
Transparent Threads: Resource Sharing in SMT Processors
for High Single-Thread Performance

Gautham K. Dorai and Donald Yeung
Department of Electrical and Computer Engineering

Institute for Advanced Computer Studies
University of Maryland at College Park

{gauthamt,yeung}@eng.umd.edu

Abstract

Simultaneous Multithreading (SMT) processors achieve high
processor throughput at the expense of single-thread performance.
This paper investigates resource allocation policies for SMT pro-
cessors that preserve, as much as possible, the single-thread per-
formance of designated “foreground” threads, while still permit-
ting other “background” threads to share resources. Since back-
ground threads on such an SMT machine have a near-zero perfor-
mance impact on foreground threads, we refer to the background
threads as transparent threads. Transparent threads are ideal for
performing low-priority or non-critical computations, with appli-
cations in process scheduling, subordinate multithreading, and on-
line performance monitoring.

To realize transparent threads, we propose three mechanisms
for maintaining the transparency of background threads: slot pri-
oritization, background thread instruction-window partitioning,
and background thread flushing. In addition, we propose three
mechanisms to boost background thread performance without sac-
rificing transparency: aggressive fetch partitioning, foreground
thread instruction-window partitioning, and foreground thread
flushing. We implement our mechanisms on a detailed simulator
of an SMT processor, and evaluate them using 8 benchmarks, in-
cluding 7 from the SPEC CPU2000 suite. Our results show when
cache and branch predictor interference are factored out, back-
ground threads introduce less than 1% performance degradation
on the foreground thread. Furthermore, maintaining the trans-
parency of background threads reduces their throughput by only
23% relative to an equal priority scheme.

To demonstrate the usefulness of transparent threads, we study
Transparent Software Prefetching (TSP), an implementation of
software data prefetching using transparent threads. Due to its
near-zero overhead, TSP enables prefetch instrumentation for all
loads in a program, eliminating the need for profiling. TSP, with-
out any profile information, achieves a 9.52% gain across 6 SPEC
benchmarks, whereas conventional software prefetching guided by
cache-miss profiles increases performance by only 2.47%.

This research was supported by NSF Computer Systems Architecture grant
#CCR-0093110 and NSF CAREER Award #CCR-0000988.

1 Introduction

Simultaneous multithreading (SMT) processors achieve high
processor throughput by exploiting ILP between independent
threads as well as within a single thread. The increased processor
throughput provided by SMT, however, comes at the expense of
single-thread performance. Because multiple threads share hard-
ware resources simultaneously, individual threads get fewer re-
sources than they would have otherwise received had they been
running alone. Furthermore, existing resource allocation poli-
cies, such as ICOUNT [25] and FPG [13], favor threads with high
ILP, steering resources to threads whose instructions pass through
the pipeline the most efficiently. Threads that utilize processor
resources less efficiently receive fewer resources and run even
slower.

Our work investigates resource allocation policies for SMT
processors that preserve, as much as possible, the single-thread
performance of designated high-priority or “foreground” threads,
while still permitting other low-priority or “background” threads
to share resources. Our approach allocates resources to foreground
threads whenever they can use them and regardless of how ineffi-
ciently those resources might be used, thus permitting foreground
threads to run as fast as they would have run on a dedicated SMT
machine. At the same time, we only allocate spare resources to
background threads that foreground threads would have otherwise
left idle, thus allowing background threads to share resources with-
out degrading foreground thread performance. Since the back-
ground threads on such an SMT machine are imperceptible to the
foreground threads (at least from a resource sharing standpoint),
we refer to the background threads as transparent threads.

Transparent threads are ideal for performing low-priority or
non-critical computations. Several applications of multithreading
involve such low-priority computations, and thus map naturally
onto transparent threads:

Process Scheduling. Transparent threads can assist in
scheduling multiprogrammed workloads onto SMT processors.
When a latency-sensitive process enters a multiprogrammed work-
load (for example, when an interactive process receives an event),
all non-latency-sensitive processes can be down-graded to run as
transparent threads. During the time that the latency-sensitive or

foreground process is active, the transparent threads yield all pro-
cessor resources necessary for the foreground process to run as
fast as possible. At the same time, the transparent threads are not
shut out completely, receiving any resources that the foreground
process is unable to use.

Subordinate Multithreading. Transparent threads can sup-
port subordinate multithreading [5, 8]. Subordinate threads per-
form computations on behalf of a primary thread to increase its
performance. Recently, there have been several proposals for
subordinate multithreading, using subordinate threads to perform
prefetching (also known as pre-execution) [2, 6, 7, 12, 18, 26],
cache management [9], and branch prediction [5]. Unfortunately,
the benefit of these techniques must be weighed against their cost.
If the overhead of subordinate computation outweighs the opti-
mization benefit, then applying the optimization may reduce rather
than increase performance. For this reason, detailed profiling is
necessary to determine when optimizations are profitable so that
optimizations can be applied selectively to minimize overhead.

Transparent threads enable subordinate multithreading opti-
mizations to be applied all the time. Since transparent threads
never take resources away from foreground threads, subordinate
threads that run as transparent threads incur zero overhead; hence,
optimizations are always profitable, at worst providing zero gain.
With transparent threading support, a programmer (or compiler)
could apply subordinate threading optimizations blindly. Not only
does this relieve the programmer from having to perform profiling,
but it also increases the optimization coverage resulting in poten-
tially higher performance.

Performance Monitoring. Finally, transparent threads can
execute profiling code. Profiling systems often instrument profile
code directly into the application [3, 11, 21]. Unfortunately, this
can result in significant slowdown for the host application. To min-
imize the impact of the instrumentation code, it may be possible
to perform the profiling functionality inside transparent threads.
Similar to subordinate multithreading, profile-based transparent
threads would not impact foreground thread performance, and for
this reason, could enable the use of profiling code all the time.

This paper investigates the mechanisms necessary to realize
transparent threads for SMT processors. We identify the hardware
resources inside a processor that are critical for single-thread per-
formance, and propose techniques to enable background threads
to share them transparently with foreground threads. In this paper,
we study the transparent sharing of two resources that impact per-
formance the most: instruction slots and instruction buffers. We
also discuss transparently sharing a third resource, memories, but
we do not evaluate these solutions in this paper. Next, we propose
techniques to boost transparent thread performance. Using our ba-
sic resource sharing mechanisms, transparent threads receive hard-
ware resources only when they are idle. Under these conservative
assumptions, transparent threads can exhibit poor performance.
We propose additional techniques that detect when resources held
by foreground threads are not critical to their performance, and
aggressively reallocate them to transparent threads.

To study the effectiveness of our techniques, we undertake an
experimental evaluation of transparent threads on a detailed SMT
simulator. Our evaluation proceeds in two parts. First, we study

transparent threads in the context of multiprogramming. These
experiments stress our mechanisms using diverse workloads, and
reveal the most important mechanisms for enforcing transparency
across a wide range of applications. We find our mechanisms are
quite effective, permitting low-priority processes running as trans-
parent threads to induce less than 1% performance degradation
on high-priority processes (excluding cache and branch predictor
interference). Furthermore, our mechanisms degrade the perfor-
mance of transparent threads by only 23% relative to an equal pri-
ority scheme. Second, we study Transparent Software Prefetching
(TSP), an implementation of software data prefetching of affine
and indexed array references [15] using transparent threads. By
off-loading prefetch code onto transparent threads, we achieve vir-
tually zero-overhead software prefetching. We show this enables
software prefetching for all candidate memory references, thus
eliminating the need to perform profiling a priori to identify cache-
missing memory references. Our results show TSP without profile
information achieves a 9.52% gain across 6 SPEC benchmarks,
whereas conventional software prefetching guided by cache-miss
profiles increases performance by only 2.47%.

The rest of the paper is organized as follows. Section 2 presents
our mechanisms in detail. Next, Section 3 describes our simulation
framework used to perform the experimental evaluation. Then,
Section 4 studies transparent threads in the context of multipro-
gramming and Section 5 studies TSP. Section 6 discusses related
work. Finally, Section 7 concludes the paper.

2 Transparent Threads

This section presents the mechanisms necessary to support
transparent threads. First, Section 2.1 discusses the impact of re-
source sharing on single-thread performance in an SMT proces-
sor. Next, Section 2.2 presents the mechanisms for transparently
sharing two classes of resources, instruction slots and buffers, and
discusses possible solutions for transparently sharing a third class,
memories. Finally, Section 2.3 presents the mechanisms for boost-
ing transparent thread performance.

2.1 Resource Sharing

Figure 1 illustrates the hardware resources in an SMT proces-
sor pipeline. The pipeline consists of three major components:
fetch hardware (multiple program counters, a fetch unit, a branch
predictor, and an I-cache), issue hardware (instruction decode, reg-
ister rename, instruction issue queues, and issue logic), and exe-
cute hardware (register files, functional units, a D-cache, and a
reorder buffer). Among these hardware resources, three are dedi-
cated. Each context has its own program counter and return stack
(the return stack is part of the branch predictor module in Fig-
ure 1). In addition, each context effectively has its own register file
as well since the integer and floating point register files, while cen-
tralized, are large enough to hold the architected registers from all
contexts simultaneously. All other hardware resources are shared
between contexts.

Simultaneously executing threads increase processor through-
put by keeping shared hardware resources utilized as often as
possible, but degrade each others’ performance by competing for

S
S

S

S
S

S
B

ra
nc

h
Pr

ed
ic

to
r

Instruction Cache

PC
PC

PC
Fetch
Unit PC

Instruction

Reorder

BufferInteger

Floating Point
Instruction Queue

fp
registers

int
registers

fp

int

Fetch Queue

Decode /
Register
Rename

M

M

B
S

S

S

S

B

B

B

Instruction Queue

Issue
Logic

Issue
Logic

S

S

Data Cache

M

units

ld-st
units

Figure 1. SMT processor hardware (diagram adapted from [25]). Each shared hardware resource is labeled with a letter signifying
one of three resource classes: instruction slots (S), instruction buffers (B), and memories (M).

these resources. The goal of transparent threading, therefore, is to
allocate a shared resource to a background thread only when it is
not competing with a foreground thread for the same resource. To
provide more insight, we group the shared hardware resources into
three classes–instruction slots, instruction buffers, and memories–
and discuss their resource allocation properties. Each shared re-
source in Figure 1 is labeled with its resource class, using the la-
bels “S,” “B,” and “M,” respectively.

Instruction slots are pipeline stages. The fetch, decode, re-
name, issue, writeback, and commit stages contain instruction
slots, typically equal in number to the width of the machine.
In addition, functional units also contain slots, typically one per
functional unit per cycle of latency (assuming a fully pipelined
unit). Instruction buffers hold stalled instructions. Figure 1 shows
four buffers: the instruction fetch queue holds fetched instructions
waiting to be decoded and renamed, the integer and floating point
instruction queues hold instructions waiting on operands and/or
functional units, and the reorder buffer holds instructions waiting
to commit. Finally, memories are cache structures. The I- and D-
caches as well as the branch predictor tables in Figure 1 make up
this category.

The ramifications for allocating a shared resource to a back-
ground thread depend on its resource class. Allocating an instruc-
tion slot to a background thread impacts the foreground thread on
the current cycle only. Instructions normally occupy slots for a
single cycle. While there are exceptions to this rule (for example
a load instruction that suffers a cache miss in its data-cache access
stage), we find these cases do not create resource conflicts fre-
quently. Therefore, background threads can use instruction slots
transparently as long as there is no conflict with the foreground
thread on the cycle of allocation. In contrast, allocating an instruc-
tion buffer entry to a background thread potentially impacts the
foreground thread on future cycles. Instructions typically occupy
buffers for many cycles, particularly in the reorder buffer where in-
structions remain until all preceding instructions (including those
performing long-latency operations) commit. Therefore, allocat-
ing a buffer entry to a background thread can cause resource con-
flicts with the foreground thread in the future even if the resource
is idle on the cycle of allocation.

Compared to instruction slots and buffers, memory resource

sharing has a less direct impact on foreground thread performance.
Rather than taking an execution resource away from the fore-
ground thread, the use of memory resources by a background
thread can increase the number of performance-degrading events
experienced by the foreground thread (i.e., branch mispredictions
and cache misses). Similar to instruction buffers, the impact does
not occur at the time of use, but rather, at a point in the future.1

2.2 Transparency Mechanisms

Having discussed the resource sharing problem in Section 2.1,
we now present several mechanisms that permit background
threads to share resources transparently with the foreground
thread. We present one mechanism for sharing instruction slots,
two for sharing instruction buffers, and finally, we discuss possi-
ble solutions for sharing memories.

Instruction Slots: Slot Prioritization. Since instruction
slots are normally held for a single cycle only, we allocate an in-
struction slot to a background thread as long as the foreground
thread does not require the slot on the same cycle. If the fore-
ground thread competes for the same instruction slot resource, we
give priority to the foreground thread and retry the allocation for
the background thread on the following cycle. We call this mech-
anism slot prioritization.

As described in Section 2.1, every pipeline stage has instruc-
tion slots; however, we implement slot prioritization in the fetch
and issue stages only. We find that prioritizing slots in additional
pipeline stages does not increase the transparency of background
threads. To implement slot prioritization in the fetch stage, we
modify the SMT processor’s fetch priority scheme. Our default
scheme is ICOUNT [25]. When choosing the threads to fetch from
on each cycle, we artificially increase the instruction count for all
background threads by the total number of instruction window en-
tries, thus giving fetch priority to foreground threads always re-
gardless of their instruction count values. Background threads re-

1One shared resource left out of our discussion here is rename registers.
From our experience, there is very little contention on rename registers
given a reasonable number of them. Hence, we do not consider rename
register sharing in our design of transparent threads.

ceive fetch slots only when the foreground thread cannot fetch, for
example due to a previous I-cache miss or when recovering from
a branch misprediction. Slot prioritization in the issue stage is im-
plemented in a similar fashion. We always issue foreground thread
instructions first; background thread instructions are considered
for issue only when issue slots remain after all ready foreground
thread instructions have been issued.

Instruction Buffers: Background Thread Instruction-
Window Partitioning. Compared to instruction slots, trans-
parently allocating instruction buffer resources is more challeng-
ing because resource allocation decisions impact the foreground
thread on future cycles. It is impossible to guarantee at allo-
cation time that allocating an instruction buffer entry to a back-
ground thread will not cause a resource conflict with the fore-
ground thread. Determining this would require knowing for how
long the background thread will occupy the entry as well as know-
ing the number of buffer entries the foreground thread will request
in the future.

We propose two solutions for transparently allocating instruc-
tion buffers. First, we limit the maximum ICOUNT value for
background threads. When a background thread reaches this in-
struction count limit, it is not allowed to consume fetch slots
even if the foreground thread leaves some fetch slots idle. The
background thread remains locked out of the fetch stage until its
ICOUNT value drops. We call this mechanism background thread
instruction-window partitioning.

The background thread instruction-window partitioning
scheme ensures the total number of background thread instruc-
tions in the instruction fetch queue and the reorder buffer never
exceeds its instruction count limit. Notice this does not guaran-
tee that background threads never take instruction buffer resources
away from the foreground thread. If the foreground thread tries
to consume most or all of the instruction buffer resources, it can
still “collide” with the background threads in the buffers and be
denied buffer resources. However, this scheme limits the damage
that background threads can inflict on the foreground thread. By
limiting the maximum number of buffer entries allocated to back-
ground threads, a large number of entries can be reserved for the
foreground thread.

Instruction Buffers: Background Thread Flushing. In
our second scheme for transparently allocating instruction buffers,
we permit background threads to occupy as many instruction
buffer entries as they can (under the constraint that the foreground
thread gets all the fetch slots it requests), but we pre-emptively
reclaim buffer entries occupied by background threads when nec-
essary. We call this mechanism background thread flushing.

Background thread flushing works in the following manner.
First, we trigger background thread flushing whenever the fore-
ground thread tries to allocate an instruction buffer entry but all
entries of that type are filled. There are four instruction buffers,
as shown in Figure 1, whose allocation can trigger flushing: the
instruction fetch queue, the integer and floating point instruction
queues, and the reorder buffer. Among these four instruction
buffers, we have observed that reorder buffer contention is re-
sponsible for the most performance degradation in the foreground
thread (in fact, contention for the other instruction buffers usually
occurs when the reorder buffer is full). For simplicity, we trigger

flushing only when the foreground thread is unable to allocate a
reorder buffer entry.

Once flushing is triggered, we select a background thread to
flush. We compare the ICOUNT values of all background threads
and pick the thread with the largest value. From this thread, we
flush the N youngest instructions in the reorder buffer, where N
is the width of the machine. (If the background thread occupies
fewer than N reorder buffer entries, we flush all of its entries).
Any instructions in the integer or floating point instruction queues
corresponding to flushed reorder buffer entries are also flushed. In
addition, we flush all instruction fetch queue entries belonging to
this thread. Finally, we roll back the thread’s program counter and
register file map to the youngest unflushed instruction. Notice our
flushing mechanism is similar to branch misprediction recovery;
therefore, most of the hardware necessary to implement it already
exists. However, our mechanism requires checkpointing the reg-
ister file map more frequently since we flush to an arbitrary point
in the reorder buffer rather than to the last mispredicted branch.
In Section 3, we will discuss techniques for reducing the cost of
implementing background thread flushing.

Compared to background thread instruction-window partition-
ing, background thread flushing requires more hardware support;
however, it potentially permits background threads to share in-
struction buffer resources more transparently. Background thread
flushing guarantees the foreground thread always gets instruc-
tion buffer resources, using pre-emption to reclaim resources from
background threads if necessary. At the same time, background
thread flushing can provide higher throughput compared to back-
ground thread instruction-window partitioning. If the foreground
thread does not use a significant number of instruction buffer en-
tries, the background threads can freely allocate them because
there is no limit on the maximum number of entries that back-
ground threads can hold.

Memories: Possible Solutions. As our results in Section 4
will show, sharing instruction slot and instruction buffer resources
has the greatest impact on foreground thread performance, while
sharing memories has a less significant performance impact. For
this reason, we focus on the first two classes of resources, and we
do not evaluate mechanisms for transparently sharing memories in
this paper.

We believe memory resources, e.g., branch predictor tables and
caches, can be transparently shared using approaches similar to
those described above. One possible approach is to limit the max-
imum number of locations that a background thread can allocate
in the memories. Memory resources are used by mapping an ad-
dress to a memory location. For branch predictors, a combination
of the branch address and a branch history pattern is typically used
to index into the branch predictor table. For caches, a portion of
the effective memory address is used to index into the cache. Con-
sequently, utilization of the memory resources can be limited by
modifying the mapping function and using a reduced number of
address bits to form the index. Background threads can use the
modified mapping function, hence using a fewer number of mem-
ory locations. Foreground threads can use the normal mapping
function to access the full resources provided by the memories.

2.3 Performance Mechanisms

In Section 2.2, we focused on maintaining background thread
transparency; however, achieving high background thread perfor-
mance is also important. Unfortunately, as Section 4 will show, the
resource sharing mechanisms presented in Section 2.2 can starve
background threads, leading to poor performance. This section
presents several additional mechanisms for increasing resource al-
location to background threads without sacrificing transparency.
We present one mechanism for increasing fetch slot allocation, and
two mechanisms for increasing instruction buffer allocation.

Fetch Instruction Slots: Fetch Partitioning. The most
important instruction slot resources are the fetch slots because the
frequency with which a thread receives fetch slots determines its
maximum throughput. As described in Section 2.2, fetch slot pri-
oritization always gives priority to the foreground thread by arti-
ficially increasing the ICOUNT values of the background threads.
Even though the foreground thread always gets priority for fetch,
the background thread can still get a significant number of fetch
slots if the SMT employs an aggressive fetch partitioning scheme.

The most basic fetch partitioning scheme is to permit only one
thread to fetch every cycle, and to give all the fetch slots to that
single thread. Assuming an ICOUNT fetch priority scheme, this
basic fetch partitioning scheme is called ICOUNT.1.N [25], where
N is the fetch width. Under ICOUNT.1.N with slot prioritization,
background threads receive fetch slots only when the foreground
thread cannot fetch at all. If the foreground thread fetches even
a single instruction, all N fetch slots on that cycle are allocated
to the foreground thread since only one thread can fetch per cy-
cle. In our SMT processor model, we assume the only times the
foreground thread cannot fetch are 1) if it has suffered an I-cache
miss, in which case it stalls until the cache miss is serviced, or 2)
if it has suffered a branch mispredict, in which case it stalls until
mispredict recovery completes.

If instead of allowing only a single thread to fetch per cycle,
multiple threads are allowed to fetch per cycle, then background
threads can receive significantly more fetch slots. In this paper, we
evaluate the ICOUNT.2.N [25] fetch partitioning scheme which
chooses up to N instructions for fetch from 2 threads every cycle.
Under ICOUNT.2.N with slot prioritization, the foreground thread
still gets highest priority for fetch; however, background threads
can fetch anytime the foreground thread is unable to consume all
N fetch slots on a given cycle. In our SMT processor model, we
assume the foreground thread terminates fetching on a given cycle
if it encounters a predict-taken branch or if it fetches up to an I-
cache block boundary. Under these assumptions, it is rare for the
foreground thread to fetch N instructions per cycle, opening up
significantly more spare slots for background threads to consume.

Instruction Buffers: Foreground Thread Instruction-
Window Partitioning. The combination of mechanisms de-
scribed in Section 2.2 can easily starve background threads of in-
struction buffer resources. Since the foreground thread always gets
fetch priority under slot prioritization, and since the background
thread’s allocation of instruction buffer entries is limited under ei-
ther background thread instruction-window partitioning or back-
ground thread flushing, it is possible for the foreground thread to

consume all instruction buffer resources. Once this happens, the
background thread may rarely get buffer entries even if it is allo-
cated fetch slots.

We propose two solutions for increasing background thread in-
struction buffer allocation that mirror the mechanisms for transpar-
ently allocating instruction buffers presented in Section 2.2. First,
just as we limit the maximum ICOUNT value for background
threads, we can also limit the maximum ICOUNT value for fore-
ground threads. When the foreground thread reaches this instruc-
tion count limit, it is not allowed to consume additional fetch slots
until its ICOUNT value drops. We call this mechanism foreground
thread instruction-window partitioning.

By limiting the maximum number of foreground thread in-
structions in the instruction buffers, we reserve some buffer en-
tries for the background threads. However, similar to background
thread instruction-window partitioning, this approach is not com-
pletely transparent since it allows background threads to take re-
sources away from the foreground thread. The performance im-
pact can be minimized, though, by choosing a large foreground
thread ICOUNT limit.

Instruction Buffers: Foreground Thread Flushing. The
second scheme for increasing background thread instruction buffer
allocation is to pre-emptively reclaim buffer entries occupied
by the foreground thread, and to reallocate them to background
threads, i.e., foreground thread flushing. While arbitrary flushing
of the foreground thread will degrade its performance, the impact
can be minimized if flushing is initiated at appropriate times. We
initiate foreground thread flushing when a cache-missing load in-
struction from the foreground thread reaches the head of the re-
order buffer.2 During such long-latency memory stalls, the in-
struction buffer entries occupied by the foreground thread do not
contribute to its throughput, so flushing will have minimal im-
pact on performance. After flushing, we temporarily disallow the
foreground thread from fetching new instructions, thus permitting
background threads to fetch into and use the flushed entries. Then,
after some number of cycles, we commence fetching for the fore-
ground thread with the intent of fully recovering the flushed in-
structions by the time the memory stall completes.

To avoid degrading foreground thread performance, the num-
ber of flushed instructions, F , and the number of cycles we allow
for flush recovery, T , must be commensurate with the number of
cycles that the cache-missing load remains stalled at the head of
the reorder buffer. We call this time the residual cache-miss la-
tency, R. If R is large, we can afford to flush more foreground
thread instructions since there is more time for recovery, thus free-
ing a larger number of buffer entries. However, if R is small, we
must limit the number of flushed instructions since the recovery
time is itself limited. Because we expect R to vary on every cache
miss, we rely on hardware to estimate R each time we initiate fore-
ground thread flushing, and then select appropriate F and T values
to dynamically control the number of flushed instructions and the
timing of flush recovery.

2Similar to background thread flushing, we flush the youngest fore-
ground thread instructions from the tail of the reorder buffer, all corre-
sponding instructions in the integer and floating point instruction queues,
and all instructions in the instruction fetch queue belonging to the fore-
ground thread.

Processor Parameters
Hardware Contexts 4
Issue Width 8
Fetch Queue Size 32 entries
Instruction Queue Size 32 Int, 32 FP entries
Load-Store Queue Size 64 entries
Reorder Buffer Size 128 entries
Int/FP Units 8/8
Int Latency 1 cycle
FP Add/Mult/Div Latency 2/4/12 cycles
Rename Registers 100 Int, 100 FP

Branch Predictor Parameters
Branch Predictor Hybrid gshare/Bimodal
gshare Predictor Size 4096 entries
Bimodal Predictor Size 2048 entries
Meta Table Size 1024 entries
BTB Size 2048 entries
Return-of-Stack Size 8 entries

Memory Parameters
L1 Cache Size 32K I and 32K D (split)
L2 Cache Size 512K (unified)
L1/L2 Block Size 32/64 bytes
L1/L2 Associativity 4-way/4-way
L1/L2 Hit Time 1/10 cycles
Memory Access Time 122 cycles

Table 1. SMT simulator settings used for the experiments.

We use a cycle counter for every foreground thread load in-
struction that suffers a cache miss to estimate R. When a load in-
struction initially suffers a cache miss, we allocate a cycle counter
to the load, clear the counter contents, and increment the counter
on every cycle thereafter. When the cache-missing load reaches
the head of the reorder buffer, we compute R by subtracting the
counter’s value from the main memory miss penalty. In Section 3,
we will discuss the choice of F and T values as a function of R.

3 Simulation Framework

Our simulation framework is based on the SMT simulator
from [14]. This simulator uses the out-of-order processor model
from SimpleScalar v2.0, augmented to simulate an SMT pipeline.
To evaluate transparent threads, we extended this basic SMT sim-
ulator to model the mechanisms presented in Section 2, namely
the two mechanisms for sharing instruction slots (slot prioritiza-
tion and fetch partitioning) and the four mechanisms for sharing
instruction buffers (background and foreground thread instruction
window partitioning, and background and foreground thread flush-
ing). Table 1 reports the simulator settings we use in our experi-
ments. These settings model a 4x8-way issue SMT processor with
32-entry integer and floating point instruction queues and a 128-
entry reorder buffer.

When simulating our instruction window partitioning schemes,
we assume a maximum background and foreground thread
ICOUNT limit of 32 and 112 instructions, respectively. For
fetch partitioning, our simulator models both the ICOUNT.1.8 and
ICOUNT.2.8 schemes, as discussed in Section 2.3. ICOUNT.2.8
requires fetching 16 instructions from 2 threads (8 from each
thread) on every cycle [25], and using slot prioritization to se-
lect 8 instructions out of the 16 fetched instructions. To provide

R < 8 F=0 T=0
8 ≤ R < 16 F=8 T=4
16 ≤ R < 32 F=16 T=8

32 ≤ R F=48 T=16

Table 2. Choice of the number of instructions to flush, F ,
and the number of flush recovery cycles, T , as a function of
the residual cache-miss latency, R.

Name Type Input FastFwd Sim
VPR SPECint 2000 reference 60M 233M
BZIP SPECint 2000 reference 22M 126M
GZIP SPECint 2000 reference 170M 140M
EQUAKE SPECfp 2000 reference 18M 1186M
ART SPECfp 2000 reference 20M 71M
GAP SPECint 2000 reference 105M 157M
AMMP SPECfp 2000 reference 110M 2439M
IRREG PDE Solver 144K nodes 29M 977M

Table 3. Benchmark summary. The first three columns
report the name, type, and inputs for each benchmark. The
last two columns report the number of instructions in the
fast forward and simulated regions.

the fetch bandwidth necessary, our I-cache model contains 8 in-
terleaved banks, and accounts for all bank conflicts. In addition
to simulating contention for I-cache banks, we also simulate con-
tention for rename registers. We assume all contexts share 100
integer and 100 floating point rename registers in addition to the
per-context architected registers, as indicated in Table 1.

As described in Section 2.3, our foreground thread flushing
mechanism dynamically selects the number of instructions to
flush, F , and the number of flush recovery cycles, T , based on the
residual cache-miss latency, R, at the time flushing is initiated. Ta-
ble 2 reports the F and T values used by our simulator for a range
of R values. Since our flushing mechanisms (for both background
and foreground threads) flush to an arbitrary point in the reorder
buffer, they require frequent register map checkpointing (see Sec-
tion 2.2). For maximum flexibility, checkpointing every instruc-
tion would be necessary. To reduce hardware cost, however, our
simulator models checkpointing every 8th instruction only. When
flushing is triggered, we compute the number of instructions to
flush as normal, described in Sections 2.2 and 2.3 for background
and foreground thread flushing, respectively. Then, we flush to
the nearest checkpointed instruction, rounding up when flushing
the background thread (more aggressive) and rounding down when
flushing the foreground thread (more conservative).

In addition to the hardware specified in Tables 1 and 2, our sim-
ulator also provides ISA support for multithreading. We assume
support for a fork instruction that sets the program counter of a
remote context and then activates the context. We also assume sup-
port for suspend and resume instructions. Both instructions
execute in 1 cycle; however, suspend causes a pipeline flush of
all instructions belonging to the suspended context. Finally, we
assume support for a kill instruction that terminates the thread
running in a specified context ID. Our multithreading ISA support
is used extensively for performing Transparent Software Prefetch-
ing, described later in Section 5.

To drive our simulation study, we use the 8 benchmarks listed
in Table 3. Four of these benchmarks are SPECInt CPU2000

||0.0

|0.2

|0.4

|0.6

|0.8

|1.0

 N
or

m
al

iz
ed

 IP
C

EP
SP

BP
BF

PC
PP

VPR-BZIP

EP
SP

BP
BF

PC
PP

VPR-GZIP

EP
SP

BP
BF

PC
PP

VPR-EQK

EP
SP

BP
BF

PC
PP

VPR-ART

EP
SP

BP
BF

PC
PP

ART-BZIP

EP
SP

BP
BF

PC
PP

ART-VPR

EP
SP

BP
BF

PC
PP

ART-EQK

EP
SP

BP
BF

PC
PP

EQK-GZIP

Figure 2. Normalized IPC of the foreground thread when running simultaneously with a single background thread. The bars
represent different transparent sharing mechanisms: equal priority (EP), slot prioritization (SP), background thread instruction
window partitioning (BP), background thread flushing (BF), private caches (PC), and private predictors (PP).

benchmarks, three are SPECfp CPU2000 benchmarks, and the last
is an iterative PDE solver for computational fluid dynamics prob-
lems. In all our experiments, we use functional simulation to fast
forward past each benchmark’s initialization code before turning
on detailed simulation. The size of the fast forward and simulated
regions are reported in the last two columns of Table 3.

4 Evaluating Transparent Threads

Our experimental evaluation of transparent threads consists of
two major parts. First, in this section, we characterize the perfor-
mance of our transparent threading mechanisms. Then, in Sec-
tion 5, we investigate using transparent threads to perform soft-
ware data prefetching.

4.1 Methodology

This section characterizes the performance of our transparent
threading mechanisms by studying them in the context of mul-
tiprogramming. We perform several multiprogramming experi-
ments, each consisting of 2 - 4 benchmarks running simultane-
ously on our SMT simulator. A single benchmark from the work-
load is selected to run as a foreground thread, while all other
benchmarks run as background threads. From these experiments,
we observe the degree to which our mechanisms maintain back-
ground thread transparency (Section 4.2) as well as the ability of
our mechanisms to increase transparent thread throughput (Sec-
tion 4.3).

From the 8 applications listed in Table 3, we use the first 5
for our multiprogramming experiments, grouping benchmarks to-
gether based on resource usage characteristics. Of particular sig-
nificance is a benchmark’s reorder buffer occupancy. Benchmarks
with high reorder buffer occupancy (typically caused by frequent
long-latency cache misses) use more instruction buffer resources,
whereas benchmarks with low reorder buffer occupancy use fewer
instruction buffer resources. Among the 5 benchmarks we use,
BZIP and ART have high occupancy, EQUAKE and GZIP have
low occupancy, while VPR has medium occupancy. In order to
stress our mechanisms and to study their behavior under diverse
workload characteristics, we group together benchmarks that ex-
hibit both high and low reorder buffer occupancy, using both types
as foreground and background threads.

||0.0

|0.2

|0.4

|0.6
|0.8

|1.0

 N
or

m
al

iz
ed

 IP
C

EP
SP

BP
BF

PC
PP

VPR-BZIP-ART-GZIP

EP
SP

BP
BF

PC
PP

EQUAKE-BZIP-ART-GZIP

Figure 3. Normalized IPC of the foreground thread when
running simultaneously with three background threads. The
bars are the same as those in Figure 2.

4.2 Background Thread Transparency

Figures 2 and 3 report the normalized IPC of the foreground
thread when running simultaneously with a single background
thread and with three background threads, respectively. Groups
of bars represent sets of simultaneously running benchmarks, each
specified with a label that names the foreground benchmark first
followed by the background benchmark(s). Bars within each
group represent different transparent sharing mechanisms from
Section 2.2 applied incrementally. In particular, the first four bars
report normalized IPC with no mechanisms (i.e., all threads have
equal priority), with slot prioritization, with background thread
instruction window partitioning and slot prioritization, and with
background thread flushing and slot prioritization, labeled EP, SP,
BP, and BF, respectively. All experiments use the ICOUNT.2.8
fetch partitioning scheme, with all other background thread per-
formance mechanisms disabled. Finally, all bars are normalized
to the IPC of the foreground thread running on a dedicated SMT
machine (i.e., without any background threads).

Figure 2 shows background thread flushing with slot priori-
tization (BF bars) is the most effective combination of transpar-
ent sharing mechanisms. With these mechanisms, the foreground
thread achieves 97% of its single-thread performance averaged
across the 8 benchmark pairs, compared to only 70% of single-
thread performance when pairs of benchmarks are run with equal
priority (EP bars). Background thread instruction window parti-
tioning with slot prioritization (BP bars) also provides good trans-
parency, with the foreground thread achieving 91% of its single-
thread performance; however, our results show BP is less effective
than BF in all cases. Slot prioritization alone (SP bars) is the least
effective, allowing the foreground thread to achieve only 84% of

||0.0

|0.2

|0.4

|0.6

|0.8

|1.0

 F
et

ch
 S

lo
t U

sa
ge

VPR BZIP GZIP EQUAKE ART

Used Slots

Unused Taken Branch

Unused IFQ Full

Unused Branch Mispredict

Figure 4. Fetch slot usage for our benchmarks when each
benchmark is run on a dedicated SMT processor.

its single-thread performance. Figure 3 shows the same qualita-
tive results as Figure 2, demonstrating our mechanisms are just as
effective when maintaining transparency for multiple background
threads.

Having quantified the transparency of our background threads,
we now examine the extent to which the foreground thread’s per-
formance degradation is due to sharing memories, a type of re-
source sharing that our mechanisms do not address. In our SMT
model, threads share two types of memory structures: caches and
branch predictor tables. To isolate the impact of sharing these
structures on foreground thread performance, we replicate them,
thus removing any contention due to sharing. The last two bars of
each group in Figures 2 and 3 report the normalized foreground
thread IPC assuming the best mechanisms (i.e., those used for the
BF bars) when each context has private L1 and L2 caches (PC
bars), and when each context has both private caches and a pri-
vate branch predictor (PP bars). These results show when cache
and branch predictor conflicts are removed, the foreground thread
achieves essentially all of its single-thread performance. We con-
clude that our mechanisms enable the background threads to use
instruction slots and instruction buffers in a completely transpar-
ent fashion, and that further improvements in foreground thread
performance can only come by addressing memory sharing.

While Figures 2 and 3 quantify the extent to which background
threads are transparent, they do not provide insight into how our
mechanisms achieve transparency. To address this issue, we first
study how our benchmarks use processor resources. Figure 4 illus-
trates the usage of the fetch stage, a critical SMT resource. In Fig-
ure 4, we break down the total available fetch slots into used and
unused slots when each benchmark is run on a dedicated SMT pro-
cessor. Unused slots are further broken down into three categories
indicating the cause for the unused slots: wasted slots around a
taken branch (after the branch on the same cycle and before the
target on the next cycle), a full instruction fetch queue, and re-
covery from a branch mispredict. (A fourth possible category is
I-cache stalls, but an insignificant number of unused slots are due
to I-cache stalls in our benchmarks, so we omit this category in
Figure 4).

Figure 4 sheds light on why our transparent threading mecha-
nisms work. First, the “IFQ Full” components indicate the degree
to which our benchmarks occupy instruction buffers, showing that
BZIP and ART have high instruction buffer occupancy. In Fig-
ure 2, we see that any workload using these benchmarks as a back-
ground thread exhibits poor foreground thread performance under
equal priority. When using equal priority, BZIP and ART fre-
quently compete for instruction buffer entries with the foreground
thread, degrading its performance. Consequently, in these work-

loads, background thread flushing significantly improves fore-
ground thread performance since flushing reclaims buffer entries,
making the foreground thread resilient to background threads with
high instruction buffer occupancy. Conversely, Figure 4 shows
GZIP and EQUAKE have low instruction buffer occupancy. In
Figure 2, we see that any workload using these benchmarks as
a background thread exhibits reasonable foreground thread perfor-
mance under equal priority, and only modest gains due to flushing.

Second, anytime a workload uses a benchmark with a large
“IFQ Full” component as a foreground thread, slot prioritization
provides a large foreground thread performance gain and back-
ground thread flushing becomes less important. In Figure 2, the
ART-VPR and ART-EQK (and to some extent, ART-BZIP) work-
loads exhibit this effect. When slot prioritization is turned on, ART
gets all the fetch slots it requests and thus acquires a large number
of instruction buffer entries (due to its high instruction buffer occu-
pancy), resulting in a large performance boost. At the same time,
the background thread receives fewer buffer entries, reducing the
performance impact of flushing.

4.3 Transparent Thread Performance

Figure 5 reports the normalized IPC of the background thread
using background thread flushing and slot prioritization for the
multiprogrammed workloads from Figure 2. Bars within each
workload group represent different transparent thread performance
mechanisms from Section 2.3 applied incrementally. Specifically,
we report normalized IPC with the ICOUNT.1.8 fetch partition-
ing scheme without and with foreground thread flushing, with
the ICOUNT.2.8 fetch partitioning scheme without and with fore-
ground thread flushing, with the ICOUNT.2.8 scheme and fore-
ground thread instruction window partitioning, and with no mech-
anisms (i.e., equal priority), labeled 1B, 1F, 2B, 2F, 2P, and EP,
respectively. All bars are normalized to the IPC of the background
thread running on a dedicated SMT machine.

Not surprisingly, the ICOUNT.1.8 fetch partitioning scheme re-
sults in the lowest background thread performance, allowing the
background thread to achieve only 19% of its single-thread per-
formance on average. Going from ICOUNT.1.8 (1B and 1F bars)
to ICOUNT.2.8 (2B and 2F bars), we see a significant increase
in background thread IPC. This is particularly true in workloads
where the foreground thread exhibits a large number of “Taken
Branch” unused fetch slots (e.g., VPR and EQUAKE as shown
in Figure 4) since this is the resource that ICOUNT.2.8 exploits
compared to ICOUNT.1.8.

In addition to showing a benefit for aggressive fetch parti-
tioning, Figure 5 also shows foreground thread flushing is im-
portant across all workloads, for both ICOUNT.1.8 (1F bars) and
ICOUNT.2.8 (2F bars). With foreground thread flushing, the back-
ground thread achieves 38% and 46% of its single-thread perfor-
mance using the ICOUNT.1.8 and ICOUNT.2.8 schemes, respec-
tively. Furthermore, our results show flushing is more important
when the foreground thread has a high instruction buffer occu-
pancy (e.g., ART as shown in Figure 4). In these workloads,
foreground thread flushing can provide the background thread
with significantly more instruction buffer resources, resulting in
large performance gains. Interestingly, Figure 5 shows foreground
thread window partitioning combined with ICOUNT.2.8 (2P bars)

||0.0

|0.2

|0.4

|0.6

|0.8

|1.0

 N
or

m
al

iz
ed

 IP
C

1B
1F

2B
2F

2P
EP

VPR-BZIP

1B
1F

2B
2F

2P
EP

VPR-GZIP

1B
1F

2B
2F

2P
EP

VPR-EQK

1B
1F

2B
2F

2P
EP

VPR-ART

1B
1F

2B
2F

2P
EP

ART-BZIP

1B
1F

2B
2F

2P
EP

ART-VPR

1B
1F

2B
2F

2P
EP

ART-EQK

1B
1F

2B
2F

2P
EP

EQK-GZIP

Figure 5. Normalized IPC of the background thread when the foreground thread runs simultaneously with a single background
thread. The bars represent different transparent thread throughput mechanisms: ICOUNT.1.8 without (1B) and with (1F) foreground
thread flushing, ICOUNT.2.8 without (2B) and with (2F) foreground thread flushing, ICOUNT.2.8 with foreground thread window
partitioning (2P), and equal priority (EP). All bars use background thread flushing with slot prioritization.

||0.0

|0.2

|0.4

|0.6

|0.8

|1.0

 N
or

m
al

iz
ed

 IP
C

2P
2F

PC
PP

VPR-BZIP

2P
2F

PC
PP

VPR-GZIP

2P
2F

PC
PP

VPR-EQK

2P
2F

PC
PP

VPR-ART

2P
2F

PC
PP

ART-BZIP

2P
2F

PC
PP

ART-VPR

2P
2F

PC
PP

ART-EQK

2P
2F

PC
PP

EQK-GZIP

Figure 6. Normalized IPC of the foreground thread when running simultaneously with a single background thread. The bars
represent different transparent thread throughput mechanisms: foreground thread instruction window partitioning (2P), foreground
thread flushing (2F), private caches (PC), and private predictors (PP). All bars use background thread flushing with slot prioritization.

achieves the highest background thread performance, allowing
the background thread to achieve 56% of its single-thread perfor-
mance (though this comes at a price, as we will see in a moment).
Overall, we see that foreground thread flushing (2F bars) and in-
struction window partitioning (2P bars) improve the IPC of the
background thread to within 23% and 13% of the equal priority
scheme (EP bars), respectively.

Although our mechanisms improve background thread perfor-
mance, it is imperative that they do not sacrifice background thread
transparency in the process. Figure 6 plots the normalized IPC of
the foreground thread for several of the experiments in Figure 5.
This data shows that the increased background thread performance
of foreground thread instruction window partitioning compared to
foreground thread flushing comes at the expense of reduced fore-
ground thread performance (the 2F bars achieve 95% of single-
thread performance whereas the 2P bars achieve only 84%). We
conclude that foreground thread flushing is more desirable since
it increases background thread performance without sacrificing
transparency. Similar to Figures 2 and 3, the last two bars of
Figure 6 remove cache and branch predictor conflicts from the
2F bars, showing that practically all of the remaining foreground
thread performance degradation is due to memory sharing.

5 Transparent Software Prefetching

This section proposes and evaluates a new subordinate mul-
tithreading technique, called Transparent Software Prefetching
(TSP). TSP performs software data prefetching by instrumenting
the prefetch code in a separate prefetch thread rather than inlin-
ing it into the main computation code, as is done in conventional
software prefetching [4, 10, 15]. Prefetch threads run as back-

ground threads, prefetching on behalf of the computation thread
which runs as a foreground thread. Because they run transparently,
prefetch threads incur near-zero overhead, and thus never degrade
the computation thread’s performance.

TSP solves a classic problem associated with software
prefetching: determining what to prefetch. Since conventional
software prefetching incurs runtime overhead, it is important to
instrument prefetching only for load instructions that suffer a suffi-
ciently large memory access latency so that the benefit of prefetch-
ing outweighs the cost of executing the instrumentation code.
Identifying the loads for which prefetching is profitable typically
requires gathering detailed cache-miss profiles (e.g., summary [1]
or correlation [16] profiles). Unfortunately, such profiles are cum-
bersome to acquire, and may not accurately reflect memory behav-
ior for arbitrary program inputs. In contrast, TSP eliminates the
need for profiling. Since transparent sharing mechanisms guaran-
tee prefetch threads never degrade the computation thread’s per-
formance, prefetching becomes profitable for all loads, regardless
of their cache-miss behavior. Consequently, TSP can be applied
naively, without ever worrying about the profitability of a transfor-
mation.

5.1 Implementation

Instrumenting TSP involves several steps. First, we select any
loop containing one or more affine array or indexed array refer-
ences as a candidate for prefetch instrumentation. When nested
loops are encountered, we consider prefetch instrumentation for
the inner-most loop only. (Fig. 7a shows an inner-most loop which
we will use as an illustrative example). For each selected loop, we
copy the loop header and place it in a separate prefetch procedure

void LOOP1() {1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

/* Prologue */
for (i=0; i<PD; i++) {
 prefetch(&b[i]);
}

/* Main Loop */

prefetch(&b[i+PD]);
prefetch(&a[b[i]]);
prefetch(&z[i]);

do {

}
/* Epilogue Loop */
for (; i<=N; i++) {
prefetch(&a[b[i]]);
prefetch(&z[i]);

do {

}

(a) COMPUTATION THREAD

1 smt_global.param[0] = N;
2

resumeID = LOOP1;3
resumeContext(cxt_id);4
 for (i=0; i<=N; i++) {5

6
y = y + z[i];7
x = x + a[b[i]];8

}9
10 KILL(cxt_id);

1 void DISPATCHER() {
 while(1) {2
 suspendContext(cxt_id);
(resumeID)();

}

3
4
5
6 }

 int N = smt_global.param[0];

(c) DISPATCHER LOOP

(b) PREFETCH THREAD

for (i=0; i<=N−PD; i++) {

 consumer++;

producer++;

producer++;

producer = 0, consumer = 0;

} while (producer > consumer + PD);

 } while (producer > consumer + PD);

Figure 7. TSP instrumentation example. (a) Computation
thread code. (b) Prefetch thread code. (c) Dispatcher loop
for implementing a recycled thread model.

(Fig. 7b, line 8). Inside the copied loop, we insert prefetch state-
ments for each affine array and indexed array reference appearing
in the original loop body (Fig. 7b, lines 9-11).

Second, we insert code into the computation thread to initiate
the prefetch thread (Fig. 7a, lines 1-4). Since this code is executed
by the computation thread, its overhead is not transparent. We use
a recycled thread model [22] to reduce the cost of thread initiation.
Rather than create a new thread everytime prefetching is initiated,
the prefetch thread is created once during program startup, and en-
ters a blocking dispatch loop (Fig. 7c). To initiate prefetching, the
computation thread communicates a PC value through memory,
and executes a resume instruction to dispatch the prefetch thread
(Fig. 7a, lines 3-4). After prefetching for the computation loop has
been completed, the prefetch thread returns to the dispatch loop,
thus “recycling” it for the next dispatch. In addition to thread ini-
tiation code, we also insert a kill instruction to terminate the
prefetch thread in the event it is still active when the computation
thread leaves the loop (Fig. 7a, line 10).

Third, we insert code to pass arguments. Any variable used
by the prefetch thread that is a local variable in the computation
thread must be passed. Communication of arguments is performed
through loads and stores to a special argument buffer in memory
(Fig. 7a, line 1 and Fig. 7b, line 2). Although the computation
thread’s argument passing code is not executed transparently, we
find this overhead is small since only a few arguments are typically
passed and the argument buffer normally remains in cache.

Finally, we insert code to synchronize the prefetch thread with
the computation thread. Because the prefetch thread executes only
non-blocking memory references, it naturally gets ahead of the
computation thread. We use a pair of loop-trip counters to keep
the prefetch thread from getting too far ahead. One counter is up-
dated by the computation thread (Fig. 7a, line 6), and another is
updated by the prefetch thread (Fig. 7b, line 12). Every iteration,
the prefetch thread compares the two counters, and continues only
if they differ by less than the desired prefetch distance [15]; other-

wise, the prefetch thread busy-waits (Fig. 7b, lines 13-14). While
the prefetch thread may incur a significant number of busy-wait
instructions, these instructions execute transparently.

Note, for indexed array references, we insert prologue and epi-
logue loops to software pipeline the index array and data array
prefetches (Fig. 7b, lines 3-6 and lines 16-23). This technique,
borrowed from conventional software prefetching for indexed ar-
rays [15], properly times the prefetch of serialized index array and
data array references.

5.2 Performance Evaluation

In this section, we evaluate the performance of TSP, and com-
pare it against two versions of conventional software prefetch-
ing: one that naively instruments prefetching for all load instruc-
tions, and one that uses detailed cache-miss profiles to instrument
prefetching selectively. For selective software prefetching, we use
a predicate to evaluate prefetch profitability, and only instrument
those static loads for which the predicate is true:

PrefetchOverhead < L1miss rate ∗ L2hit time +

L2miss rate ∗ Memlatency

We assume a per-load prefetch cost of 12 instructions and an
IPC of 1.5, yielding a prefetch overhead of 8 cycles per dynamic
load. The L1 and L2 miss rates are acquired by performing cache-
miss profiling in each benchmark’s simulation region given in Ta-
ble 3, and we use the L2 hit time and Memory latency reported
in Table 1. Once candidate loads have been selected, we instru-
ment software prefetching by following the well-known algorithm
in [15]. Instrumentation for both TSP and conventional software
prefetching is performed by hand.

Figure 8 presents performance results for the different prefetch-
ing schemes, using 7 out of the 8 benchmarks from Table 3 (we
do not evaluate GZIP). In Figure 8, we report the normalized ex-
ecution time for no prefetching (NP), naive software prefetching
applied to all candidate loads (PF), selective software prefetching
applied to loads meeting our predicate based on cache-miss pro-
files (PFS), and TSP applied to all candidate loads. Each bar in
the graph is broken down into three components: time spent ex-
ecuting useful instructions, time spent executing prefetch-related
instructions, and time spent stalled on data memory accesses, la-
beled “Busy,” “Overhead,” and “Memory,” respectively. All values
are normalized to the NP bars. Finally, a label appears above each
bar reporting the number of instrumented loops. These numbers
show a significant reduction in loop coverage when performing
selective software prefetching.

Our results show TSP outperforms naive conventional software
prefetching on every benchmark. Across the 6 SPEC benchmarks,
TSP provides a 9.52% performance boost on average, whereas
naive conventional software prefetching suffers a 1.38% perfor-
mance degradation, reducing performance in 4 out of the 6 SPEC
benchmarks. This performance discrepancy is due to a 19.6%
overhead when using naive software prefetching compared to a
1.35% overhead when using TSP. Despite the fact that prefetch-
ing is instrumented for all candidate loads, TSP’s negligible over-
head enables it to avoid degrading performance even for overhead-
sensitive benchmarks like GAP and EQUAKE where there is very

||0.0

|0.2

|0.4

|0.6

|0.8

|1.0

|1.2

 N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Memory
Overhead
Busy

NP

10

PF

6

PFS

10

TSP

10

 NF

VPR

NP

7

PF

4

PFS

7

TSP

7

 NF

BZIP

NP

12

PF

3

PFS

12

TSP

12

 NF

GAP

NP

17

PF

4

PFS

17

TSP

,17

 NF

EQUAKE

NP

13

PF

7

PFS

13

TSP

13

 NF

ART

NP

3

PF

1

PFS

3

TSP

,3

 NF

AMMP

NP

2

PF

1

PFS

2

TSP

2

 NF

IRREG

Figure 8. Normalized execution time for different prefetching schemes: no prefetching (NP), naive conventional software prefetch-
ing (PF), selective conventional software prefetching (PFS), Transparent Software Prefetching (TSP), and TSP without foreground
thread flushing (NF). The label appearing above each bar reports the number of instrumented loops.

little memory stall. Compared to naive software prefetching, se-
lective software prefetching reduces overhead down to 14.13% by
using profile information, resulting in a 2.47% performance gain
averaged across the 6 SPEC benchmarks. However, TSP still
outperforms selective software prefetching on every benchmark.
Even for benchmarks where conventional software prefetching
performs exceptionally well (e.g., Irreg), TSP still performs bet-
ter.

The performance gains demonstrated by TSP in Figure 8 sug-
gest that transparent threads not only eliminate overhead, but they
also provide enough resources for the prefetch threads to make suf-
ficient forward progress. To evaluate the contribution of our trans-
parent thread throughput mechanisms, the last set of bars in Fig-
ure 8, labeled “NF,” report the normalized execution time of TSP
without foreground thread flushing. The NF bars clearly show the
complete set of mechanisms is critical since the performance gains
of TSP are significantly reduced when foreground thread flushing
is turned off.

6 Related Work

Several researchers have studied hardware resource allocation
mechanisms [13, 23, 24] and operating system scheduling poli-
cies [19, 20] for SMT processors. In particular, Tullsen and
Brown [24] first proposed flushing to reclaim execution resources
stalled on long latency memory operations. Their work was
the motivation behind several of our mechanisms. Compared to
these previous techniques, however, our work tries to improve
single-thread performance rather than focusing solely on proces-
sor throughput.

Raasch and Reinhardt [17] proposed fetch policies for SMT
processors that consider priority in addition to throughput. They
assume a single latency-critical foreground thread executes simul-
taneously with one or more low-priority background threads, and
evaluate fetch policies that favor the foreground thread over the
background thread(s). Our approach is similar; however, we focus
on mechanisms that permit background threads to share resources
with the foreground thread in a completely transparent fashion.
Furthermore, we apply priority mechanisms for slots and buffers
along the entire pipeline, rather than just for the fetch stage.

Chappell et al [5] and Dubois and Song [8] proposed subordi-
nate threads as a means for improving main thread performance.
In [8], the authors demonstrate stride prefetching can be imple-
mented in software using subordinate threads. Our TSP tech-

nique is similar, but we use transparent threading mechanisms
to eliminate the overhead of the subordinate prefetch threads.
Subordinate threads have also been used to execute exception
handlers [27], and to pre-execute performance-degrading instruc-
tions [2, 6, 7, 12, 18, 26]. Our work could be used to minimize the
overhead of these techniques as well.

7 Conclusion

This paper investigates resource allocation mechanisms for
SMT processors that preserve, as much as possible, the single-
thread performance of designated foreground threads, while
still allowing background or “transparent” threads to share re-
sources. Our mechanisms ensure transparent threads never take
performance-critical resources away from the foreground thread,
yet aggressively allocate those resources to transparent threads that
do not contribute to foreground thread performance. To demon-
strate the potential uses of transparent threads, our work also pro-
poses an implementation of software prefetching on transparent
threads, called Transparent Software Prefetching. TSP solves the
classic problem of determining what to prefetch. Due to the near-
zero overhead of transparent threads, TSP can be applied naively,
without ever worrying about the profitability of a transformation.

On a suite of multiprogramming workloads, our results show
transparent threads introduce a 3% foreground thread performance
degradation on average, and when contention on cache and branch
predictor resources are factored out, the performance degradation
is less than 1% for all workloads. At the same time, transpar-
ent threads run only 23% slower compared to an equal priority
scheme. In our evaluation of Transparent Software Prefetching,
our results show TSP achieves a 9.52% performance gain across
6 SPEC benchmarks, whereas conventional software prefetching
degrades performance by 1.38%. Even when detailed cache-miss
profiles are used to guide instrumentation selectively, conven-
tional software prefetching only achieves a 2.47% performance
gain. The performance advantage of TSP comes from its 1.35%
overhead, compared to a 14.13% overhead for selective software
prefetching.

Based on our preliminary results, we conclude that applica-
tions running on out-of-order superscalar cores leave a significant
number of unused resources that can be allocated to non-critical
computations in a completely non-intrusive fashion. We believe
our work has only begun to look at the potential uses for such

“free” execution bandwidth. In future work, we hope to further ex-
plore the applications of transparent threads, including multipro-
grammed workload scheduling, subordinate multithreading opti-
mization, and on-line performance monitoring, as eluded to at the
beginning of this paper.

8 Acknowledgments

The authors would like to thank Dongkeun Kim for contribut-
ing to the simulator development effort. We also thank Seungryul
Choi for helpful discussions, and the anonymous referees for their
constructive comments on earlier drafts of this paper.

References

[1] S. G. Abraham, R. A. Sugumar, B. R. Rau, and R. Gupta. Predictabil-
ity of Load/Store Instruction Latencies. In 26th Annual International
Symposium on Microarchitecture, December 1993.

[2] M. Annavaram, J. M. Patel, and E. S. Davidson. Data Prefetching by
Dependence Graph Precomputation. In 28th Annual International
Symposium on Computer Architecture, June 2001.

[3] T. Ball and J. R. Larus. Efficient Path Profiling. In 29th Annual
International Symposium on Microarchitecture, December 1996.

[4] D. Callahan, K. Kennedy, and A. Porterfield. Software Prefetching.
In 4th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, April 1991.

[5] R. S. Chappell, S. P. Kim, S. K. Reinhardt, and Y. N. Patt. Simulta-
neous Subordinate Microthreading (SSMT). In 26th Annual Interna-
tional Symposium on Computer Architecture, May 1999.

[6] J. D. Collins, D. M. Tullsen, H. Wang, and J. P. Shen. Dynamic Spec-
ulative Precomputation. In 34th Annual International Symposium on
Microarchitecture, December 2001.

[7] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y.-F. Lee,
D. Lavery, and J. P. Shen. Speculative Precomputation: Long-range
Prefetching of Delinquent Loads. In 28th Annual International Sym-
posium on Computer Architecture, June 2001.

[8] M. Dubois and Y. H. Song. Assisted Execution. In Technical Re-
port CENG 98-25, Department of EE-Systems, University of South-
ern California, October 1998.

[9] E. G. Hallnor and S. K. Reinhardt. A Fully Associative Software-
Managed Cache Design. In 27th Annual International Symposium
on Computer Architecture, June 2000.

[10] A. C. Klaiber and H. M. Levy. An Architecture for Software-
Controlled Data Prefetching. In 18th Annual International Sympo-
sium on Computer Architecture, May 1991.

[11] J. R. Larus and eric Schnarr. EEL: Machine-Independent Executable
Editing. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, June 1995.

[12] C.-K. Luk. Tolerating Memory Latency through Software-Controlled
Pre-Execution in Simultaneous Multithreading Processors. In 28th
Annual International Symposium on Computer Architecture, June
2001.

[13] K. Luo, M. Franklin, S. S. Mukherjee, and A. Seznec. Boosting SMT
Performance by Speculation Control. In 15th International Parallel
and Distributed Processing Symposium, April 2001.

[14] D. Madon, E. Sanchez, and S. Monnier. A Study of a Simultaneous
Multithreaded Processor Implementation. In Euro-Par, August 1999.

[15] T. Mowry. Tolerating Latency in Multiprocessors through Compiler-
Inserted Prefetching. In Transactions on Computer Systems, Febru-
ary 1998.

[16] T. C. Mowry and C.-K. Luk. Predicting Data Cache Misses in Non-
Numeric Applications Through Correlation Profiling. In 30th Annual
International Symposium on Microarchitecture, December 1997.

[17] S. E. Raasch and S. K. Reinhardt. Applications of Thread Prioritiza-
tion in SMT Processors. In Multithreaded Execution, Architecture,
and Compilation Workshop, January 1999.

[18] A. Roth and G. S. Sohi. Speculative Data-Driven Multithreading. In
7th International Conference on High Performance Computer Archi-
tecture, January 2001.

[19] A. Snavely and D. M. Tullsen. Symbiotic Jobscheduling for a Simul-
taneous Multithreading Processor. In 9th International Conference
on Architectural Support for Programming Languages and Operat-
ing Systems, November 2000.

[20] A. Snavely, D. M. Tullsen, and G. Voelker. Symbiotic Jobscheduling
with Priorities for a Simultaneous Multithreading Processor. In In-
ternational Conference on Measurement and Modeling of Computer
Systems, June 2002.

[21] A. Srivastava and A. Eustace. ATOM: A System for Building Cus-
tomized Program Analysis Tools. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, June 1994.

[22] J. G. Steffan, C. B. Colohan, and T. C. Mowry. Architectural Sup-
port for Thread-Level Data Speculation. In Technical Report CMU-
CS 97-188,CMU-CS 97-188, Carnegie Mellon University, November
1997.

[23] D. Tullsen, S. Eggers, and H. Levy. Simultaneous Multithreading:
Maximizing On-Chip Parallelism. In 22nd Annual International
Symposium on Computer Architecture, June 1995.

[24] D. M. Tullsen and J. A. Brown. Handling Long-latency Loads in a Si-
multaneous Multithreading Processor. In 34th Annual International
Symposium on Microarchitecture, December 2001.

[25] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and
R. L. Stamm. Exploiting Choice: Instruction Fetch and Issue on an
Implementable Simultaneous Multithreading Processor. In 23rd An-
nual International Symposium on Computer Architecture, May 1996.

[26] C. Zilles and G. Sohi. Execution-Based Prediction Using Specula-
tive Slices. In 28th Annual International Symposium on Computer
Architecture, June 2001.

[27] C. B. Zilles, J. S. Emer, and G. S. Sohi. The Use of Multithreading
for Exception Handling. In 32nd Annual International Symposium
on Microarchitecture, November 1999.

