect of the architecture.
In a more recent paper, Lu et al. [13] studied the bene-
fit of allowing applications to specify their device require-
ments with a single operating system call. Microsoft’s On-
Now project [17] suggests that applications should be more
deeply involved, controllingall power state transitions. Flinn
and Satyanarayanan [5] first demonstrated the energy bene-
fits of application adaptation.

Our work differs from these previous approaches in that
we propose a different form of application support: one
in which the application is transformed to increase its run-
lengths and informs the operating system about each up-
coming run-length, after a device access. This strategy al-
lows us to handle short-run-lengthand irregular applications.
Our approach also simplifies programming/compiler con-
struction (with respect to OnNow) without losing any energy
conservation opportunities.

Delaluz et al. [1] and Hom and Kremer [9] are developing
compiler infrastructure for similar approaches to application
support. Delaluz et al. transform array-based benchmarks to
cluster array variables and conserve DRAM energy, whereas
Hom and Kremer transform such benchmarks to cluster page
faults and conserve wireless interface energy. Both groups
implement their energy management policies in the compiler
and use simulation to evaluate their transformations.

In our approach, the compiler or programmer is responsi-
ble for performing enabling transformations to increase the



possible energy savings, but the actual management policies
are implemented in the operating system for two reasons: (1)
the kernel is traditionally responsible for managing all de-
vices; and (2) the kernel can actually reduce any inaccuracies
in the run-length information provided by the application, ac-
cording to previously observed run-lengths or current system
conditions; the compiler does not have access to that infor-
mation. Nevertheless, our work is complementary to theirs
in that we experimentally demonstrate the effect of a different
form of application transformation and determine their effect
under several energy conservation policies.

Direct deactivation and pre-activation. As far as we know,
only recently have application-supported policies for device
deactivation and pre-activation been proposed [1, 9]. Other
works, such as [3], simulate idealized policies that are equiv-
alent to having perfect knowledge of the future and applying
both direct deactivation and pre-activation. Rather than sim-
ulate, we implement and experimentally evaluate direct de-
activation and pre-activation.
Conserving disk energy. Disks have been a frequent focus
of energy conservation research, e.g. [21, 12, 3, 2, 8, 15, 10,
6, 14]. The vast majority of the previous work has been on
history-based, adaptive-threshold policies, such as the one
used in IBM disks. Because our application-supported poli-
cies can use information about the future, they can conserve
more energy and avoid performance degradation more effec-
tively than history-based strategies. Furthermore, in contrast
with previous studies, we focus on non-interactive applica-
tions and application-supported disk control.

3 Application Transformations

As mentioned above, non-interactive applications exhibit di-
minishingopportunities for energy savings and increasing re-
activation overheads as processors become faster. To max-
imize our ability to conserve energy without performance
degradation, we need to be able to increase run-lengths and
inform the operating system about them. We propose that
this can be done by modifying the applications’ source codes.

To make the description of these transformations more
concrete, the following discussion assumes that the transfor-
mations are applied to the control of a disk device. Note how-
ever that the transformations are general and can applied to a
variety of other devices.

3.1 An Example: Control of a Disk

For a disk, the applications should be modified to cluster
disk read operations, so that the processor can process a large
amount of data in between two clusters of accesses to disk. If
the reads are for consecutive parts of the same file, a cluster of
reads can be replaced by a single large read. Disk writes are

usually performed in the background, i.e. not in the critical
path, so they can be performed whenever the disk is active.

Intuitively, one might think that the best approach would
then be to increase run-lengths to the extreme by grouping
all reads into a single cluster. However, one must realize
that increasing run-lengths in this way will correspondingly
increase buffer requirements. Given this direct relationship
between run-length and buffer space, we propose that ap-
plications should be modified to take advantage of as much
buffer space as possible, as long as that does not cause un-
necessary disk activity, i.e. swapping. Unfortunately, this
approach does not work well for all applications. Streaming
applicationsshould have the additional restrictionof prevent-
ing human-perceptible delays of the stream content. There-
fore, a cluster of reads (or large read) should take no longer
than this threshold. Here we assume that the threshold is 300
milliseconds.

To determine the amount of memory that is available to an
application, we propose the creation of a system call. The
kernel can then decide how much memory is available for the
application to consume and inform the application.

The followingexample illustrates the transformations on a
canonical (non-streaming) application based on explicit I/O.
Assume that the original application looks roughly like this:

i = 1;
while i <= N {

read chunk[i] of file;
compute on chunk[i];
i = i + 1;

}

After we transform the application to increase its run-
length:

// ask OS how much memory can be used
available = how_much_memory();
num_chunks = available/sizeof(chunks);
i = 1;
while i <= N {

// cluster read operations
for j = i to min(i+num_chunks, N)

read chunk[j] of file;
// cluster computation
for j = i to min(i+num_chunks, N)

compute on chunk[j];
i = j + 1;

}

A streaming application can be transformed similarly, but
the number of chunks of the file to read (num chunks) should
be min(available/sizeof(chunks),

(disk bandwidth ×
300 millisecs)/sizeof(chunks)). Regardless of the
type of application, the overall effect of this transformation
is that the run-lengths generated by the computation loop are



now num chunks times as long as the original run-lengths.

As a further transformation, the information about the run-
lengths can be passed to the operating system to enable the
policies we consider. The sample code above can then be
changed to include the following system call in between the
read and computation loops:

next_R(appl_specific_func(available));

Note that for regular applications, such as streaming au-
dio and video, the operating system itself could predict run-
lengths based on past history, instead of being explicitly in-
formed by the programmer or the compiler. However, the
approach we advocate is more general; it can handle these
applications, as well as applications that exhibit irregularity.
Our image smoothing application, for instance, smooths all
images under a certain directory. As the images are fairly
small (can be loaded to memory with a single read call) and
of different sizes, each run-length has no relationship to pre-
vious ones. Thus, it would be impossible for the operating
system to predict run-lengths accurately for this application.
In contrast, the compiler or the programmer can approximate
each run-length based on the image sizes, which is what we
do in our experiments.

3.2 Compiler Framework

Restructuring the code as described in the previous section
is a non-trivial task, since it requires an understanding of the
performance characteristics of the target platform, including
its operating system and disk subsystem. This knowledge is
needed to allocate buffers of appropriate size (for streaming
applications) and to approximate run-lengths. In addition,
manual modifications of source code may introduce bugs and
are tedious at best. We have developed a compiler frame-
work that takes the original program with file descriptor an-
notations as input, and performs the discussed transforma-
tions automatically, allowing portability across different tar-
get systems with different disk performance characteristics.

In the current compiler framework, a user may declare a
file descriptor to be streamed or non-streamed. If no
annotation is specified, I/O operations for the file descriptor
will not be modified by the compiler. Our current prototype
implementation is based on the SUIF2 compiler infrastruc-
ture [19] and takes C programs as input. Declarations of the
form

FILE *streamed fd and FILE *non-streamed fd

are supported, which specify the file
descriptor fd as streamed or non-streamed. Extending the
compiler infrastructure to include the keywords streamed
and non-streamed is currently underway. The compiler
propagates file descriptor attributes across procedure bound-
aries, and replaces every original I/O operation of the file de-

scriptor in the program with calls to a corresponding buffered
I/O runtime library. The current runtime library contains ver-
sions of read and lseek calls. The library calls preserve
the semantics of the original I/O operations, and in addition:

• Measure the performance characteristics of the disk
through user-transparent runtime profiling,

• Implement buffered I/O through allocation and manage-
ment of buffers of appropriate sizes, and

• Notify the operating system about the expected idle
times of the disk (run-lengths).

In cases where procedures have file descriptors as for-
mal parameters, different call sites of the procedure may use
streamed and non-streamed actual parameters, mak-
ing a simple replacement of the original file I/O operation
within the procedure body impossible. Our current prototype
compiler introduces an additional parameter for each such
formal file descriptor. The additional parameter keeps track
of the attribute of its corresponding file descriptor. Using the
attribute parameter, code is generated that guards any file I/O
operation of the formal parameter, resulting in the correct I/O
operationselection at runtime. We are currently investigating
the benefits of procedure cloning as an alternative strategy.

The runtime profiling strategy has been designed to be
robust across different disk architectures and prefetching
strategies. It involves profiling the first few iterations of
loops that include read operations to determine averages for
the bandwidth of the disk and the run-lengths. Since the pro-
filing is done during actual program execution time, the re-
sults may be more precise as compared to runtime profilingas
part of a manual translation process, which is typically done
off-line and only once, with the resulting parameters “hard-
coded” into the transformed program. The runtime overhead
of the profiling strategies is negligible and does not affect
the user-perceived application performance. Experimental
results comparing hand-transformed and compiled program
versions are presented in Section 5.3.

Since the source code of the runtime library is available
to the compiler, advanced interprocedural compiler transfor-
mations such as procedure inlining and cloning can enable
further code optimizations. For instance, instead of copy-
ing data from the compiler-inserted buffer into the buffer
specified in an application-level read operation, the compiler
may eliminate the copying by just using a pointer into the
compiler-inserted buffer. The safety of these optimizations
can be checked at compile time. Manually transformed pro-
grams can also take advantage of advanced compiler opti-
mizations.

However, a purely operating system-based, “buffered” I/O
approach would require expensive system calls for each orig-
inal application-level I/O operation. In addition, such an ap-
proach may not work well if the files are accessed with a



large stride, or accessed irregularly. We are currently inves-
tigating compile-time analyses and optimizations to prefetch
“sparse” file accesses into a “dense” buffer, and to determine
a working set of active file blocks that should be buffered for
the non-sequential file accesses.

4 Device Management Policies

We study these transformations in the context of five differ-
ent device control policies: Energy-Oblivious (EO), Fixed-
Thresholds (FT), Direct Deactivation (DD), Pre-Activation
(PA), and Combined DD + PA (CO).

For the purpose of terminology, we define the power states
of a device to start at number 0, the active state, in which the
device is being actively used and consumes the most power.
The next state, state 1, consumes less power than state 0.
In state 1, there is no energy or performance overhead to
use the device. Each of the next (larger or deeper) states
consumes less power than the previous state, but involves
more energy and performance overhead to re-activate. Re-
activations bring the device back to state 1.

Transformations that increase run-lengths have the poten-
tial to increase energy savings, because they change the frac-
tion of run-lengths that fall in the different groups we just de-
fined. Increasing the length of run-lengths increases the frac-
tion of run-lengths in larger numbered groups, with a corre-
sponding decrease in the fraction of run-lengths in smaller
numbered groups.

Energy-Oblivious. The EO control policy keeps the de-
vice at its highest idle power state, i.e. state 1, so that an ac-
cess can be immediately started at any time. Thus, this policy
promotes performance, regardless of energy considerations.

Fixed-Thresholds. The FT control policy recognizes the
need to conserve energy in battery-operated computers. It
determines that a device should be sent to the consecutive
lower-power states after fixed periods of inactivity. We refer
to these fixed periods as the their inactivity thresholds. For
example, the device could be put in state 2 from state 1 af-
ter an inactivity period of 4 seconds (the inactivity threshold
for state 1), and later be sent to state 3 after another 8 sec-
onds (the inactivity threshold for state 2), etc. Thus, after
12 seconds the device would have gone from state 1 to state
3. Given that the FT policy can conserve energy in a fairly
straightforward fashion, we use it as the baseline when eval-
uating the other policies.

Direct-Deactivation. The FT policy is based on the as-
sumption that if the device is not accessed for a certain
amount of time, it is unlikely to be accessed in the near fu-
ture. If we knew the run-lengths a priori, we could save even
more energy by simply putting the device in the desired state
right away. This is the idea behind the DD policy, i.e. use

application-level knowledge to maximize the energy savings.

Pre-Activation. In both the FT and DD policies the time
overhead of bringing the device back from a low-power state
to state 1 is exposed to applications, as the transition is trig-
gered by the device access itself, i.e. on demand. However,
with run-length information from the application, we can try
to hide the re-activation overhead behind useful computa-
tion. This is the idea behind PA, i.e. to allow energy sav-
ings (through FT or DD) while avoiding performance degra-
dation. For maximum energy savings, the pre-activated de-
vice should reach state 1 “just before” it will be accessed.
The specific version of PA that we study uses the FT policy
to save energy. PA should achieve the same performance as
the EO policy, but with a lower energy consumption.

Combined Direct-Deactivation + Pre-Activation. We
can achieve the greatest energy savings without performance
degradation by combining the PA and DD policies. This is
the idea behind the CO policy.

Implementations. We implemented the FT, DD, PA, and
CO policies in the Linux kernel. FT is implemented with a
kernel timer that goes off according to inactivity thresholds.
When the timer goes off, the kernel sends the disk to the next
available lower power mode. DD, PA, and CO were imple-
mented by creating a system call that can be called by appli-
cations to inform the kernel about the run-length that is about
to start. With that information, the kernel can implement DD
by determining the best power state according to a model we
developed in [7] and putting the disk in that state. The ker-
nel can also implement PA by starting a timer to go off when
the disk should be re-activated, again according to our model.
Recall that the PA policy assumes FT for energy conserva-
tion. The kernel implements the CO policy by combining PA
with DD, rather than FT.

5 Experimental Evaluation

This section applies our transformations and policies in the
control of the Fujitsu MHK2060AT laptop disk.

5.1 The Fujitsu Disk

The Fujitsu disk we study is a 6-Gbyte, 4200-rpm drive with
ATA-5 interface. This particular disk only implements four
power states, according to its manual:

0. Active – the disk is performing a read or a write access.
The power consumed at this state varies between 1.9 W
and 3.25 W.

1. Idle – all electronic components are powered on and the
storage medium is ready to be accessed. This state is
entered after the execution of a read or write. This state
consumes 0.92 W.



Parameter Explanation
P s Average power consumed at state s
T s Inactivity threshold for state s
Es

act Average device energy to re-activate from state s

Es,s′

deact Average device energy to transition from state s
to lower power state s′

T s
act Average time to re-activate from state s

Table 1: Main characteristics of the Fujitsu disk.

Parameter Measured Value
P 1 0.92 W
P 2 0.22 W
P 3 0.08 W
T1 (FT) 9.222 secs†
T2 (FT) 16.429 secs†
T1 (PA) 8.712 secs†
T2 (PA) 17.276 secs†
T3 (FT and PA) Not applicable
E1

act 0 J
E2

act 1.4 J
E3

act 3.7 J
E1,2

deact 5.0 J
E1,3

deact 5.0 J
E2,3

deact ∼0.0 J
T1

act 0 ms
T2

act 1.600 secs
T3

act 2.900 secs

Table 2: Characteristics and measured values for the Fu-
jitsu disk. Values marked with “†” were picked so that
(P s · T s) + Es

act = Es,s+1
deact + (P s+1 · T s) + Es+1

act .

2. Standby – the spindle motor is powered off, but the disk
interface can still accept commands. This state con-
sumes 0.22 W.

3. Sleep – the interface becomes inactive and the disk re-
quires a software reset to be re-activated. This state con-
sumes 0.08 W.

However, our experiments with the disk demonstrate that
there are two hidden transitional states. The first occurs be-
fore a transition from active to idle. Right after the end of an
access, the disk moves to the hidden state. There it consumes
1.75 W for at most 1.1 secs, regardless of policy. The second
hidden state occurs when we transition the disk from idle (FT
and PA) or the first hidden state (DD and CO) to standby or
sleep state. Before arriving at the final state, the disk con-
sumes 0.74 W at this hidden state for at most 5 secs. We do
not number these extra states.

Table 1 lists the time and energy characteristics of the
disk. Table 2 lists the value we experimentally measured
for each of these characteristics. The measurements include

Application Input Modified RLs
{s1,s2,s3}

MP3 player 11.9-MByte song {0, 0, 1}
MPEG player 12.75-MByte movie {0, 0.5, 0.5}
Image smoother 30 images, {0, 0, 1}

2.46 MBytes each
MPEG encoder 800 files, {0, 0.5, 0.5}

115 KBytes each
Secure ftp (sftp) 60-MByte file over {0, 0, 1}

10-Mbit Ethernet
GNU zip (gzip -9) 357-MByte file {0.07, 0.33, 0.6}

Table 3: Applications, their inputs, and the grouping
of run-lengths in their modified versions (assuming FT
states). We consider two streaming (top) and four non-
streaming applications (bottom).

the hidden states, obviously. The values marked with “†”
were picked assuming that the disk should stay at a higher
power state only as long as it has consumed the same energy
it would have consumed at the next lower power state, i.e.
(P s ·T s)+Es

act = Es,s+1
deact +(P s+1 ·T s)+Es+1

act . The ratio-
nale for this assumption is similar to the famous competitive
argument about renting or buying skis [11].

5.2 Methodology

We experiment with real non-interactive applications run-
ning on a Linux-based laptop. Unmodified non-interactive
applications usually exhibit very short run-lengths; all of
them so short that the disk can never be put in low-power
state. To achieve greater energy gains, we need applications
with longer run-lengths and that call the kernel informing it
about their approximate run-lengths. To evaluate the full po-
tential of these transformations, we transformed our applica-
tions manually at first.

To determine a reasonable read buffer size for a laptop
with 128 MBytes of memory, we determined the amount of
memory consumed by a “common laptop environment”, with
Linux, the KDE window manager, 1 Web browser window,
1 slide presentation window, 1 emacs window, and 2 xterms.
To this amount, we added 13 MBytes (10% of the memory)
as a minimum kernel-level file cache size. The remaining
memory allowed for 19 MBytes of read buffer space.

The transformed streaming and non-streaming applica-
tions exhibit the run-length distributions listed in the third
column of table 3. The si groups in the table are defined with
respect to the run-lengths delimited by the inactivity thresh-
olds of FT. From left to right, each of the values within the
braces represents the percentage of run-lengths correspond-
ing to states 1, 2, and 3. For example, a distribution of run-
lengths of {0,0,1} means that we measured all run-lengths to
be long enough to take the disk to the sleep state. The run-
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Figure 1: Energy (left) and time (right) for MP3 player.
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Figure 2: Energy (left) and time (right) for MPEG player.

length distributions for the original versions of our applica-
tions are always {1,0,0}.

To understand the effect of operating system prefetch-
ing, we execute experiments with and without this optimiza-
tion. We use the standard prefetching policy of Linux. More
specifically, Linux has a variable-size prefetch buffer per
open file. The buffer grows up to 128 KBytes, if the file is
being read sequentially. It shrinks if reads are not sequen-
tial. Prefetching is done synchronously if, upon a read, the
file pointer is outside of an already prefetched block and the
block being requested is not in memory. Prefetching is done
asynchronously if, upon a read, the file pointer is on an al-
ready prefetched block. In this case, Linux will request the
next window of blocks, up to the 128 KBytes limit.

The disk energy consumed by the applications is moni-
tored by a multimeter directly connected to the disk device.
The multimeter collects instantaneous power measurements
3-4 times per second and sends these measurement to another
computer, which stores them in a log for later use.

5.3 Results

Figures 1 to 6 present the measured disk energy and perfor-
mance results for our applications. Each figure plots two
groups of bars, disk energy (left) and CPU time (right), with
results for all policies. The rightmost bar in each group (la-
beled “UM”) presents the results for the original, unmodified
versions of the applications. The bottom part of this bar rep-
resents the energy/time associated with actual disk accesses.
Next to this bar, we plot the behavior of the unmodified appli-
cation with operating system prefetching (labeled “UM pf”).
The other bars follow this same labeling convention. Note
that for the prefetching executions we do not present disk ac-
cess energy/time because our current low-level instrumenta-

tion is not accurate in the presence overlapped communica-
tion and computation.

All results besides those for unmodified applications as-
sume application transformations. The EO and FT results as-
sume that run-lengths are extended. The DD, PA, and CO re-
sults assume that run-lengths are extended and informed to
the operating system. Note that we do not present prefetch-
ing results for all policies. We will discuss prefetching later.

Energy. We can make several interesting observations
from these figures. Let us start by considering the results
without prefetching. These results demonstrate that the ap-
plication support we propose indeed conserves a significant
amount of energy in all cases. The transformation to increase
run-lengths reduces energy consumption even under EO, an
energy-oblivious policy. When the modified applications are
run under FT, energy consumption is further reduced in most
cases. The exception here is the MPEG player application,
for which two run-lengths are exactly in the range where FT
performs worse than EO, namely between 9 and 18 seconds.
PA conserves either a little more or a little less energy than
FT, as one would expect.

Exploiting run-length information to conserve energy pro-
vides even more gains, as shown by the DD and CO results.
Modified applications under DD and CO can consume as
much as 89% less energy than their unmodified counterparts,
as in the case of the MP3 player. Our worst result is for gzip,
for which the energy savings is 55% (CO). On average, the
disk energy savings we accrue is 70%. The CO policy usu-
ally consumes a little more energy than DD. The main reason
is that run-lengthmispredictions may cause the disk to be idle
longer than necessary under CO. The same problem is not as
severe for PA (percentage-wise) because re-activations under
this policyusually come from a shallower state than in CO for
these applications.
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Figure 3: Energy (left) and time (right) for image
smoother.
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Figure 4: Energy (left) and time (right) for MPEG en-
coder.
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Figure 5: Energy (left) and time (right) for sftp.

0

100

200

300

400

500

600

700

800

U
M

U
M

 p
f

E
O

E
O

 p
f

F
T

F
T

 p
f

P
A

D
D

C
O

0

50

100

150

200

250

300

350

400

450

500

U
M

U
M

 p
f

E
O

E
O

 p
f

F
T

F
T

 p
f

P
A

D
D

C
O

E
n

e
rg

y(
J)

P
e

rf
o

rm
a

n
ce

(s
e

c)

Energy

Time

Total
Disk Access

Figure 6: Energy (left) and time (right) for gzip.

Putting these energy results in perspective, note that the
average power consumed by the disk under UM is between 1
and 2 Watts for all applications. This range is comparable to
that of low-power microprocessors (1-2 Watts) [20] and low-
power LCD displays (2.5-3.5 Watts) [18, 16]. Given that the
display, the microprocessor, and the disk usually consume
most of the energy in a laptop, being able to save an aver-
age 70% of the disk energy is highly beneficial even in terms
of the energy consumed by the system as a whole.

Execution time. Still assuming no prefetching, we ob-
serve that UM and EO exhibit roughly the same performance,
showing that the overhead of extending run-lengths in the
way we propose is negligible.

We also observe that FT and DD usually exhibit the worst
performance, as one would expect. The disk re-activations
are the main cause for the performance degradation under

these policies. Furthermore, the figures show that PA and
CO are effective at limiting performance degradation. Per-
formance under these policies is always within 5% of that un-
der EO, except in the case of gzip for which the performance
degradation is 8%. This discrepancy is a consequence of a
few run-length mispredictions that cause disk re-activations
in the critical path of the computation. This problem can be
alleviated by informing slightly shorter run-lengths than we
predict to the operating system or having the operating sys-
tem itself provide the slack. The amount of slack cannot be
too significant however, to avoid increasing the energy con-
sumption excessively.

Prefetching. In terms of performance, prefetching has a
negligibleeffect. The reason is that, for non-streaming appli-
cations, our transformations operate on a large (19-MByte)
buffer so any additional prefetching the operating system
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Figure 7: Energy (left) and time (right) for compiler ver-
sions of MP3 player.
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Figure 8: Energy (left) and time (right) for compiler ver-
sions of MPEG player.
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Figure 9: Energy (left) and time (right) for compiler ver-
sions of sftp.

can perform is unlikely to make a noticeable difference.
For streaming applications, the performance is mostly deter-
mined by the stream rate which is virtually independent of the
performance of disk accesses. Finally, the disk access time
for all applications corresponds to a small fraction of the to-
tal execution time.

In terms of energy, prefetching does have an effect on
the unmodified version of three applications: MP3 player,
MPEG player, and gzip. These three applications access data
sequentially and in small chunks in their original form. Be-
cause prefetching brings larger chunks into memory, it re-
duces the number of accesses that actually reach the disk,
thereby reducing the energy consumption. Recall that a disk
access consumes significantly more energy than any low-
power state. This effect is not as clearly pronounced for other

applications. The limited implications of prefetching is the
reason why we do not present all prefetching results in our
figures.

Compiler framework. Figures 7, 8, and 9 present a com-
parison of the hand-modified (“hm”) and compiler-based re-
sults for the MP3 and MPEG players (both streaming ap-
plications), and sftp (a non-streaming application). The re-
sults show that the energy consumption and performance of
the hand-modified and compiler-based versions are nearly
identical in the vast majority of cases. Overall, the com-
piler framework is able to accurately measure the disk per-
formance without significant energy or runtime overhead, ef-
fectively manage the read buffers, and accurately predict the
run-lengths.

Summary. Overall, the experimental results demon-
strate that the application transformations we propose are
extremely effective at conserving energy. Operating sys-
tem prefetching is not enough to produce significant en-
ergy gains. Furthermore, when our transformations are ap-
plied, prefetching has no effect on energy or performance.
Our compiler framework achieves results that are as good as
when we hand-modify the applications. Finally, our results
confirm that CO is the best policy in that it conserves signifi-
cant energy without degrading performance noticeably in all
but one case. The main difficulty with CO (and PA) is com-
ing up with accurate run-length predictions.

6 Conclusions

This paper studied the potential benefits of application-
supported device management for optimizing energy and
performance. We proposed simple and general application
transformations that increase device idle times and inform



the operating system about the length of each upcoming pe-
riod of idleness. We also proposed a compiler framework
that can transform applications automatically. Using real im-
plementations and physical measurements, we demonstrated
the gains achievable by performing the proposed transfor-
mations for a laptop disk. Overall, we found that our pro-
posed transformations can achieve disk energy savings rang-
ing from 55% to 89%.

Although this paper considered one particular disk, the
transformations and compiler framework we propose should
be directly applicable to a wide variety of disks. In fact, the
runtime profiling in our compiler was designed to be used
transparently across different disks. The operating system
modifications we performed are also directly applicable to
any disk, provided that the disk parameters are made avail-
able to the kernel.

In the future, we plan to confirm these claims by perform-
ing the same study with a different laptop disk. The actual
energy savings we will accrue depend mostly on the specific
ratio between the power consumed in the various disk states.
For disks that exhibit similar ratios to our Fujitsu disk, such
as the IBM Travelstar, we expect the gains to be comparable
to those described in this paper. We also plan to extend our
compiler framework.
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