
Speculative Sequential Consistency with Little Custom Storage

Chris Gniady and Babak Falsafi
Computer Architecture Laboratory

Carnegie Mellon University
{babak,gniady}@cmu.edu, http://www.ece.cmu.edu/~puma2

Abstract

This paper proposes SC++lite, a sequentially-consis-
tent system that relaxes memory order speculatively to
bridge the performance gap among memory consistency
models. Prior proposals to speculatively relax memory
order require large custom on-chip storage to maintain a
history of speculative processor and memory state while
memory order is relaxed. SC++lite uses the memory hier-
archy to store the speculative history, providing a scalable
path for speculative SC systems across a wide range of
applications and system latencies. We use cycle-accurate
simulation of shared-memory multiprocessors to show that
SC++lite can fully relax memory order while virtually
obviating the need for custom on-chip storage. Moreover,
while demand for storage increases significantly with
larger memory latencies, SC++lite’s ability to relax mem-
ory order remains insensitive to memory latency. An
SC++lite system can improve performance over a base SC
system by 28% with only 2KB of custom storage in a sys-
tem with 16 processors. In contrast, speculative SC sys-
tems with custom storage require 51KB of storage to
improve performance by 31% over a base SC system.

1 Introduction
Sequential Consistency (SC) is the most intuitive pro-

gramming interface for shared-memory multiprocessors. A
system implementing SC appears to execute memory oper-
ations one at a time and in program order [8]. A program
written for an SC system requires and relies on a specified
memory behavior to execute correctly. Implementing
memory accesses according to the SC model constraints,
however, would adversely impact performance because
memory accesses in shared-memory multiprocessors often
incur prohibitively long latencies (tens of times longer than
in uniprocessor systems). Researchers and vendors have
alternatively relied on relaxed memory consistency models
that augment the shared-address space programming inter-
face with directives enabling software to inform hardware
when memory ordering is necessary [1]. By otherwise
allowing hardware to relax and overlap multiple memory
accesses, systems implementing relaxed consistency mod-
els achieve high performance.

Recent research indicates that through hardware support
for speculative execution, an SC-compliant system,
referred to as SC++, can speculatively relax memory order
to achieve the performance of a Release Consistent (RC)
system, the consistency model previously enabling the
highest performance [6]. The intuition behind this result is
that an SC system must only appear to execute memory
accesses in order. SC hardware on one processor can relax

memory order from that processor as long as other proces-
sors do not observe the relaxed order [3,6,7,10]. Much as in
speculative instruction execution in modern processors, an
SC++ system requires to buffer the history of processor and
memory state while speculatively relaxing memory order.
Using this history, the hardware must roll back to an SC-
compliant state if one processor attempts to access memory
that has been accessed out-of-program-order by another.

While the results in [6] serve as a proof of concept that
SC systems can achieve the performance of RC systems,
SC++ requires a custom on-chip queue (to store the proces-
sor/memory state history) proportional in size to the maxi-
mum memory access latency incurred in the system.
Unfortunately, memory latencies drastically vary within
and across applications, resulting in infrequent but large
bursts of history, and requiring a large custom queue that is
mostly underutilized. Moreover, memory latencies also
largely vary across systems depending on the memory sub-
system and interconnect speeds, the system size, and the
contention induced due to the workload. Because multipro-
cessor servers are typically built using commodity micro-
processors, providing the right size custom queue to satisfy
the requirements of a wide spectrum of applications and
systems would be prohibitively difficult.

This paper proposes SC++lite, a speculative SC system
that virtually eliminates the custom storage needed to sup-
port SC++. SC++lite spills the processor/memory history
information generated by SC++ into each processor’s local
memory hierarchy, offering a scalable storage across a
wide spectrum of applications, system sizes and latencies.
We use cycle-accurate simulation of distributed shared-
memory (DSM) multiprocessors running scientific and
engineering applications to compare SC++lite’s perfor-
mance and storage requirements against SC++’s.

The contributions of this paper are:
• Detailed history characterization: We present a

detailed characterization of SC++ history information
and corroborate that: (1) queue requirements vary
between 16 to 8192 entries for applications and sys-
tems we studied, and (2) the history information is
quite bursty, on average leaving the queue empty 85%
of the application execution time.

• Speculative SC with little custom storage: Our
results indicate that SC++lite on average performs 28%
better than a base SC system with only 2KB of storage.
In contrast, SC++ requires 51KB to achieve a 31%
average speedup over a base SC system. Moreover,
SC++lite’s performance relative to SC++ remains

unchanged with a four times increase in memory laten-
cies, while SC++’s storage requirements double to
101KB.

• Sensitivity to L1/L2 bandwidth & L2 size: We show
that on average there is little interference with an appli-
cation’s L2 footprint and processor’s L1/L2 traffic
even when using small L1 caches due to the bursty
nature of history. Applications with high L2 bandwidth
requirements benefit from an additional L2 port in
SC++lite.
The rest of the paper is organized as follows. In

Section 2, we describe the current high-performance SC
systems. In Section 3, we present a design for SC++lite. In
Section 4 we present the experimental methodology. In
Section 5, we present the results. Finally, we conclude the
paper in Section 6.

2 Background: High-Performance SC
Sequential consistency (SC) provides the most intuitive

programming interface by requiring that all memory opera-
tions appear to execute in program order and atomically
[8]. In conventional SC implementations, the processor
would faithfully implement SC’s ordering constraints, per-
forming memory operations atomically and in program
order one memory operation at a time, blocking on cache
misses. Such a memory system would preclude non-block-
ing caches and overlapping accesses among multiple mem-
ory operations.

Figure 1 illustrates an example of a memory bottleneck
in an SC system. The figure illustrates instruction flow and
ordering of memory accesses in an out-of-order processor
pipeline (e.g., MIPS R10000 [12]). The figure also illus-
trates the common case of a program segment in which
memory accesses to distinct addresses are independent, and
do not require program ordering. In the example shown,
while all memory accesses are independent and the cache
blocks containing address B are present, a naive SC system
would wait for the store to address A (waiting for either a
missing cache block or a write permission to a read-only
cache block) to complete, before executing the load to
address B and its corresponding computation. Unfortu-
nately, store latency in a DSM is typically hundreds of pro-
cessor cycles because each remote access includes multiple
network transactions and may require invalidating several
sharers of a cache block. Therefore, the store to address A
in this example potentially blocks the flow of instructions
for hundreds of processor cycles.

Modern SC systems implement a spectrum of optimiza-
tions to reduce the negative impact of a pending store on
performance. Early acknowledgment of invalidation mes-
sages (e.g., in AlphaServer GS320 [5]) helps partially hide
the store latency in systems with ordered network mes-
sages. Non-blocking caches allow for overlapping multiple
fetch operations (including write permission for stores) in
arbitrary order into L1 [3] while satisfying the SC con-
straints by performing L1 accesses atomically and in pro-
gram order. Store buffering [4] allows pending stores and
subsequent computation up to a load instruction to retire
from the reorder buffer. Such optimizations, however, only

partially reduce the exposed store latency and can not elim-
inate the performance gap between SC and relaxed mem-
ory systems such as Release Consistency (RC) [6,10].

A key technique (e.g., adopted by MIPS R10000) to fur-
ther hide a pending store latency in an out-of-order proces-
sor core is speculative load execution [3]. In our example,
the processor using speculative load execution would allow
for the load to address B to hit in the memory hierarchy, and
the corresponding computation to complete while a store to
address A is pending. Relaxing the memory order specula-
tively does not violate SC’s constraints as long as no other
processor in the system observes the reordering — i.e., no
other processor modifies the speculatively accessed data.
To guarantee SC semantics, all requests for replacement or
invalidation (from other processors) of cache blocks that
are speculatively accessed roll execution back to the
offending instruction. Unfortunately, the limited size of the
reorder buffer prevents the system from realizing the full
potential of relaxing memory order [6,10]. The reorder
buffer is primarily designed to tolerate branch resolution
latency which is in the order of tens of processor cycles and
can not tolerate DSM store latencies that are one or more
orders of magnitude larger.

2.1 Speculative SC with RC Performance
In a recent paper Gniady, et al, [6] identified the require-

ments for an SC system to fully achieve the performance of
an RC system to be: (1) allowing arbitrary re-ordering of
(load/store) memory accesses to distinct memory locations,
(2) providing sufficient buffering to maintain a history of
all instructions executed while an in-program-order store is
pending, (3) providing fast mechanisms to look up remote
processor requests for speculatively-accessed memory
blocks and detect potential model violation, and (4) exhib-
iting infrequent rollbacks in workloads.

Gniady, et al. [6] also proposed a speculative SC system,
SC++, that satisfies the above requirements. Figure 2
depicts how SC++ speculatively relaxes memory order.
Upon a pending store, SC++ speculatively retires instruc-
tions and records the modified processor and memory state
in a speculative history queue (implemented much like a
history buffer [11]). In the example shown, SC++ retires

st
 A

ld
 B

st
 B

FIGURE 1. Example execution in SC.

st A
ld B
alu
st B

remote miss
hit

hit

ld B

alu

st B

alu

re
or

de
r b

uf
fe

r

L1

st A pending

in
st

ru
ct

io
n

re
tir

em
en

t

alu

Instruction Stream Out-of-order Memory Accesses

load/store queue

hit

alu
alu
ld C
st D remote miss

ld C not issued

ld E
alu
alu

 invalidation/
remote miss replacement

the instructions up to the missing load to address E and
stores them in the history queue.

Upon acknowledgment for the completion of the first
in-program-order pending store, all entries up to the next
pending store on the list are discarded; an acknowledgment
indicates that the memory accesses maintained in the his-
tory while the store was pending were not observed by
other processors and the SC constraints are satisfied. To
allow for locating the portion of the history to be discarded,
each load/store queue entry for a pending store also
includes a pointer to the location of the instruction in the
speculative history queue. The pointer also enables locat-
ing the entry within the queue to record the old memory
value corresponding to the store address when a cache
block for a missing store arrives. In the example shown,
when the acknowledgment for the store to address A
arrives, all entries up to the store to address D are dis-
carded. An acknowledgment for a later in-program-order
pending store (e.g., the store to address D) while an earlier
store (e.g., the store to address A) is pending simply
removes the corresponding entry from the load/store queue
but does not discard any history.

A block lookup table provides a quick mechanism to
verify speculation. The lookup table maintains a list of
cache blocks that are speculatively accessed by instructions
in the queue. In our example in the figure, the table keeps
track of all speculatively-accessed blocks at addresses B, C,
and D while the store to A is pending. A hit in the lookup
table upon an invalidation/replacement request from L2
indicates a potential for violating SC semantics and triggers
a rollback to guarantee SC’s ordering constraints. Upon
rollback, SC++ locates the earliest instruction accessing
the block in the queue, and rolls back execution to this
offending instruction. To guarantee forward progress, exe-
cution restarts after all pending stores are acknowledged
and the queue and table are empty.

Each lookup table entry also keeps a pointer to the last
(in-program-order) instruction accessing the block. The
pointer helps clear the table entries for blocks without any
corresponding instructions in the history queue. Upon dis-
carding entries in the history queue, all table entries point-
ing to the discarded history entries are also cleared,

indicating that speculation for the corresponding cache
block addresses has been verified. In our example, the com-
pletion of the store to address A results in discarding the
history entries corresponding to addresses B C, and D and
clearing the corresponding table entries.

Gniady, et al. [6] showed that SC++ performs as well as
an RC system for well-synchronized and scalable parallel
programs. However, an SC++ system may require a pro-
hibitively large history queue depending on the system
size, memory and interconnect speeds, and application
memory access characteristics. In this paper, we show that
to reach within 2% of its best performance, an SC++ sys-
tem with 16 processors must incorporate queues with up to
51KB of storage per processor for the applications and
interconnect speeds we studied. We also show that the
speculative history is quite bursty, leaving the queue empty
for over 65% of processor cycles in all applications we
studied. The variation in history size precludes selecting a
custom queue size that fits the demands of a large spectrum
of applications and systems.

3 SC++Lite: SC++ with Minimal Storage
This paper proposes SC++lite, a speculative implemen-

tation of SC that spills the speculative history into the
memory hierarchy. The key advantage of SC++lite is that
the history can grow as large as the memory hierarchy can
accommodate. SC++lite offers a scalable path for specula-
tion because larger systems with longer latencies also
incorporate larger caches that increase the capacity for
speculative history. Moreover, SC++lite provides specula-
tion with minimal impact on either an application’s foot-
print in the memory hierarchy or bandwidth into the
caches, because the history is typically bursty and accumu-
lates infrequently [6]. Finally, SC++lite allocates history
storage dynamically (through the caches), eliminating the
need for large underutilized custom storage.

Figure 3 depicts the anatomy of SC++lite. SC++lite
maintains the speculative history in the memory hierarchy.
The queue is allocated in main memory and assigned physi-
cal addresses at boot time. A Speculative Block Buffer
(SBB) accumulates the instructions retiring from the reor-
der buffer and stores them as cache blocks in L2. The num-

FIGURE 2. Example execution in SC++.

speculative history queue

st
 D

block lookup
table

 ld
 Bal
u

st
 B

ld
 C al
u

al
u

D C B

ld E

alu

alu

.....

re
or

de
r b

uf
fe

r

L1

 pending

in
st

ru
ct

io
n

re
tir

em
en

t

.....

load/store queue

 invalidation/
 replacement

st
 A

ld
 B

st
 B

st
 A

ld
 B

st
 B

FIGURE 3. Example execution in SC++lite.

speculative block buffer

st
 D

block lookup

 ld
 C al
u

D C B

ld E

alu

alu

.....

reorder buffer

L1

 pending

in
st

ru
ct

io
n

re
tir

em
en

t

.....

load/store

 invalidation/replacement

L2
17 16 13

cache block

st
 B al
u

ld
 B

history in L2

base register

tail register

1017

queue table

al
u

ber of entries in SBB is proportional to the pipeline’s issue
width. A tail register indicates the location of the queue’s
tail in physical memory. While memory locations of queue
entries can be recorded as full physical addresses, in prac-
tice the queue will only at most occupy a small fraction of
the main memory. To reduce the storage overhead for
queue pointers (i.e., the tail pointer, and pointers from the
load/store queue and the lookup table), all pointers only
record a number of the low order address bits. A base regis-
ter records the high order address bits and is concatenated
to all queue pointers to form a full physical address.

As in SC++, SC++lite uses the lookup table to quickly
look up speculatively-accessed blocks and detect a poten-
tial ordering violation. Much as the history queue, the
lookup table size requirements grow with system size and
workload. However, because of the high degree of locality
in cache block addresses and the small size of lookup table
entries, a lookup table with 256 entries (~1.3KB) sufficed
for all application and system sizes we studied. Alterna-
tively, a scalable lookup table implementation could use
state bits in the cache hierarchy to eliminate the auxiliary
table. In this paper, however, we focus on eliminating the
custom history queue which accounts for the substantial
storage overhead in speculative SC systems. In the rest of
this section, we describe SC++lite’s queue insertion, dele-
tion, lookup, and rollback operations. We also present L2
optimizations that help enhance performance in SC++lite.

3.1 Spilling /Discarding History
SBB behaves like a miniature version of the history

queue as long as the accumulated history fits in it. Upon
packing a complete cache block, the SC++lite logic queues
a request for an L2 port (see Section 3.3). Upon receiving a
free port, SBB ships the packed history for storage into L2,
and shifts the contents of the buffer forward. The logic
updates the queue’s tail address upon insertion. The history
stored in L2 can spill all the way down to the lowest level of
the memory hierarchy.

As in SC++, an acknowledgment for the first in-pro-
gram-order pending store requires discarding of the corre-
sponding history. Discarding history requires updating the
queue’s head address and the lookup table. As in SC++,
SC++lite records the position of every pending store in the
load/store queue. Unlike SC++, the recorded locations are
physical addresses in memory. Upon acknowledgment of
the first in-program-order pending store, the corresponding
entry is removed from the load/store queue and the next
pending store entry in the load/store queue points to the
head of the history queue. It is also necessary to identify the
cache blocks containing the discarded history in the mem-
ory hierarchy. Section 3.3 discusses the necessary L2
mechanisms to remove these blocks.

Similarly, the lookup table records the position in mem-
ory of the last instruction that has speculatively accessed a
given cache block. Upon updating the queue’s head
address, all lookup table entries with locations outside the
new queue address range are cleared. In the example
shown, the store to address A points to the physical address

10 in memory. Upon acknowledgment of the store, all his-
tory up to the store to address D is discarded and the
queue’s head address in memory becomes 17. Similarly,
the lookup table entries corresponding to blocks B, C, and
D are cleared because the history corresponding to the last
instruction accessing them is discarded.

3.2 Misspeculation & Rollback
Gniady, et al., [6] showed that in well-synchronized and

scalable applications, misspeculations are extremely infre-
quent. The intuition behind such an observation is that a
misspeculation only happens as a result of a true data race
among processors on a specific address. In well-synchro-
nized applications, data races typically only occur on syn-
chronization addresses (e.g., a lock guarding entry into a
critical section) which account for a small fraction of all
memory accesses. Moreover, frequent data races on syn-
chronization addresses result in high contention for critical
sections and are not characteristics of scalable parallel
applications. As such, while a speculative SC system must
implement rollback correctly, rollback speed and efficiency
is not a key design concern and does not significantly
impact overall system performance.

As in SC++, when a replacement/invalidation message
probes and hits in the lookup table, there is a potential for
violation of SC’s ordering semantics and the system must
roll processor/memory state back to the offending instruc-
tion (i.e., the earliest in-program-order speculative instruc-
tion accessing the block). Rollbacks in SC++lite are
potentially much slower than those in SC++ because the
history must be retrieved from the memory hierarchy as
compared to a custom hardware queue in SC++. Our results
indicate that because rollbacks are very infrequent,
SC++lite can achieve SC++’s performance even with a
higher rollback latency and overhead.

3.3 L2 Optimizations
SC++lite can benefit from a few optimizations in L2.

Upon store acknowledgment, invalidating the cache blocks
containing the discarded history would be prohibitively
expensive and would require multiple probes to the cache
hierarchy. Because the head and tail pointers can always
distinguish the valid history entries upon rollback, it is pos-
sible to leave the discarded history as valid/dirty cache
blocks in the cache hierarchy. However, these blocks may
generate unnecessary writeback traffic from L2 if replaced
by the application’s L2 footprint. Our results indicate that
speculative history is quite bursty resulting in an insignifi-
cant probability of conflict in L2 with an application’s foot-
print. Nevertheless, to entirely eliminate inadvertent L2
writeback of discarded history, we propose that the L2 con-
troller check the queue head and tail pointers prior to writ-
ing back cache blocks.

L2 treats SBB write requests as L1 writebacks with the
following exception. It is assumed that L2 does not main-
tain inclusion with respect to queue addresses so that write
requests from SBB always write allocate and store the
entire block as provided by SBB. As in L1 writebacks, an

SBB request in L2 may generate an L2 writeback of a dirty
block to lower levels. Upon an SBB write request, L2
writebacks of history blocks interfering with the SBB
request will either proceed as is or will be optimized away
by the L2 controller optimization discussed above.

The key to correct speculation in speculative SC sys-
tems is to hold on to all speculatively-accessed data in the
memory hierarchy until speculation is verified [6]. An
attempt to replace a speculatively-accessed block (due to a
conflict with another block) would result in a rollback.
Therefore, in speculative SC systems, it would be desirable
to avoid selecting speculatively-accessed blocks as candi-
dates for replacement in a set-associative L2 cache. Unfor-
tunately, conventional (e.g., LRU) replacement policies do
not take into account the high rollback overheads in specu-
lative SC systems and may offset the gains from specula-
tion when there is high contention in L2. Moreover, spilling
speculative history into L2 may increase the contention in
the cache further increasing the probability for rollback. To
minimize the frequency of rollbacks due to contention in
L2, the LRU mechanisms check the lookup table to identify
blocks that are speculatively accessed prior to selecting a
candidate for replacement. Speculatively-accessed blocks
are selected for replacement only when all the blocks in a
given set are speculatively-accessed blocks.

Finally, SC++lite allows speculative history to be writ-
ten back to lower levels of the memory hierarchy, and
therefore rollbacks may require retrieving history from
arbitrary memory levels. However, the history information
during rollback is read-only, can be discarded immediately,
and does not require allocation in higher cache levels. In
SC++lite, speculative history only travels up the hierarchy
upon rollback. Therefore, we propose a modification to the
cache controllers in the memory hierarchy to prevent allo-
cation of history blocks upon a fetch based on the physical
address range of the queue (assigned at boot time).

4 Experimental Methodology
We use RSIM [9], a state-of-the-art DSM simulator to

compare the speculative SC systems. We simulate a 16-
node DSM with every node including a MIPS R10000 like
processor [12] with a local memory hierarchy intercon-
nected by a high-bandwidth/low-latency 2-D mesh. The
memory controller on each node implements a 3-hop full-

map directory cache coherence protocol [10]. Table 1
shows the base system parameters used throughout the
experiments unless specified otherwise. The L2 local fill
latency corresponds to the minimum cache fill latency from
local memory on every node. The L2 remote fill latency is
the average of the minimum cache fill latencies for one
node from all remote nodes. The L2 cache configuration
and bandwidth correspond to those in Pentium 4 at 2.0 GHz
[2]. All systems implement MIPS R10000’s SC optimiza-
tions including multiple (non-blocking) pending fetches for
cache misses, store buffering, and speculative load execu-
tion.

Table 2shows the nine shared-memory applications that
we use in this study. Appbt is a shared-memory implemen-
tation of the NAS benchmark. Em3d is a shared-memory
implementation of the Split-C benchmark. Barnes, fft,
radix, water spatial and nsquared are from the SPLASH-2
benchmark suite. Unstructured is a shared-memory imple-
mentation of a fluid dynamics computation using an
unstructured mesh. Tomcatv is a shared-memory imple-
mentation of the SPEC benchmark.

Table 2 also shows the base RC and SC++ speedups
over SC. The results show that RC improves performance
over an optimized SC implementation in a base system
with aggressive interconnect latencies on average by 30%.
SC++ fully benefits from speculatively relaxing memory
order and on average performs 31% better than SC. SC++
actually outperforms RC in water-ns because the RC sys-
tem conservatively enforces memory order at synchroniza-
tion points even though processors rarely race for critical
sections in these applications. SC++ always relaxes order
for all memory accesses in these applications even at syn-
chronization points, improving performance over RC.

5 Results
In this section, we will first characterize history in spec-

ulative SC systems and show that speculative history size
varies largely across applications and system latencies and
is bursty. Next, we show that our proposed SC++lite sys-
tem performs as well as an SC++ system while requiring an
order of magnitude less custom storage. Next, we show that
SBB causes, on average, little to no interference with L1/

CPU
reorder buffer
Load/store queue

1GHz, 8-issue per cycle
128 insts.
128 insts.

L1 cache
L2 cache

32KB, direct-mapped
512KB, 8-way,
pipelined, 64 GB/s

L1 fill latency
L2 local fill latency
L2 remote fill latency
Cache line size

10 cycles
100 cycles
200 cycles
64 bytes

TABLE 1. System configuration.

Application Input Parameters
RC/
SC

SC++
/SC

appbt
barnes
em3d
fft
radix
tomcatv
unstructured
water-ns
water-sp

12x12x12 cubes, 40 iter.
4K particles
16K nodes, 15% remote
64K points
512K keys
128x128, 50 iter.
mesh 2K
343 molecules
343 molecules

1.39
1.10
1.23
1.14
1.79
1.14
1.50
1.21
1.18

1.33
1.12
1.24
1.14
1.80
1.13
1.50
1.33
1.18

Average 1.30 1.31

TABLE 2. Applications, inputs, and speedups.

L2 traffic allowing SC++lite to efficiently exploit the mem-
ory hierarchy as storage for history. Finally, we show that
SC++lite significantly improves performance in all appli-
cations even under a high contention in L2.

5.1 History Characteristics
Figure 4 shows the impact of fixing the history queue

size on SC++’s performance. The figure plots performance
under SC++ with a finite queue size as a fraction of perfor-
mance under an ideal SC++ implementation with an infi-
nite queue. The figure indicates that there is a large
variability in demand for queue size, ranging from an appli-
cation that performs well with 16 queue entries (i.e., water-
sp) to one (i.e., radix) that requires 8192 queue entries to
reach maximum performance. The applications need about
4096 queue entries to reach, on average, the maximum per-
formance. These results indicate a single queue size may
not suffice to accommodate a wide spectrum of applica-
tions.

The required queue size for each application depends on
the amount of exposed store latency in the processor pipe-
line. Water-sp primarily exhibits L2 store hits, and there-
fore generates little speculative history. In radix, however,
loads and stores to remote memory are clustered respec-
tively, and therefore there is little load latency or computa-

tion overlapping the store latencies. As such, much of the
store latencies to remote memory are exposed.

Figure 5 show the history queue utilization and Table 3
depicts the fraction of the execution time when the queue is
empty. The table indicates that speculative history is quite
bursty and, on average, 85% of the time the queue is empty.
Em3d, radix and water-ns utilize the queue the most
because there is a significant number of stores with
exposed latencies in these applications. Tomcatv, and bar-
nes use the queue infrequently. However, when a store is
pending, there are large bursts of history falling within
2048 to 4096 entries to overlap the store latency. A
dynamic allocation approach will be able to allocate
resources only when needed, resulting in a better utilization
of storage. Moreover, these results indicate the potential for
storing the history in the memory hierarchy with little inter-
ference.

The distribution of generated history size also largely
varies among applications. Figure 5 illustrates the cumula-
tive distribution of history sizes when the queue is used.
The history size is a function of both application and sys-
tem characteristics. The key application characteristics that
affects history size is the amount of a pending store latency
overlapped after the store retires from the reorder buffer.
Because a fetch for a store can be initiated as soon as the
store enters the reorder buffer (using non-blocking caches),
a fraction of the store latency can be overlapped before the

50%

60%

70%

80%

90%

100%

16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

Number of Entries

F
ra

ct
io

n
 o

f
B

es
t

P
er

fo
rm

an
ce

appbt
barnes
em3d
fft
radix
tomcatv
unstruct.
water-ns
water-sp
Average

FIGURE 4. Sensitivity to queue size.
This figure plots the performance of SC++ given finite queue
sizes as a fraction of SC++’s best performance given an infinite
queue.

0%

20%

40%

60%

80%

100%

16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

History Size

C
u

m
u

la
ti

ve
 D

is
tr

ib
u

ti
o

n

FIGURE 5. Queue utilization.
This figure plots the cumulative distribution of accumulated spec-
ulative history.

Application appbt barnes em3d fft radix tomcatv unstructured water-ns water-sp Avg.

Fraction of
execution time 85% 95% 68% 83% 73% 97% 77% 74% 99% 85

TABLE 3. Fraction of execution time without any history.

store instruction leaves the reorder buffer. The extent to
which the store latency, within the reorder buffer, can be
overlapped depends primarily on any pending loads (miss-
ing in the cache) appearing prior to the store instruction in
program order. Once a pending store retires from the reor-
der buffer, speculative history accumulates until a pending
load reaches the top of the reorder buffer. In summary, the
history size is a function of the distance in the program
between a pending store and a prior or later pending load.

The main system characteristics are the pipeline retire-
ment rate and the incurred memory latencies in the system.
Therefore, if the application has a pending store and the
pipeline is able to retire at a full rate, the resulting number
of entries in the history will be the store latency multiplied
by the retirement rate. This basic idea can be applied to
classify the behavior of applications in Figure 5. To the first
order of approximation, the knees in queue utilization
around 64 to 128 entries are due to the L1 fill latencies, and
the knees around 2048 entries are due to the L2 remote fill
latencies that are affected by communication patterns and
queuing. In case of unstructured, history size falls in the
range of 128 to 512 entries that does not directly corre-
spond to any system characteristics and shows us clearly
the amount of remote store latencies that were partially
overlapped by the subsequent or preceding loads. Barnes,
tomcatv, and water-ns are able to overlap the L1 fill laten-
cies resulting only in history generated due to remote store
misses.

Figure 6 and Figure 7 illustrate the impact of longer L2
remote fill latencies on the performance sensitivity to
queue size. Quadrupling the remote fill latency results in
approximately doubling of the execution time in the appli-
cations. Therefore, we can expect the queue size require-

ments to double in order to overlap the longer latencies and
match the performance. In Figure 7, we see a right shift
showing doubling in average queue size requirements to
match the same performance range as compared to the base
system. The latter results in an average queue size require-
ment of 8192 entries. In the interest of space, we omit the
cumulative distribution graph of queue utilization for the
larger remote fill latencies. The graphs, however, follow
the shape of those in Figure 5. Not surprisingly, the L1 fill
latency region remains unaffected. However, the longer L2
remote fill latency results in a right shift of utilization knees
in the remote latency range. We also include the average for
16x latency network in Figure 7, but we see that the history
requirements do not grow significantly since there is a limit
to the amount of exposed store latency and it is dictated by
a application characteristics.

5.2 SC++Lite Performance
Figure 8 compares the performance of SC++lite against

SC++. The graph plots speedups with respect to our base
SC system (Section 4). We compare the performance and
storage requirements of an SC++ system with 4096 custom
queue entries, because most of our applications achieve
their maximum performance given this custom queue size
(Figure 4). SC++lite numbers assume a 32-entry SBB. The
graphs indicate that SC++lite’s performance matches
closely the performance of SC++. On average, SC++
improves performance over SC by 31%, while SC++lite
improves performance by 28% with little custom storage.

Figure 9 compares the performance of SC++lite and
SC++ with the quadrupled L2 remote fill latency. The
SC++ numbers assume a 8192-entry custom queue. On
average, SC++ achieves a speedup of 37% over SC, while

50%

60%

70%

80%

90%

100%

16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

Number of Entries

F
ra

ct
io

n
 o

f
B

es
t

P
er

fo
rm

an
ce

appbt
barnes
em3d
fft
radix
tomcatv
unstruct.
water-ns
water-sp
Average

FIGURE 6. Queue size for 4x remote fill latency.
This figure plots the performance of SC++ given finite queue
sizes as a fraction of SC++’s best performance given an infinite
queue for systems with 4x L2 fill latencies.

70%

80%

90%

100%

16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

Number of Entries

F
ra

ct
io

n
 o

f
B

es
t

P
er

fo
rm

an
ce

Base
4x remote fill
16x remote fill

FIGURE 7. Sensitivity to remote fill latency.
This figure plots performance of SC++ with finite queue sizes as
a fraction of performance with an infinite queue for systems with
base, 4x, and 16x L2 remote fill latencies.

SC++lite is able to achieve a 35% speedup over SC with no
changes to its base hardware configuration. The key factor
contributing to the performance gap, between SC++lite and
SC++, is limited L2 bandwidth. The gap can be eliminated
by providing an additional L2 port, which we will study in
Section 5.4.

5.3 History Storage Requirements
Table 4 compares the storage requirements for SC++

and SC++lite. The extra storage required in speculative SC
systems comes from three sources: the history queue (in
case of SC++) or the SBB (in case of SC++lite), the lookup
table, and the pointers to the history queue embedded in the
load/store queue. The entries in the history queue and the
SBB are identical and are 100 bits in size. The entry size is
dominated by store instructions which have the largest stor-
age requirements. The storage for a store instruction
includes 64 bits of modified data to record the old memory
value, 32 bits of store address, 1 bit to distinguish store
from other instructions, 2 bits to encode the store size, and
1 bit to distinguish between pending and completed store.

Each lookup table entry includes 26 bits of block
address and a dirty bit used in optimizing and eliminating
rollbacks upon downgrade rather invalidation requests.
The number of pointer bits in the lookup table and the load/
store queue vary depending on the queue sizes. Our base
SC++ and our SC++ system with 4x remote fill latency use
4K- and 8K-entry custom queues and therefore require 12
bits and 13 bits for queue pointers respectively. We aggres-
sively assume a memory queue of 64K entries for SC++lite
and therefore require 16 bits for pointers.

Table 4 indicates that the total custom storage for SC++,
in the base system and the system with 4x L2 remote fill

latencies are 51KB and 101KB respectively. SC++lite,
however, reduces the custom storage requirement by an
order of magnitude and only requires 2KB custom storage
for all studied L2 remote fill latencies.

5.4 L2 Bandwidth Requirements
Figure 10 compares the performance of SC++lite under

varying L2 bandwidth, affecting the SBB spill rate. In the
base system, which corresponds to the 64 GB/s bandwidth
available in Pentium 4, the SBB can spill, on average, five
history entries per cycle. Decreasing the L2 bandwidth to
32 GB/s, results in the SBB being able to retire, on average,
only 2.5 history entries per cycle, effectively reducing the
graduation rate. Doubling the L2 ports results in the SBB
being able to spill ten history entries per cycle and elimi-
nates the L2 bottleneck seen by the SBB.

The performance gap between SC++ and SC++lite
becomes significant, in some applications, for bandwidth
of 32 GB/s. The SBB can only send on average 2.5 instruc-
tions per cycle into L2 which is 31% of the history through-

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

ap
pb

t

ba
rn

es
em

3d fft

ra
dix

to
m

ca
tv

un
str

uc
tu

re
d

wat
er

-n
s

wat
er

-s
p

S
p

ee
d

u
p

SC++ SC++lite

FIGURE 8. Base system performance.
This figure compares the performance of SC++lite against SC++,
normalized to SC. SC++ uses 2K-entry custom history queue and
SC++lite uses a 32-entry SBB.

Structure
SC++
(KB)

SC++ 4x
fill (KB)

SC++lite
(KB)

Custom history storage
(history queue or SBB)

50.0 100.0 0.4

Lookup table 1.2 1.2 1.3

History pointers in
load/store queue

0.2 0.2 0.3

Total 51.4 101.4 2.0

TABLE 4. Custom storage requirements.

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

ap
pb

t

ba
rn

es
em

3d fft

ra
dix

to
m

ca
tv

un
str

uc
tu

re
d

wat
er

-n
s

wat
er

-s
p

S
p

ee
d

u
p

SC++ SC++lite

FIGURE 9. 4x L2 remote fill latency.
This figure shows the performance of SC++lite against SC++,
normalized to SC for 4x L2 remote fill latency. SC++ uses a 4K-
entry custom history queue and SC++lite uses a 32-entry SBB.

put in SC++. For the base 64GB/s system, SC++lite is 2%
slower, on average, than SC++ and it reaches maximum of
9% for radix. In the system with 32 GB/s bandwidth, the
SC++lite is, on average, 16% slower than SC++, and 50%
slower in case of radix. Even with 32 GB/s bandwidth the
SC++lite is on average 19% faster than SC. Increasing the
L2 bandwidth to 128 GB/s eliminates the performance gap
between SC++ and SC++lite. This increase in the L2 band-
width does not result in performance gains for SC++, and
therefore an additional L2 port cannot be justified, given
the studied applications. Future processors will provide
128 GB/s or higher bandwidth and therefore the SC++lite
will result in the best performance and resource utilization.

Figure 10 also shows the impact of 4KB L1 on the per-
formance of SC++lite. By reducing the L1 size to 4KB, the
competition for the L2 bandwidth between the SBB and L1
requests increases. Since the L1 misses are handled before
the SBB requests, the available L2 bandwidth for the SBB
is reduced. As a result, the performance gap between
SC++lite and SC++ increases, but only by 1%, on average,
as compared to the base system. The insensitivity to the L1
cache size can be explained by dependence between the L1/
L2 traffic and the amount of generated history. When the
L1/L2 traffic is low the processor hits in L1 and therefore is
generating history at a full rate in a presence of a pending
store, but in this case the SBB has the entire L2 bandwidth
available. On the other hand, when the L1/L2 traffic is very
high the available L2 bandwidth for the SBB is lower, but
since the processor is missing in L1, it stalls for the L1 read

misses and as a result the amount of generated history is
small.

5.5 Interference in L2
Figure 11 presents the impact of L2 contention on the

performance of SC++lite. On average, SC++ improves per-
formance over SC by 36%, while SC++lite improves per-
formance by 32%. SC++lite stores a significant amount of
history in L2 and therefore the potential of replacing the
data that is currently or subsequently needed by the proces-
sor increases for the 64KB L2. The history size is not
directly dependent on the L2 size, as long as the application
is able to fit its working sets. In this case, the same history
that resides in a 512KB L2 has to fit in the 64KB L2.
Section 5.1 shows that history can grow and reach up to 4K
entries, which requires 50KB of storage. 50KB corre-
sponds to 10% of the 512KB L2, therefore the performance
impact is limited, but in the case of the 64KB L2, the his-
tory can potentially occupy the entire cache, which can
result in a competition for storage and resulting rollbacks.

The history-data competition for storage in L2 causes
rollbacks that are not necessary, according to the SC
requirements. They are required because SC++lite as well
as SC++ is not able to monitor the blocks for mis-specula-
tions after the replacement. After the rollback, the proces-
sor incurs stalls due to read miss on the replaced data. A
significant performance gap is present in appbt and radix.
In case of radix, the performance gap is still due to limited
L2 bandwidth. Appbt, on the other hand, is still exposing
significant store latency which results in a large history
replacing useful data. A smaller cache can also reduce the

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ap
pb

t

ba
rn

es
em

3d fft

ra
dix

to
m

ca
tv

un
str

uc
tu

re
d

wat
er

-n
s

wat
er

-s
p

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

32 GB/s 64 GB/s 128 GB/s 4KB L1

FIGURE 10. Effect of L2 Bandwidth.
In this figure we compare execution times of SC++ and
SC++lite with different L2 bandwidth, normalized to the SC++
with corresponding L2 bandwidth. We also present the impact
of 4K L1 on the competition for 64 GB/s bandwidth.

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

ap
pb

t

ba
rn

es
em

3d fft

ra
dix

to
m

ca
tv

un
str

uc
tu

re
d

wat
er

-n
s

wat
er

-s
p

S
p

ee
d

u
p

SC++ SC++lite

FIGURE 11. Interference in L2.
This figure studies the competition for L2 space between data
and history. We reduce L2 to 64KB and compare execution time
of SC++ and SC++lite, normalized to SC.

performance difference between SC++ and SC++lite, as
observed in the remaining applications, by increasing the
stall time due to load misses, which also reduces amount of
generated history.

SC++lite is able to perform well even for relatively
small caches. Moreover, the history is created and retired
relatively fast as compared to cache operations, resulting in
limited writebacks. The time that history is current corre-
sponds to the time in which the system will service the
pending store that created the history. Once the store com-
pletes, the history can be discarded. This short duration of
history in L2 results in no significant history writebacks to
memory and therefore will not create performance bottle-
necks in the memory subsystem.

6 Conclusions
This paper proposed SC++lite, a system that uses lim-

ited custom hardware to speculatively relax memory order
while maintaining Sequential Consistency’s (SC’s) mem-
ory order semantics. SC is attractive from a programming
perspective because it obviates the need for programmers
to annotate memory accesses in programs and enforce
memory order through software. Prior research has shown
that relaxing memory order speculatively can allow SC
systems to achieve the performance of systems that relax
order through software annotation. Unlike previous pro-
posals for speculative implementations of SC, SC++lite is a
low-overhead implementation that fully realizes the bene-
fits of speculation across a wide range of applications and
system latencies while requiring little custom storage.
SC++lite uses the memory hierarchy on each processor to
store a history of the modified processor/memory state dur-
ing speculation.

We used cycle-accurate simulation of shared-memory
multiprocessors running scientific and engineering appli-
cations to compare SC++lite’s performance and storage
requirements against SC++. We presented a detailed char-
acterization of SC++ history information and corroborate
that: (1) queue requirements drastically vary between 16 to
8192 entries for applications and systems we studied, and
(2) the history information is quite bursty, on average leav-
ing the queue empty 85% of the application execution time.
Our results indicated that SC++lite on average performs
28% better than SC with only 2KB of storage. In contrast,
SC++ requires 26KB to achieve a 31% average speedup
over a base SC system. Moreover, SC++lite’s performance
relative to SC++ remained unchanged with a four times
increase in memory latencies, while SC++ storage require-
ments almost double to 51KB. Due to the bursty nature of
the history, our results indicated little interference with pro-
cessor’s L1/L2 traffic even when using small L1 caches.

Acknowledgments

We would like to thank the anonymous referees for their
feedback on the submitted draft of this manuscript. This
work was partially funded through an NSF CAREER

award, an NSF Instrumentation award, and grants from
Intel and IBM.

References
[1] S. V. Adve and K. Gharachorloo. Shared memory consisten-

cy models: A tutorial. IEEE Computer, 29(12):66–76, Dec.
1996.

[2] I. Corporation. The Intel Pentium 4 processor. In Product
Overview at www.intel.com/design/Pentium4/prodbref/in-
dex.htm, 2002.

[3] K. Gharachorloo, A. Gupta, and J. Hennessy. Two tech-
niques to enhance the performance of memory consistency
models. In Proceedings of the 1991 International Conference
on Parallel Processing (Vol. I Architecture), pages I–355–
364, Aug. 1991.

[4] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,
A. Gupta, and J. Hennessy. Memory consistency and event
ordering in scalable shared-memory. In Proceedings of the
17th Annual International Symposium on Computer Architec-
ture, pages 15–26, June 1990.

[5] K. Gharachorloo, M. Sharma, S. Steely, and S. V. Doren. Ar-
chitecture and design of alphaserver GS320. In Proceedings
of the Nineth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
Nov. 2000.

[6] C. Gniady, B. Falsafi, and T. N. Vijaykumar. Is SC + ILP =
RC? In Proceedings of the 26th Annual International Sympo-
sium on Computer Architecture, pages 162–171, May 1999.

[7] M. D. Hill. Multiprocessors should support simple memory
consistency models. IEEE Computer, 31(8), Aug. 1998.

[8] L. Lamport. How to make a multiprocessor computer that cor-
rectly executes multiprocess programs. IEEE Transactions on
Computers, C-28(9):690–691, Sept. 1979.

[9] V. S. Pai, P. Ranganathan, and S. V. Adve. RSIM: An execu-
tion-driven simulator for ILP-based shared-memory multi-
processors and uniprocessors. In Third Workshop on
Computer Architecture Education, Feb. 1997.

[10] P. Ranganathan, V. S. Pai, and S. V. Adve. Using speculative
retirement and larger instruction windows to narrow the per-
formance gap between memory consistency models. In Pro-
ceedings of the Nineth ACM Symposium on Parallel
Algorithms and Architectures (SPAA), June 1997.

[11] J. E. Smith and A. R. Plezkun. Implementing precise inter-
rupts in pipelined processors. IEEE Transactions on Comput-
ers, C-37(5):562–573, May 1988.

[12] K. C. Yeager. The MIPS R10000 superscalar microprocessor.
IEEE Micro, 16(2), April 1996.

