
Speculative Alias Analysis for Executable Code

Manel Fernández and Roger Espasa

Computer Architecture Department
Universitat Politècnica de Catalunya

C/ Jordi Girona 1–3, 08034 Barcelona, Spain
E-mail: fmfernand,rogerg@ac.upc.es

Abstract

Optimizations performed at link time or directly applied
to final program executables have received increased atten-
tion in recent years. Such low-level optimizations can ben-
efit greatly from pointer alias information. However, as al-
most all existing alias analyses are formulated in terms of
source language constructs, they turn out to be of limited
utility at the machine code level.

This paper describes two different approaches to high-
quality, low-cost, speculative may-alias analysis, to be ap-
plied in the context of link-time or executable code optimiz-
ers. The key idea behind our proposals is the introduction of
unsafe speculations at analysis-time, which increases alias
precision on important portions of code, and keeps the anal-
ysis reasonably cost-efficient. Experimental results indicate
that introducing speculation at analysis-time is clearly ben-
eficial: precision increases up to 83% in average, against
a baseline precision of 16%. Furthermore, the percentage
of dynamic misspeculations is typically about 2%, which
shows that our technique can be used even for scenarios
where speculation recovery is expensive.

1. Introduction

Code transformations on executable code can benefit
greatly from pointer alias information, as already happens
with the compilation of source-level programs. For in-
stance, whole program optimizations may open up oppor-
tunities for moving invariant memory instructions out of
loops. However, alias information is key to identifying such
opportunities. While there is an extensive body of work on
pointer alias analysis of various kinds [30, 27, 12, 8, 16],
these are mostly high level analyses carried out in terms of
source language constructs. Unfortunately, such analyses
turn out to be of limited utility at the machine code level.
In fact, the problem of memory disambiguation is one of
the weak points of object code modification, because high

level information available in a traditional compiler is lost.
Furthermore, features such as pointer arithmetic and out-of-
bounds array accesses must be handled at this level, where
the contents of every register is potentially an address.

This paper presents two approaches to high-quality, low-
cost, speculative alias analysis, to be applied in the con-
text of link-time or executable code optimizers. The key
idea behind our two proposals is to trade off analysis com-
plexity against safeness. Our alias analysis incorporate in
their dataflow equations the notion of “guessing” when two
memory references are most likely independent. By being
more liberal in the propagation of the dataflow information,
we obtain two alias analyses that correctly disambiguate a
lot more often, yet the analyses may sometimes be wrong.
Our results will show that these techniques achieve high lev-
els of accuracy: over 80% of all disambiguation queries are
answered with a response different than “unknown”. Fur-
thermore, the dynamic number of instances where the dis-
ambiguator was wrong, and, consequently, recovery action
would have been invoked, is sufficiently low (less than 2%
over all queries) to render our proposed analysis useful even
for optimizations with high-cost recovery schemes.

The rest of this paper is organized as follows. In Sec-
tion 2 we introduce the state of the art on low-level alias
analysis algorithms. Section 3 describes in detail our dif-
ferent contributions in order to speculatively increase alias
analysis accuracy for binary code. Next, Section 4 describes
the methodology we used, and compares the effectiveness
of each approach. We discuss related work in Section 5,
and finally Section 6 concludes the paper.

2. Background

The problem of alias analysis or memory disambiguation
at the machine code level is to determine the relationship of
every pair of memory references in a program. A reference
typically identifies a memory address and an access size.
Then, for two particular references, there are three possible
answers that an alias disambiguator can return:

� Identical, or intersecting. This means that both refer-
ences always point to the same location, or that mem-
ory accessed by both references partially overlaps.

� Disjoint, which means that they are never aliased, and
therefore, independent.

� Unknown. That is, the disambiguator cannot determine
statically the relationship between the two references.

Performing no alias analysis leads to the assumption that
every load and store instruction are always dependent on ev-
ery previous store instruction. In general, the aliasing prob-
lem can be formulated by a combination of may-alias anal-
ysis, which answers whether two memory references are
independent, and must-alias analysis, which checks refer-
ences for dependencies. This work is about may-alias anal-
ysis algorithms for executable code.

In the next sections, we assume for simplicity a canonical
RISC instruction set. Memory is accessed only through ex-
plicit load and store instructions, which have the form load
k(rb); ra and store ra; k(rb). Memory instructions have
the effect of reading/writing from/to the location whose ad-
dress is k + contents(rb), where k is a constant offset and
rb is the base register. Two special registers, denoted as sp
or stack pointer, and gp or global pointer, point to the pro-
gram stack and global data areas, respectively. For other
instructions we assume the form op src1; src2; dst, where
op denotes an operation, dst is a destination register, and
src1 and src2 are source registers1. For instance, an add
instruction computes the sum of src1 and src2 into dst.
Many other operations can be expressed in terms of this
form (e.g., register moves can be modeled in terms of ad-
dition). Other additional instructions such as conditional
and unconditional jumps have the only effect of determin-
ing the control flow graph of the program, so they are not
considered explicitly in the context of alias analysis. We
also ignore operations on floating point registers, assuming
that such operations are not used for address computation.

2.1. Alias analysis by instruction inspection

A common technique in compile-time instruction sched-
ulers is alias analysis by inspection [21]. Here, two memory
references are considered within an extended basic block to
see if it is obvious that they point to different memory ad-
dresses. Independence between instructions I1 and I2 can
be proved if either of the following conditions hold:

� Different memory regions are referenced. For exam-
ple, one of the instructions uses a register known to
point to the stack and the other uses a register known
to point to the global data area.

1To simplify the discussion we abuse notation and allow either src1 or
src2 to be an integer constant, denoting an immediate operand.

add sp, 8, r1

 ...

add sp, 0, r1

 ...

store r0, (r1)
load 16(sp), r0I2
 ...

I1

Figure 1. Sample code where different definitions are

reaching a use.

� They access data at addresses k1(r1) and k2(r2),
where base registers r1 and r2 are computed by two
(possibly empty) sequences of instructions such that
r1 = c1 + contents(r0) and r2 = c2 + contents(r0),
for a register r0. Accesses are non-aliased if chains use
the same definition of r0, and c1 + k1 and c2 + k2 do
not overlap. To detect definition of register r0 a simple
backwards dataflow algorithm may be used.

All other memory instruction pairs are considered to be
aliasing. Unfortunately, this simple approach does not work
if information about register copies and address arithmetic
needs to be propagated across extended basic block bound-
aries. To do so, register use-def chains is a well known
analysis that provides, for each use of a register, a pointer
to its definition [21]. In the general case, an instruction in-
spection algorithm tries to derive a symbolic description for
each memory instruction and then compare these descrip-
tions for checking independency.

The use-def chains are a directed graph whose nodes are
instructions and whose edges are use-def pointers. When
there are several definitions of a register reaching a use, it
is common to introduce a pseudo instruction at an appropri-
ate place which also defines that register, thereby shadow-
ing the other definitions. This is analogous to � functions
used with the static single assignment (SSA) form [21].
Pseudo insertions result in “less accurate” use-def informa-
tion. However, the analysis becomes space-feasible on ex-
ecutable code, because fully linked executables tend to be
considerably larger than source languages modules [22].

2.2. Residue-based global alias analysis

Instruction inspection fails when several definitions are
reaching a use. For example, in Figure 1, register r1 is de-
fined with two possible stack values. However, possible lo-
cations accessed at instruction I1 are disjoint with respect
to the location accessed by instruction I2.

Debray et al. [11] propose a combination algorithm
based on the analysis described in the previous section, and

a novel low-level interprocedural approach, to reason about
pointer aliases in executable code. The analysis, which is
implemented in the context of a link time optimizer, can
handle complex pointer arithmetic and features usually ig-
nored by traditional alias analysis algorithms. The ideas
described in this paper were motivated by their work.

An alias analysis will in general associate each register
with a set of possible addresses at each program point. The
idea of the algorithm is to reason about arithmetic com-
putations modulo some pre-selected value k. A set of ad-
dresses is represented by an address descriptor, which is a
pair hI; Si, where I is the defining instruction for a machine
register r, and S is a set of mod-k residues with respect to
the value computed by I . The representation can then dis-
tinguish between addresses involving distinct “small” dis-
placements (i.e., less than k) from a base register. Compar-
ing descriptors is reduced to a comparison of mod-k sets.

Since k is fixed, S can be represented as a bit vector
of length k. Their implementation corresponds to mod-k
residues with k = 64, in part determined by the fact that the
set of mod-k residues for this choice of k corresponds to a
bit vector that fits exactly in one 64-bit machine word. This
means that set operations such as union, intersection, check-
ing containment, etc., are compactly representable and can
be carried out in O(1), which is cheap enough to be practi-
cal for the analysis of large binaries.

As far as the analysis is concerned, a data flow system
is used to propagate values through the control flow graph.
They use a widening operation to “merge” the information
coming along the incoming edges at vertices in the interpro-
cedural control flow graph. Thus, if the values for a register
r being propagated along two incoming edges at a vertex in
the flow graph are described by address descriptors hI1; S1i
and hI2; S2i respectively, and I1 6= I2, then the information
about r is widened to ?, denoting a lack of information.
The essential idea behind this operation is to associate a sin-
gle descriptor with a register at each program point, rather
than a set of descriptors, keeping the memory requirements
of the analysis reasonable: for each basic block one address
descriptor per register is needed, corresponding to the out
register set at the exit of the block. For a given choice of k,
the analysis requires RN(k +w) bits of memory for a pro-
gram with N basic blocks on a machine with R registers,
where w is the number of bits per machine word.

3. Speculative may-alias analysis

Residue-based alias analysis fails in several situations,
leading to an undesirable loss in precision. First, by using
mod-k residues, the algorithm is clearly oriented to “fine
grain” disambiguation, but it is unable to effectively catch
“coarse grain” alias relationships (e.g., whether two refer-
ences point to different memory regions). Second, in or-

der to keep the algorithm space- and time-feasible, the con-
servative widening operation causes information to be lost
when joining definitions of the same register from different
control flow paths. This is specially negative for pointer ar-
guments at the entry node of functions with multiple call
sites, since the context-insensitive nature of the algorithm
leads to a massive application of the widening operation.
Furthermore, the algorithm does not keep track of the con-
tents of memory, which causes information to be lost when
registers are saved/restored.

Typically, complexity of dataflow analyses has been a
compromise between cost and precision (see, for exam-
ple, [1, 21, 5, 13, 26]). For high level compilation, com-
piler writers have tended to use sophisticated analysis at
the expense of increased resource usage. However, given
that statically-linked executable programs tend to be signif-
icantly larger than the corresponding source level entities,
traditional analyses applied to machine code level are of
limited usefulness, because either the cost is too high or the
precision is not accurate enough.

The key idea behind our work is to introduce a new vari-
able in the game: safeness. Breaking the strong constraint
of safeness, a dataflow analysis may reach a high level of
precision at low cost, by paying the price of not always be-
ing correct. In other words, the dataflow analysis becomes
speculative, or unsafe. As far as we know, this is the first
attempt to systematically introduce unsafe speculations into
dataflow analysis algorithms.

In the following sections we introduce two dataflow al-
gorithms that increase alias analysis accuracy of binary
code using speculation. The two algorithms are orthog-
onal and, thus, can be applied independently or coupled
together. The first algorithm tries to disambiguate mem-
ory references by classifying them into separate memory
regions (heap, stack and global) and assumes that when-
ever an arithmetic operation is performed on a pointer, the
pointer will not change its pointed-to memory region (of
course, this is an unsafe speculation). The second algorithm
uses profile information and assumes that memory instruc-
tions on hot paths are not aliased to memory references on
cold paths (again, another unsafe speculation). By making
these speculations, we obtain more precise information in
the common case, yet the analysis results are not always
correct. This means that any optimization performed using
these speculative analyses will be speculative as well, and
some type of recovery mechanism must be provided. We
will extend this discussion in Section 3.4.

3.1. Region-based speculative alias analysis

Figure 2 shows a situation where the analysis presented
in Section 2.2 is not accurate enough. As it can be seen,
the value of register r1 is defined by a load instruction.

store r0, (r1)
load (sp), r0I2
 ...

I1
add gp, r1, r1
load (sp), r1

 ...

Figure 2. Sample code where pointer information is lost

because a component of the use-def chain of r1 is de-

fined by a load operation.

Therefore, the analysis in unable to propagate information
through the uses of r1. Yet, it is very unlikely the register r1
at instruction I1 points to regions other than the global data
area because the value loaded from memory was operated
previously with the gp register. Thus, the safeness of the
residue-based alias analysis is missing a very likely oppor-
tunity of disambiguating the two references. Note that this
loss of precision would also happen if the descriptor of r1
had been mapped to ? because of the widening operation.

To overcome this drawback, our first proposal is to prop-
agate which memory regions a register may point to, instead
of being worried about symbolic descriptors based on in-
structions which defined that register.

Definition 3.1 A region descriptor �pr is a subset of the fi-
nite set of values fG;S;Hg, denoting all possible memory
regions (i.e., global, stack and heap, respectively) pointed
by a given register r at program point p. �

For a particular region descriptor, a value of ; denotes
that register is not used as a pointer to any memory region,
and is written as >; while a value of fG;S;Hg denotes a
total lack of information, and is written as ?. This infor-
mation will be then propagated using a general dataflow it-
erative algorithm. The input values, for every register r at
every program point p, are initialized as follows:

�pr =

8<
:

fGg if r = gp (global pointer)
fSg if r = sp (stack pointer)
> otherwise

The value fHg denoting a pointer to the heap mem-
ory area is assigned to the destination register of the sys-
tem call break, at such program point. System call break
is used by Unix-based operating systems for heap manage-
ment, through library functions malloc and free.

When propagating information through the control flow
graph, the effect of instructions on its corresponding desti-
nation register may vary. For example, a load instruction
sets the descriptor of its destination register to ?, since no
information about the contents of memory cells is kept in
the algorithm. The general behavior is as follows:

Definition 3.2 Let opp ri; rj ; rk be an instruction at pro-
gram point p, with source registers ri; rj and destination
register rk. Let �pi and �

p
j be the region descriptors for

registers ri and rj , respectively. Then, the region descrip-
tor p+1k for register rk at program point p + 1, is set to
�
p
i � �

p
j , defining the � operator as:

�
p
i � �

p
j =

8<
:

�
p
i if �pi 6= > ^ �

p
j = ?

�
p
j if �pj 6= > ^ �

p
i = ?

�
p
i [�

p
j otherwise

�

In the case that a source operand is a constant instead of
a register, the corresponding region descriptor is assumed
to be >. Note that a region descriptor with a value differ-
ent than > being operated with a region value of ?, will
propagate the non-> descriptor to the instruction destina-
tion register. Strictly, it is unsafe to make such an assump-
tion, although the opposite rarely occurs. For instance, a C
code might produce from a pointer to the global data area, a
pointer to the program stack. However, it is uncommon for
many programs to generate these types of accesses2.

If a node of the control flow graph has more than one pre-
decessor, the information stemming from them must be in-
tegrated. In dataflow frameworks, joining paths in the flow
graph is implemented by the union operator.

Definition 3.3 Let �pr and �pr be region descriptors for reg-
ister r at program point p, coming from two different prede-
cessors. Then, the widening operation 5 is defined as:

�pr 5 �pr =

�
? if �pr = ? _ �pr = ?
�pr [�pr otherwise

�

Note that region-based widening operation differs from
residue-based widening operation in that “widening” does
not imply loosing all information, but performs simply a
union between region descriptors.

A region descriptor may be represented as a 3-bit vector,
where every bit denotes one of the considered memory re-
gions. As a result, the resulting analysis requires only 3RN
bits of memory for a program with N basic blocks on a ma-
chine with R registers. The region-based alias analysis pre-
sented here is complementary to any points-to alias scheme,
and may be coupled to it, or may be computed separately.

3.2. Profile-guided speculative alias analysis

When trying to keep the residue-based alias analysis al-
gorithm space- and time-feasible, the conservative widen-

2We do not found such scenarios in our benchmark suite, but operating
system kernels and tools, as well as virtual machines are programs where
this situation might happen. Certainly, our proposed analysis could be
run on user-demand by some compiler command line option, like actual
production compilers do on several unsafe optimizations.

store r0, (r1)
I2

 ...

I1

 ...

add gp, 0, r1

 ...

add sp, 0, r1

load (sp), r0

Hot path

Figure 3. Sample code where different definitions are

reaching a use, but there is a more likely executed path.

ing operation does not join definitions of the same regis-
ter from different control flow paths in a set. Because of
this, when computing the meet of the incoming information
at the entry of the basic block, the information associated
with the register is widened to ?. That is, all the informa-
tion is lost. An example of this can be seen in Figure 3,
where register r1 is defined from two different instructions.
In the example, region-based alias analysis does not solve
the problem either, since joining regions, although less con-
servative, also fails in this case.

The preceding situation also occurs on pointer arguments
at the entry node of functions. A possible solution would be
to use a context-sensitive interprocedural approach. How-
ever, the defining instructions for a register are generally
different at different call sites to a function, which means
that the callee will have to be analyzed separately for each
such call site. Given that statically-linked executable pro-
grams tend to be significantly larger than the corresponding
source level entities, this indicates that the cost of a tradi-
tional context-sensitive analysis is likely to be quite high.

We chose, instead, to use a profile-guided analysis. The
basic idea is to propagate alias information only for im-
portant paths, ignoring those paths whose information will
cause loss of precision in the most common cases. As a re-
sult, widening operations to ? will be drastically reduced.
For instance, looking again at Figure 3, we can see that the
most likely definition of register r1 is the one from register
gp. We could then easily determine by a single inspection
that accesses at instructions I1 and I2 are likely to be dis-
joint. More formally:

Definition 3.4 Let �p;1r ; : : : ; �p;nr and �p;1r ; : : : ; �p;mr be
the set of symbolic descriptors for register r at program
point p, coming from hot predecessors 1; : : : ; n and cold
predecessors 1; : : : ;m respectively; and let 5 be a widen-
ing operator, the new widening operation 5s is defined as:

5s

�
�p;1r ; : : : ; �p;nr ; �p;1r ; : : : ; �p;mr

�
= 5

�
�p;1r ; : : : ; �p;nr

�
�

That is, the algorithm only takes into account the infor-
mation coming from hot edges of the control flow graph.
Note that the result of this new meet operation is specula-
tive in nature, because we simply “ignore” some possible
(although infrequent) paths in the analysis. This will give
more precise information in the common case, but the re-
sult of the analysis will not always be correct.

This simple speculative dataflow scheme is general
enough to be applied on top of any traditional dataflow
analysis algorithm, not necessarily related to neither pointer
aliasing nor machine code level. On the other hand, the cost
of a speculative dataflow technique does not change with
respect to the non-speculative safe version which it is based
on. However, the intuition indicates that ignoring unimpor-
tant paths, significant cost reductions can be achieved.

3.3. Putting it all together

We have implemented the two alias analysis algorithms
presented in the previous sections within the Alto link-time
optimizer [23]. As a result, we have obtained a high-quality,
low-cost, combined speculative alias analysis framework
for executable code. Computing alias information, the al-
gorithm uses the following scheme.

Phase 1 An interprocedural dataflow analysis computes
the use-def chains (Section 2.1). This phase is the only
one required for detecting memory dependencies.

Phase 2 The algorithm performs an interprocedural
dataflow analysis computing residue-based informa-
tion (Section 2.2). The resulting analysis is the safe
aliasing information. At the same time, region-based
information is computed (Section 3.1), which produce
preliminary unsafe aliasing data.

Phase 3 Finally, Phase 2 is recomputed (i.e., residue-based
and region-based analyses) as speculative profile-
guided schemes (Section 3.2). Additionally, region-
based analysis may now assume that contents of mem-
ory cells will not be used as memory pointers (i.e., cor-
responding descriptors are mapped to > [14]). The
resulting data and region-based information from the
previous phase is the unsafe aliasing information.

Memory disambiguation for a particular pair of memory
references is then applied incrementally, as can be seen in
Figure 4. Note that a new relationship is used for those
pairs of references which are likely to be disjoint. This new
status of “likely independent” gives the choice of conscious
speculation to any following speculative optimization.

3.4. Recovery-based usage of speculative analysis

The proposals presented in this work increases, at low
cost, the precision of the alias analysis by providing more

Input: Two memory instructions I1; I2.
Output: An alias relationship,

fdependent, independent, likely independent, unknowng.
Method:

if ud-chains(I1; I2) 6= unknown then
return ud-chains(I1; I2);

elsif aliasing(I1; I2;safe) 6= unknown then
return aliasing(I1; I2;safe);

elsif aliasing(I1; I2;unsafe) 6= unknown then
return likely independent;

else
return unknown;

endif
End Method

Figure 4. Memory disambiguation scheme, for a pair of

memory instructions.

I1

 ...

 ...

store r3, (r1)
load (r2), r4I2
use r4

 ...

use r4
load (r2), r4

store r3, (r1)I1
beq r1, r2

I2’

load (r2), r4
use r4

I2

 ...

 ...

use r0
load (r2), r0

store r3, (r1)I1

I2’

use r4

bne r0, r4
load (r2), r4I2

 ...

(a) (b) (c)

True
True

False False

Figure 5. Reordering memory operations [20]: (a) original

sample sequence; recovery-based reordering by using

(b) interference test, (c) coherence test.

reliable information in the common case. However, the
speculative nature of our schemes causes the analysis results
to be not always correct. That is, optimization performed
using speculative analysis will be speculative as well.

Speculative optimizations [19, 15, 20, 18, 25] have been
widely used in the compiler world for reducing the overall
execution time of programs. The key idea behind specula-
tion is breaking the original program sequence by execut-
ing a (possibly unsafe) “better” reordering of instructions,
corresponding to the most likely execution paths. Since
the new executed sequence may be unsafe, some type of
check-and-recovery mechanism must be provided for vali-
dating/undoing such assumptions at run-time. In this mech-
anism, “checking” must be cheap enough and “recovery”
should be invoked infrequently, in order to not incur into
unnecessary penalties. Discussion of speculative optimiza-
tions as well as check-and-recovery mechanisms are, how-
ever, beyond of the scope of this paper.

In general, speculative alias analysis is particularly well

suited to be used in combination with speculative optimiza-
tions based on reordering memory operations [19, 15, 20,
25], including those related to the IA-64 architecture [4].
An example of such optimizations can be seen in Figure 5.
By using the new status of “likely independent”, our spec-
ulative disambiguator not only provides information about
which instructions are likely to be moved, but also which
ones are not recommended to be involved in code motion.

4. Evaluation

4.1. Experimental framework

We have implemented our proposed alias analysis al-
gorithms within the Alto link-time optimizer [23]. De-
tails about the implementation have been presented in Sec-
tion 3.3. The information reported here was obtained after
several optimization rounds carried out by Alto.

The benchmarks used were the eight programs in the
SPEC95 integer benchmark suite. All programs were com-
piled with full optimizations, using the vendor-supplied C
compiler on an AlphaServer 8400. For processing by Alto,
the compiler was also invoked with linker options to retain
information and to produce statically linked executables3.
Later, they were instrumented using Pixie and executed on
the SPEC training inputs to obtain an execution frequency
profile. Finally, these binaries and their profiles were pro-
cessed by Alto using different degrees of alias analysis, to
obtain different measures of their precision.

To apply our profile-guided analysis, we need to deter-
mine the set of edges which are the the most frequently ex-
ecuted from the program control flow graph, or hot edges.
There are some profiling tools that, using edge counting in-
strumentation, can obtain basic block and edge counts di-
rectly. However, it is often the case that only basic block
counts are available. Our framework gets program profil-
ing information using Pixie, which only provides block ex-
ecution counting. Although it is widely known that block
counts can be derived form edge counts and the converse
does not hold, edges whose counts cannot be determined
from block counts are usually fewer than 1%. We use then
a variation of the algorithm from Tamches and Miller [29]
for deriving edge counts from Pixie profile data.

To determine the set of hot edges, we first specify what it
means for a basic block to be considered hot. Given a value
� in the interval (0; 1], we determine the largest execution
frequency threshold N such that, by considering only those
basic blocks that have execution frequency at least N , we
are able to account for at least a fraction � of the total num-
ber of instructions executed by the program (as indicated by

3We used statically linked executables because Alto relies on the pres-
ence of relocation information for its control flow analysis. The Tru64
Unix linker refuses to retain information for non-statically linked binaries.

Method Description

Inspect

Corresponds to the disambiguation mechanism by
instruction inspection, using use-def chains (Sec-
tion 2.1). This method is the only one required for
later detecting memory dependencies.

Residue
Disambiguation based on a residue-based analysis
(Section 2.2).

Region
Corresponds to the application of the speculative
region-based alias analysis. This is the first unsafe
analysis method (Section 3.1).

PGRes
Profile-guided speculative residue-based alias analy-
sis (Section 3.2).

PGReg
The profile-guided speculative technique is applied
to the also speculative region-based method.

PGReg0

Corresponds to the previous analysis method, but
contents of memory cells are assumed to not be used
as memory pointers [14].

Table 1. Description of alias analysis methods for mem-

ory disambiguation.

its basic block execution profile). Any basic block whose
execution count is at least N is then said to be hot with re-
spect to the threshold �. For example, given � = 0:95, the
hot basic blocks of a program consist of those that allow
us to account for at least 95% of the instructions executed
at runtime. A value of � = 1:0 will consider every basic
block to be hot. Finally, using the same parameters, an edge
is consider to be hot with respect to the threshold � when
its execution count is at least N . For all our experiments we
have used a � value of 0:6.

4.2. Measuring static precision

We start evaluating the effectiveness of each alias anal-
ysis described in Table 1 by comparing their static accu-
racy in terms of “disambiguation queries”. A disambigua-
tion query is a question made to the memory disambigua-
tor about the relationship between two memory instructions.
We are not really interested in discovering the exact type of
relationship (i.e., dependency or independency), but rather
in whether the analysis returned an answer different than
the “unknown” relationship. We consider that a given alias
analysis “is better” if it returns less “unknown” responses.

Since our different alias analyses are not being driven by
any particular optimization, we have generated a represen-
tative set of queries by using the following algorithm. First,
we consider every load/store instruction within the hot ba-
sic blocks of every function4. For every candidate, we start

4We choose instructions only from the hot path because we are only
interested in measuring the precision of critical instructions in a program.

go m88ksim gcc compress li ijpeg perl vortex Average

Benchmark

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

ag
e

of
 d

is
sa

m
bi

gu
at

io
n

qu
er

ie
s

Unknown
U/ PG-Reg’
U/ PG-Reg
U/ PG-Res
U/ Region
S/ Residue
S/ Inspect

Figure 6. Breakdown of disambiguation queries, by alias

analysis method. The left bar considers the full set of

queries, while the right bar restricts the set to those

queries where both components are instructions from

hot paths. The S/ and U/ prefixes denote safe and un-
safe analysis, respectively.

looking back over all paths for load/store instructions that
reach the candidate. For each load/store instruction found
and its candidate, a query is made to the disambiguator. We
believe this scheme faithfully mimics the behavior of many
compiler optimizations, which will only generate queries of
instruction pairs connected by existing paths.

For each benchmark, Figure 6 presents the percentage of
queries successfully resolved (that is, the resulting answer is
different than “unknown”) by each alias analysis. Thus, the
left bar presents the relative contribution of each analysis to
the resolution of our given full set of queries. The right bar
presents the same results restricting queries to those where
both components are instructions from hot paths.

From the results shown in Figure 6, four main conclu-
sions can be drawn. First, speculative alias analysis is quite
beneficial: aliasing precision increases to 83% in average
(74% considering only hot path references), from a baseline
precision around 16% corresponding to the non-speculative
schemes. Some cases such as gcc or compress achieve
up to 95% of precision. Of course, this spectacular reduc-
tion in the number of “unknown” responses will only trans-
late into positive opportunities for optimization if the num-
ber of misspeculations (errors made by our analysis) is suffi-
ciently low. This point will be discussed in the next section.

Second, the profiling information proves very useful to
increase the accuracy of both the non-speculative residue-
based analysis and the speculative region-based analysis.
Indeed, the profile-guided analyses almost double the to-
tal accuracy achieved by these same methods without using
profile information (50% accuracy in front of 26%). An in-
teresting exception is go, where the profile-guided schemes
do not significantly increase precision. The reason is that, in

go, almost every execution path is a hot path. Here, profile
data does not reduce the number of paths to be considered.

Third, thePGReg0 heuristic based on the assumption that
memory cells will not be used as memory pointers achieves
a high level of precision. This is very surprising, since our
benchmark programs make heavy use of pointers, which are
naturally stored in memory. For example, perl jumps to
a 94% of accuracy from a 53% achieved by the previous
analyses. This program makes heavy use of dynamically
linked lists. Consequently, there are many load instructions
that indeed read from memory a value that is later used as a
pointer. The other alias analyses correctly assume the worst
scenario, and set the corresponding descriptors to ?. The
key insight is that pointers in a linked list hardly ever are
aliased to each other. Thus, PGReg0 , although being ex-
tremely aggressive in assuming independence, is right most
of the time, as next section will show.

Finally, comparing results for the full set of queries (left
bars) versus query results for the hot path only (right bars),
it is clear that accuracy for the profile-guided schemes is
slightly lower on the hot path. This was expected since
profile-guided schemes simply return “likely independent”
on those queries containing an instruction that belongs to a
cold path, thus increasing accuracy on the full set of queries.

4.3. Measuring misspeculation rate

As mentioned in the previous section, speculating at
analysis-time will open opportunities for speculative opti-
mizations, which will only be profitable if our guesses are
mostly correct. Otherwise, the cost of the particular re-
covery scheme implemented by the optimization will offset
the benefits of our speculative alias analysis. This section
presents data on the number of times that each speculative
disambiguator produces a wrong answer.

Misspeculation rate must be measured at run time and
depends on the program input data (we used variants of the
official SPEC input sets to keep simulation time down to
a manageable value [14]). The process we used is as fol-
lows. When running the speculative alias disambiguator
in our link-time optimizer, the compiler generates a file in-
cluding every query whose answer is “likely independent”5.
Then, we modified the safe simulator of the SimpleScalar
3.0 toolset [6] to read this file at start time and build a hash
table with all queries. Every time that a load/store instruc-
tion is reached, the hash table is checked to see if the in-
struction is a component of a query (or queries). If this is
the case, we then check if the other member of the query
pair has been executed in the past. If so, we compare their
effective addresses, which were stored also in the hash table
when each member of the pair was executed. If the effec-

5We chose only queries where both components are hot instructions,
since the rest of possible queries will be rarely executed at run time.

tive addresses overlap, we have a misspeculation and we in-
crease the misspeculation counter for that particular query.
In any case, the total execution counter for the query is also
incremented. At the end of the simulation run, we have for
each query the number of times it was dynamically executed
and the number of times it was misspeculated.

From this procedure we obtain two sets of results, pre-
sented in Table 2. First, Table 2a shows the number of
queries that were misspeculated at least once, presented as
a percentage of the total number of queries that were some-
time executed. However, to get a complete picture of the
cost of misspeculation, we need to know how many times
a misspeculated pair of instructions was executed to know
the number of times that the associated recovery scheme
would have been invoked. Table 2b presents this second set
of data, showing the total number of misspeculations, pre-
sented as a percentage over the total number of dynamically
executed queries. The last column in both data sets corre-
sponds to an “aggressive disambiguation” approach assum-
ing that “unknown” query responses will also be handled as
if they were “likely independent”. This will give a measure
of whether the proposed alias analysis methods are useful.

From the table, we can highlight several interesting
points. First, the region-based analysis, despite being un-
safe, is extremely accurate, to the point that we did not
find a single misspeculation across all benchmarks. Sec-
ond, the other speculative analysis are fairly accurate too,
with a static misspeculation rate typically below 2%. Mea-
sured in terms of dynamic misspeculation rates, the situ-
ation is even more favorable. For example, for go, even
though more than 8% of the static queries were misspecu-
lated, their weight over the total number of executed queries
is much lower, typically below 2%. Finally, when compar-
ing this results against the “always speculative” approach,
the misspeculation rate doubles the rate obtained using the
PGReg0 method (a mean rate of 2.2% in front of 1.04%).
This fact is encouraging, hinting that even for optimizations
with high-cost recovery techniques, our speculative alias
analysis might prove very useful given its high accuracy.

5. Related work

While a number of systems have been described for op-
timization of executable code [28, 17, 9, 23], to the best of
our knowledge, alias analysis carried out by these systems
is limited to fairly simple local analysis. On the other hand,
there is an extensive work on pointer alias analysis of vari-
ous kinds [30, 27, 12, 8, 16]. However, in almost all cases,
these are high level analyses carried out in terms of source
language constructs that ignore features typically encoun-
tered in executable programs. As a result, such analyses are
of limited utility at the machine code level.

Amme et al. [2] present a general method to detect data

(a) Static misspeculation rate (%) (b) Dynamic misspeculation rate (%)
Benchmark Region PGRes PGReg PGReg0 Always Region PGRes PGReg PGReg0 Always

go 0.00 13.54 13.09 8.97 10.20 0.00 1.60 0.98 0.70 1.14
m88ksim 0.00 0.97 1.49 0.80 2.10 0.00 0.02 0.92 0.32 8.42
gcc 0.00 1.84 1.96 1.58 2.16 0.00 2.32 1.80 1.02 1.93
compress 0.00 1.49 2.07 1.86 2.67 0.00 0.20 3.05 2.48 2.73
li 0.00 1.25 1.14 0.65 1.20 0.00 0.46 0.82 0.75 1.01
ijpeg 0.00 1.02 1.03 1.36 1.93 0.00 0.73 0.96 2.36 3.21
perl 0.00 1.18 2.53 0.91 1.13 0.00 0.81 1.66 0.70 1.49
vortex 0.00 0.23 0.64 2.17 4.44 0.00 0.04 0.15 1.99 2.21
G. Mean 0.00 1.37 1.87 1.57 2.48 0.00 0.34 1.00 1.04 2.20

Table 2. (a) Percentage of queries that were misspeculated at least once, relative to the total number of sometime-executed

queries. (b) Percentage of dynamic queries misspeculated, relative to the total number of dynamic queries.

dependencies in assembly code by using symbolic value
propagation. They are able not only to provide may-alias
data, but also must-alias information, which allows to de-
rive memory dependencies. However, the algorithm does
not work beyond procedure boundaries, and symbolic val-
ues are not propagated through memory. Although it has
been applied to assembly code, it is not obvious that using
the algorithm for interprocedural whole-program analysis
would scale up to problems of this size.

There is a considerably body of work on interprocedu-
ral dataflow analyses design to analyze only part, but not
all, of a program (see, for example, [3, 5, 13, 26]), although
only some of them use profile information to guide their de-
cisions. This profile information is, however, widely used
when performing optimizations [24, 7, 10, 18]. On the other
hand, while speculation has been commonly used in the
compiler world for optimizing programs [19, 15, 20, 18,
25], as far as we know, this is the first attempt to introduce
unsafe speculations into a dataflow analysis algorithm.

6. Summary and future directions

Code transformations on executable code can benefit
greatly from pointer alias information. However, the prob-
lem of memory disambiguation is one of the weak points
of object code modification, because high level information
available in a traditional compiler is lost. Besides, existing
alias analyses turn out to be of limited utility at the machine
code level, because either they do not consider typical is-
sues of binary code, or their application is too expensive to
be practical for analyzing large binaries.

This paper has presented two approaches to high-quality,
low-cost, speculative alias analysis, to be applied in the
context of link-time or executable code optimizers. The
key idea behind our two proposals is to trade off anal-
ysis complexity against safeness. First, we presented a
region-based alias analysis that disambiguates memory ref-
erences by classifying them into separate memory regions

and assumes that, whenever an operation is performed on a
pointer, the pointer will not change its pointed-to memory
region. This assumption yields increases in disambiguation
accuracy, and, four our set of benchmarks and inputs, did
not cause a single misspeculation. Our second proposal
uses profile information and assumes that instructions on
hot paths are not aliased to memory references in cold paths.
This assumption yields substantial increases in disambigua-
tion accuracy. When combining the two algorithms with a
third unsafe assumption that memory cells do not contain
pointers, accuracy increases to over 80%, while the runtime
misspeculation rate is still below 2%.

Although it has been commonly used for optimizing pro-
grams, speculation has been only introduced so far in the
compiler world at analysis-time by means of a set of rules
and heuristics. As far as we know, this is the first attempt to
systematically introduce unsafe speculations into dataflow
analysis algorithms. Speculative alias analysis is partic-
ularly well suited to be used in combination with spec-
ulative optimizations based on reordering memory opera-
tions [19, 15, 20, 25], including those related to the IA-
64 architecture [4]. The low dynamic misspeculation rate
makes our analyses suitable even for optimizations with
high-cost recovery schemes. Future investigation will fur-
ther consider the application of our algorithms in combina-
tion with these type of optimizations at link-time.

Acknowledgments

The authors gratefully thank the anonymous review-
ers for their detailed comments and suggestions, which
have helped improve both the contents and presentation of
this paper significantly. This work is being supported by
the European Union and the Spanish Ministry of Science
and Technology, under grants TIC2001-0995-C02-01 and
PN98 46057403-1. The research described in this paper has
been developed using the resources of the CEPBA.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers principles,
techniques, and tools. Addison-Wesley, Reading, MA, 1986.

[2] W. Amme, P. Braun, E. Zehendner, and F. Thomasset. Data
dependence analysis of assembly code. In Proceedings of
the 1998 International Conference on Parallel Architectures
and Compilation Techniques, pages 340–347, Paris, France,
Oct. 12–18, 1998. IEEE Computer Society Press.

[3] G. Ammons and J. R. Larus. Improving data-flow analysis
with path profiles. In Proceedings of the ACM SIGPLAN ’98
Conference on Programming Language Design and Imple-
mentation, pages 72–84, Montreal, Canada, June 1998.

[4] J. Bharadwaj, W. Y. Chen, W. Chuang, G. Hoflehner,
K. Menezes, K. Muthukumar, and J. Pierce. The Intel IA-64
compiler code generator. IEEE Micro, 20(5):44–53, 2000.

[5] R. Bodı́k and S. Anik. Path-sensitive value-flow analysis.
In The 25th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 237–251, Orlando,
Florida, Jan. 19–21, 1998.

[6] D. Burger and T. M. Austin. The SimpleScalar tool set, ver-
sion 2.0. Technical Report CS-TR-97-1342, CS Department,
University of Wisconsin-Madison, 1997.

[7] P. P. Chang, S. A. Mahlke, W. Y. Chen, and W. mei W. Hwu.
Profile-guided automatic inline expansion for C programs.
Software Practice and Experience, 22(5):349–369, 1992.

[8] B.-C. Cheng and W. mei W. Hwu. Modular interprocedural
pointer analysis using access paths: design, implementation,
and evaluation. In Proceedings of the ACM SIGPLAN ’00
Conference on Programming Language Design and Imple-
mentation, pages 57–69, June 2000.

[9] R. Cohn, D. Goodwin, P. G. Lowney, and N. Rubin. Spike:
An optimizer for Alpha/NT executables. In USENIX, edi-
tor, The USENIX Windows NT Workshop 1997, pages 17–23,
Seattle, Washington, Aug. 11–13, 1997.

[10] R. Cohn and P. G. Lowney. Hot cold optimization of large
Windows/NT applications. In Proceedings of the 29th An-
nual International Symposium on Microarchitecture, pages
80–89, Paris, France, Dec. 2–4, 1996. ACM Press.

[11] S. Debray, R. Muth, and M. Weippert. Alias analysis of exe-
cutable code. In The 25th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pages 12–
24, Orlando, Florida, Jan. 19–21, 1998.

[12] A. Diwan, K. S. McKinley, and J. E. B. Moss. Type-based
alias analysis. In Proceedings of the ACM SIGPLAN ’98
Conference on Programming Language Design and Imple-
mentation, pages 106–117, Montreal, Canada, June 1998.

[13] E. Duesterwald, R. Gupta, and M. L. Soffa. A practi-
cal framework for demand-driven interprocedural data flow
analysis. ACM Transactions on Programming Languages
and Systems, 19(6):992–1030, Nov. 1997.

[14] M. Fernández and R. Espasa. Speculative alias analysis
for executable code. Technical Report UPC-DAC-2002-27,
Computer Architecture Department, Universitat Politècnica
de Catalunya, Barcelona, 2002.

[15] D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C. Gyllen-
haal, and W. mei W. Hwu. Dynamic memory disambigua-
tion using the memory conflict buffer. In Proceedings of
the Sixth International Conference on Architectural Support

for Programming Languages and Operating Systems, pages
183–193. ACM SIGARCH, SIGOPS, SIGPLAN, and the
IEEE Computer Society, Oct. 1994.

[16] R. Ghiya, D. Lavery, and D. Sehr. On the importance of
points-to analysis and other memory disambiguation meth-
ods for C programs. In Proceedings of the ACM SIG-
PLAN ’01 Conference on Programming Language Design
and Implementation, pages 47–58, June 2001.

[17] D. W. Goodwin. Interprocedural dataflow analysis in an exe-
cutable optimizer. In Proceedings of the ACM SIGPLAN ’97
Conference on Programming Language Design and Imple-
mentation, pages 122–133, Las Vegas, Nevada, June 1997.

[18] R. Gupta, D. A. Berson, and J. Z. Fang. Path profile guided
partial redundancy elimination using speculation. In Pro-
ceedings of the 1998 International Conference on Computer
Languages, pages 230–239, Chicago, May 14–16, 1998.

[19] A. S. Huang, G. Slavenburg, and J. P. Shen. Speculative dis-
ambiguation: A compilation technique for dynamic memory
disambiguation. In Proceedings of the 21st Symposium on
Computer Architecture, pages 200–210, Chicago, Illinois,
Apr. 1994. ACM SIGARCH.

[20] M. Moudgill and J. H. Moreno. Run-time detection and
recovery from incorrectly reordered memory operations.
Technical Report RC-20857, IBM Research Report, 1997.

[21] S. S. Muchnick. Advanced Compiler Design and Implemen-
tation. Morgan Kaufmann, San Francisco, 1997.

[22] R. Muth. Alto: A Platform for Object Code Modification.
PhD thesis, Department of Computer Science, University of
Arizona, 1999.

[23] R. Muth, S. Debray, S. Watterson, and K. de Bosschere.
alto: A link-time optimizer for the Compaq Alpha. Software
Practice and Experience, 31(6):67–101, Jan. 2001.

[24] K. Pettis and R. C. Hansen. Profile guided code positioning.
In Proceedings of the ACM SIGPLAN ’90 Conference on
Programming Language Design and Implementation, pages
16–27, June 1990.

[25] M. A. Postiff, D. A. Greene, and T. N. Mudge. The
store-load address table and speculative register promo-
tion. In Proceedings of the 33rd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, pages 235–244,
Los Alamitos, CA, Dec. 10–13, 2000. IEEE Comp. Society.

[26] A. Rountev, B. G. Ryder, and W. Landi. Data-flow anal-
ysis of program fragments. In ESEC/FSE ’99, volume
1687 of Lecture Notes in Computer Science, pages 235–252.
Springer-Verlag / ACM Press, 1999.

[27] M. Shapiro and S. Horwitz. Fast and accurate flow-
insensitive points-to analysis. In The 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, pages 1–14, Jan. 1997.

[28] A. Srivastava and D. W. Wall. A practical system for inter-
module code optimization at link-time. Journal of Program-
ming Languages, 1(1):1–18, Dec. 1992.

[29] A. Tamches and B. P. Miller. Dynamic kernel code opti-
mization. In Proceedings of the 3rd Workshop on Binary
Translation, Barcelona, Spain, Oct. 2001.

[30] R. P. Wilson and M. S. Lam. Efficient context-sensitive
pointer analysis for C programs. In Proceedings of the ACM
SIGPLAN ’95 Conference on Programming Language De-
sign and Implementation, pages 1–12, La Jolla, California,
June 18–21, 1995.

