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Abstract

This paper presents a new modulo scheduling algo-
rithm for clustered microarchitectures. The main feature
of the proposed scheme is that the assignment of instruc-
tions to clusters is done by means of graph partitioning
algorithms that are guided by a pseudo-scheduler. This
pseudo-scheduler is a simplified version of the full instruc-
tion scheduler and estimates key constraints that would be
encountered in the final schedule.

The final scheduling process is bi-directional and in-
cludes on-the-fly spill code generation. The proposed
scheme is evaluated against previous scheduling ap-
proaches using the SPECfp95 benchmark suite. Our model-
ing results show that better schedules are obtained for most
programs across a range of different architectures. For a 4-
cluster VLIW architecture with 32 registers and a 2-cycle
inter-cluster communication delay we obtain an average
speedup of 38.5%.

1. Introduction

We are presently seeing rapid growth in the embedded
and low-power processor domains. A number of these re-
cent processors use a clustered microarchitecture that phys-
ically partitions functional elements and resources. The
components of each cluster are simpler, and thus, are faster
and consume less energy than more unified designs. Clus-
ter components can be laid out close together, which can re-
duce signal transmission delays [18]. Long, slow wires are
used to interconnect clusters. The use of clustering is espe-
cially noticeable in the DSP market, including Analog De-
vices’ TigerSHARC [14], BOPS’s ManArray[31], HP/ST’s
Lx [11], and the Equator MAP1000 [27]. All of these pro-

cessors implement a VLIW architecture, and rely on the
compiler to perform instruction scheduling.

The compiler plays a critical role in the success of a
clustered VLIW processor. The compiler must carefully
schedule code to make best use of the multiple resources
provided. In this paper we study instruction scheduling for
clustered processors. We limit our focus to scheduling soft-
ware pipelined loops [4], since a majority of the execution
on this class of processors is found in loop bodies. We
propose a new modulo scheduling algorithm for clustered
architectures with a distributed register file and functional
units.

One major goal of any scheduling process targeting a
clustered architecture is to properly assign instructions to
particular clusters, since this will determine the amount of
latency introduced by inter-cluster communications. A sec-
ond objective of the scheduler is to carefully balance the
workload (instructions, register pressure, etc.) across all
clusters. For this purpose, we propose an approach that
performs cluster assignment while considering instruction
scheduling. Previous work has shown that performing these
two objectives concurrently can be beneficial. However,
since cluster assignment typically considers many alterna-
tive assignments, computing a complete schedule for each
alternative assignment would be expensive (computation-
ally). Instead, the proposed scheme computes a pseudo-
schedule, estimating the key constraints that will greatly in-
fluence the outcome of the scheduling process.

The proposed scheme is evaluated for 678 different loops
taken from the SPECfp95 benchmark suite, which repre-
sent around 95% of the total execution time of these pro-
grams. The results for different configurations show that
this new scheme outperforms previously proposed tech-
niques for most cases in all benchmarks and for a range of
clustered architectures.



The remainder of this paper is organized as follows. Sec-
tion 2 provides an overview of clustered VLIW microarchi-
tectures and modulo scheduling. Section 3 describes the
proposed scheduling scheme. Section 4 reports on the per-
formance and compares it with previous proposals. Section
5 reviews a number of related works. Section 6 summarizes
the work and describes directions for further improvement.

2. Background

In this section we describe the assumed microarchitec-
ture and review the main concepts of modulo scheduling.

2.1. Microarchitecture

Centralized resources tend to increase design complexity
and limit the scalability of a design. Clustered VLIW archi-
tectures decentralize some components. A single cluster is
composed of multiple functional units sharing a common
register file. We consider three types of functional units: 1)
integer arithmetic, 2) floating-point arithmetic and 3) mem-
ory access. Multiple clusters share a common memory hier-
archy and communicate operands among clusters using a set
of dedicated register buses. The ISA includes instructions
that read a value from a register in one cluster and copy it
into another register of a different cluster. For the sake of
simplicity, we assume homogeneous clusters although the
proposed algorithms can easily be generalized for heteroge-
neous clusters.

Figure 1 shows the assumed microarchitecture. VLIW
instructions are issued to each cluster in a lockstep fashion
(all clusters work on the same VLIW instruction together).
During each cycle, every cluster will fetch the operations
contained in their corresponding part of a VLIW instruction.
A full description of the VLIW instruction set used in this
work can be found in [36].

2.2. Modulo Scheduling

Modulo scheduling is an instruction scheduling tech-
nique for program loops [24, 33]. It has been shown to be
a very effective technique for exploiting the available par-
allelism in cyclic codes. Modulo scheduling attempts to re-
duce the Initiation Interval (II) associated with a loop (the
II is a measure of the number of cycles between succes-
sive iterations of a loop), while respecting data dependen-
cies and resource requirements. For loops with high trip
counts, the II can be used to approximate the overall run-
time of the loop.

High register bus pressure caused by inter-cluster com-
munications and high register pressure (i.e., many operands
live concurrently) can dramatically increase the II [26]. In
this work we look to provide an scheduling approach that
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addresses all the above issues, exposing instruction-level
parallelism while reducing register pressure, register bus
pressure, and functional unit pressure.

Modulo scheduling uses a Data Dependence Graph
(DDG) to represent the relationships between different op-
erations in a loop. The set of nodes (V ) represents the set of
instructions and the set of edges (E) represents the depen-
dences among these instructions. The problem of assigning
instructions to clusters can be stated as a graph partitioning
problem. Each subgraph of the resulting partition includes
the instructions that will be executed in that cluster.

3. Proposed Algorithm

Figure 2 provides the high-level flow of the proposed al-
gorithm. First of all, an initial partition is computed taking
into account the minimum initiation interval (MII), an esti-
mation of the register pressure, the pressure on the register
buses, and the resource constraints for each cluster. MII
is the maximum between IIres (the initiation interval due
to resources) and IIrec (the initiation interval due to recur-
rences); these two values are computed as in [32].

Then, instructions are scheduled according to their com-
puted cluster assignment. If an instruction cannot be sched-
uled in the assigned cluster, the instruction is moved to a
different cluster. If an instruction cannot be scheduled in
any cluster, the II is increased, the partition is modified and
the scheduling process is restarted. We describe these steps
in more detail next.

3.1. Computing an Initial Partition

The initial partition is computed through a multi-level
partitioning strategy [17], which has been shown to be very
effective. Our multi-level partitioning strategy works as fol-
lows:

1. First, a preliminary partition is generated by coars-
ening the nodes of the DDG. Coarsening consists of
choosing pairs of nodes in the graph and merging these
nodes into a single coarser node. This produces a new
graph with fewer nodes, with each coarsened node rep-
resenting multiple instructions. Coarsening is repeated
iteratively until a graph containing as many nodes as
the number of intended partitions (i.e., the number of
clusters) is obtained. This graph represents the pre-
liminary partition, in which all instructions of a coarse
node are assigned to a given cluster.

2. Then, this preliminary partition is enhanced by walk-
ing back through all the intermediate graphs in reverse
order. For each graph, some nodes are moved from
one cluster to another, but only if the move improves a

particular figure of merit (e.g., register pressure, func-
tional unit pressure).

We describe each of these steps in more detail below.

3.1.1 Graph Coarsening

The coarsening process involves performing a matching in
the current graph. For a graph G = (V;E), a matching
is a set M of the edges in E such that each node can be
connected to at most one of the selected edges. Each edge
of the graph is weighted using two values: 1) the impact on
the schedule if we increase the delay on this edge, and 2)
the slack time [19], which represents the number of cycles
that could be added to this edge without affecting execution
time. At each step of the coarsening process we select the
maximum weight matching, which was first described by
Gabow in [15], and implemented in our work as described
in [28]. The pair of nodes connected by each selected edge
are then fused into a single coarser node.

3.1.2 Enhancing the Preliminary Partition

A number of heuristics have been proposed for improving
a partition, most of them based on the work of Kernighan
and Lin [23] and the improvements provided by Fiduccia
and Mattheyes [13]. The general idea in these algorithms
is to move nodes from one subgraph to another until no fur-
ther improvement can be achieved. For our problem it is not
always easy to decide whether a movement improves a par-
tition. Our goal is to produce a partition that can be sched-
uled, minimizing the execution time of the loop. For this
purpose, multiple constraints have to be taken into account
such as recurrences with edges between instructions in dif-
ferent clusters, register pressure, bus pressure, length of the
schedule, etc. Much of this information is available only at
scheduling time, so partitioning the graph before scheduling
could lead to bad decisions. On the other hand, scheduling
is done node by node, such that it is difficult to make good
global decisions at scheduling time. Therefore, a scheme
that performs cluster assignment and scheduling at the same
time may be the most effective approach. Since building a
complete schedule is quite an expensive task, the proposed
scheme is based on exploring the solution space for parti-
tioning, but is guided by a a simplified estimation we call a
pseudo-schedule, as we describe next.

3.1.3 Computing a Pseudo-Schedule

To produce a pseudo-schedule, we first compute a lower
bound of the II for the current partition taking into account
bus pressure and recurrences that span multiple clusters:



IIlowerbound = max(IIres; IIrec0 ; IIbus), where
IIbus = dncoms=nbusese � buslat, and

where ncoms is the number of communications necessary
to schedule the partition, nbuses is the number of buses
in the architecture and buslat is the latency of the buses.
To compute IIrec0 , we proceed as in [32], but also take into
account the latency of the edges between instructions in dif-
ferent clusters.

Then, assuming II = IIlowerbound, we try to find a suit-
able slot for each node. Since the pseudo-schedule needs to
be computed as accurately as possible, nodes are scheduled
using the same rules used by the full scheduler 1. There-
fore, according to the ordering of the Swing Modulo Sched-
uler [25], each node is scheduled as close as possible to its
predecessors/successors in order not to increase lifetimes.
Unlike the full scheduler, if we do not find any slot avail-
able to schedule an instruction in the cluster to which it be-
longs, we assign that node to a given cycle even if resources
are not available in this cycle. We determine this cycle as
follows 2:

1. the earliest start [32] minus one if it has only predeces-
sors in the partial schedule,

2. the latest start plus one if it has only successors, or
otherwise

3. the midpoint between the earliest start and latest start.

The intent of decrementing/incrementing the earli-
est/latest start time by one is to penalize this partition by
extending the lifetimes and the length of the schedule. This
penalty is relatively small since this is just an intermedi-
ate partition that can still be improved upon further by later
steps. For case 3, if the node that cannot be scheduled is the
last instruction in a recurrence, a much larger penalty is as-
sessed since introducing an additional delay in a recurrence
usually imposes a significant penalty on performance. In
particular, it is assumed that for this partition:

II = IIlowerbound + 2 � buslat+ 1.

Since splitting a recurrence generally incurs two com-
munications, we penalize the II by 2 * buslat. Note that
for this approximate schedule, an unlimited number of reg-
isters is assumed. However, once the approximate schedule
is computed, the lifetimes required by it, as well as the max-
imum number of lifetimes that overlap is computed (see the
algorithm in Figure 4). These parameters are later used to
guide the heuristics.

1The full scheduler refers to the process of producing a schedule while
respecting all constraints.

2Since the pseudo-schedule is not a real schedule, data dependences
may not be respected.

Proceeding in this way, all nodes are pseudo-scheduled
(assigned to a cycle), searching no more than IIlowerbound
different positions. Thus, the compute time for producing a
pseudo-schedule is linear with II � jV j.

3.1.4 Enhancing Heuristics

In order to determine which node movements between clus-
ters will be beneficial, two different optimizations are at-
tempted. First, if we find any excess workload in a clus-
ter (i.e., when the instructions assigned to a cluster require
more resources than those available), we try to move the
workload to another cluster that has empty slots. Next, we
consider inter-cluster node movements that do not cause
any workload excess and reduce the execution time. Fig-
ure 3 shows a pseudocode for these two enhancing heuris-
tics. They are further described below.

1. Workload Balancing - According to the initiation in-
terval (II) and the resources available in the architec-
ture, there are limited slots to schedule instructions in
each cluster. If the usage of a resource (registers, mem-
ory or functional units (FUs)) in a cluster is not bal-
anced 3, then we will try to move nodes that use this
resource to other clusters where the load on this re-
source is lower.

2. Reducing Execution Time - After improving the
workload balance, we look for a modified partition
that is likely to reduce the execution time of the loop.
For this purpose, precise information on the causes
that could increase execution time are required in or-
der to guide this enhancing step. This information is
obtained from the pseudo-scheduler (see above). This
proceeds as follows: first of all, nodes are moved, one
at a time, to adjacent clusters (a node is adjacent to a
cluster if any of its predecessors/successors is assigned
to that cluster). Then, a pseudo-schedule for every re-
sulting partition is computed. Finally, all the pseudo-
schedules are compared, the best one is selected and
the movement that induced it is used. The best pseudo-
schedule is the one that minimizes execution time (that
is, Texec = II � Niter + lengthsched), where II
and lengthsched (length of the schedule) are estima-
tions obtained from the pseudo-schedule, and Niter(the
number of iterations) is obtained through profiling. In
the case of a tie, the one that minimizes the register
pressure and the bus pressure is chosen. That is, if
IIbus > II the one that minimizes the number of com-
munications is chosen; otherwise, the one that mini-
mizes the cluster with the highest total number of ac-

3In our context, balanced means that there are enough resources in each
cluster to schedule all operations assigned to them.



BEGIN Workload_Balancing:
While (Pressure too high on FUs/memory and

not every move attempted without improvement)
{Foreach cluster

{ Foreach node
{ Try to move any node vi from cluster

Cj to any other cluster;
Compute the resulting FU pressure;

}
}

Pick the best movement;
Update the partition;

}

While (Pressure too high on registers and
not every move attempted without improvement)

{Foreach cluster
{ Foreach node

{ Try to move any node vi from cluster
Cj to any other cluster;

Compute the resulting register pressure;
}

}
Pick the best movement;
Update the partition;

}
END Workload_Balancing

BEGIN Reducing_Execution_Time:
While (Not every move attempted without improvement)

{Forall nodes v adjacent to the cut of the partition
{ Try to move vi from cluster Ci to the adjacent

cluster Cj;
If not beneficial

{ Identify adjacent node u in Cj to move to Ci;
}

}
Pick the best movement;
Update the partition;

}
END Reducing_Execution_Time

Figure 3. Pseudocode for the two enhancing
heuristics.

cumulated lifetime slots (according to the approximate
schedule) is chosen.

When applying the above enhancement, if moving a
node from one cluster to another overloads the second
cluster (i.e. the latter cluster does not have sufficient
resources), we look for a node in the second cluster
such that moving it to the first cluster re-balances the
partition.

In previous work [1], we proposed graph partitioning
algorithms but did not provide approximate schedules to
guide partitioning. As a result, the partitioning decisions
were made with much less relevant information. In this
work, the partitioning algorithms we present have very pre-
cise information produced by the pseudo-scheduler. There-
fore, moving nodes among clusters during the partition-
ing step can target different goals, depending on the most
constraining factors: reducing the number of communi-
cations, spreading register pressure, better splitting recur-
rences among clusters or reducing the length of the sched-

Foreach clusters
{sum = 0;
Foreach node

{ Find the longest lifetime for this node
(i.e., the longest edge, measured in cycles);

sum = sum + longest lifetime;
}

IIreg(cluster) = sum / # of regs per cluster;
}

Select the largest IIreg(cluster).

Figure 4. Pseudocode for the register pres-
sure estimation.

ule. Moreover, the computed pseudo-schedule is quite ac-
curate, especially when the partition is balanced and there
is enough space to schedule all instructions in the cluster
as specified in the partition. We will use the results pre-
sented in [1] as our baseline scheme, since they represent a
state-of-the-art approach to modulo scheduling loops on a
clustered VLIW processor.

3.2. Scheduling the Instructions

Once a partition has been computed, each instruction is
scheduled in the assigned cluster. This scheduling is a bi-
directional scheme borrowed from the approach presented
in URACAM [6], which was shown to be very effective in
terms of exploiting parallelism and reducing register pres-
sure. The URACAM scheduler gives priority to nodes ac-
cording to their criticality and tries to avoid extending life-
times. URACAM also tries to maintain balance across all
critical resources and provides on-the-fly spill code genera-
tion.

Whenever an instruction cannot be scheduled in the clus-
ter assigned by the partition, the other clusters are tried. We
rely on URACAM heuristics to select the best cluster. If the
instruction cannot be scheduled in any cluster, then the II
is increased and the partition is refined.

3.3. Refine the Partition

Once the II is increased, extra slots may remain in clus-
ters. The refining step starts from the previous partition
and tries to utilize these remaining slots. First of all, the
subgraphs that correspond to the nodes in each cluster are
coarsened following the same algorithm as the one de-
scribed in Section 3.1.1. Then, the partition is improved by
using the enhancing heuristics described in Section 3.1.4.
Note that we do not have to consider balancing memory and
FUs during this step since this was done previously.

4. Evaluation

Our algorithms have been implemented using the ICTI-
NEO compiler framework [2] and evaluated for the



Architecture Clusters Regs Register
Bus Lat

Arch I 2 64 1
Arch II 4 64 1
Arch III 4 64 2
Arch IV 2 32 1
Arch V 4 32 1
Arch VI 4 32 2

Table 1. Configurations considered in this
work.

Resource Unified 2-cluster 4-cluster

INT/cluster 4 2 1
FP/cluster 4 2 1

MEM/cluster 4 2 1

Table 2. Clustered VLIW resource configura-
tions.

SPECfp95 benchmarks. The performance figures shown
in this section refer to the modulo scheduling of the inner-
most loops. The 678 loops studied represent 95% of the
total execution time of the programs. We study six differ-
ent architectures, which are defined in Table 1. All archi-
tectures assume a single inter-cluster register bus. Table 2
lists the functional unit resources provided in each cluster.
Table 3 provides functional unit latencies. We report on ma-
chine configurations which vary parameters related to these
design features. We assume a perfect memory system in
this work, though plan to consider memory effects in future
work (since this impacts the cost of a spill).

For each of these configurations, we present results for
our two different scheduling algorithms:

� baseline - A graph partition-based approach [1], that
produces a partition without the aid of a pseudo-
scheduler, and that is focused on reducing the number
of register bus communications.

� PSP - A graph partition-based approach that utilizes
pseudo-scheduler directed partitioning algorithms, as
described in section 3.

Our performance metric is instructions per cycle (IPC).
Note that this metric does not consider the impact of the

Latency INT FP

MEM 2 2
ARITH 1 3

MUL/ABS 2 6
DIV/SQR/TRG 6 18

Table 3. Operation latencies.

cycle time, which is one of the important benefits of clus-
tering.

We present results for 32 and 64 total registers. Recall
that the number of registers per cluster will be the num-
ber of total registers divided by the number of clusters. The
smaller this ratio becomes, the more important careful man-
agement of register pressure will be.

The key feature of the new algorithm is that it consid-
ers all resources when computing the partition. Thus, the
largest benefit should be obtained for the most constrained
configurations. For instance, the baseline algorithm used in
this paper did not take into consideration register pressure,
so we should expect larger benefits when register resources
are limited. When using 64 registers, the most constrained
resource is usually the register bus. Since the baseline algo-
rithm focuses on reducing register bus contention, the ad-
vantages of pseudo-scheduler directed approach should be
moderate.

In Figures 5, 6, and 7, we present IPC numbers for con-
figurations with 64 registers (ArchI, ArchII, and ArchIII, re-
spectively). As expected, we slightly outperform the base-
line for ArchI and ArchII. We obtain higher IPC for all
programs except swim for ArchI and ArchII, and fpppp for
ArchII. On average, the new algorithm is better. For ArchIII
we obtain a bigger benefit, around 10%. To explain this
gain, it is necessary to point out an interesting observation:
an effective way of reducing the number of communications
is to keep instructions that share a common set of operands
in a single cluster. This produces two negative side-effects.
First, register pressure will be increased since a large num-
ber of values will be live in a single cluster. Second, func-
tional unit pressure will increase, which in turn extends the
length of the schedule as well as register lifetimes.

By utilizing our pseudo-scheduler, we can anticipate
these side-effects, keeping them balanced as we arrive at
a refined partition. Since the baseline scheme does not take
into account register pressure when computing the parti-
tion, if register bus pressure is high (as it is in the case of
ArchIII), the baseline algorithm tends to concentrate a lot
of instructions in a single cluster. This, in turn, increases
register pressure. This is the reason why our pseudo-
scheduler guided approach obtains a significant improve-
ment for ArchIII.

When moving from 64 to 32 registers, careful manage-
ment of register pressure and functional unit assignment be-
comes critical. Our pseudo-scheduler should be a lot more
effective for these constrained architectures. In Figure 8 (2
clusters with 32 registers, and a 1-cycle register bus latency)
we outperform the baseline in all programs except swim. In
Figures 9 and 10 we show the results for 4 clusters with
32 registers (ArchV and ArchVI). In these architectures we
outperform the baseline algorithm for all the programs. As
we expected, the gain for these configurations is larger than



the gains obtained for architectures with 64 registers.
By utilizing a pseudo-schedule to obtain precise infor-

mation about the most constrained resources, our proposed
algorithm can significantly improve performance. The more
constrained an architecture, the larger the benefits of using
a pseudo-schedule should be. On the other hand, the per-
formance of these architectures is far from the performance
obtained for a unified architecture possessing the same re-
sources. For example, on average we obtain a 38.5% im-
provement for ArchVI, increasing IPC from 1.87 to 2.59.
For a unified architecture comparable to ArchVI, an IPC of
4.2 was obtained (as reported in [1]).

One down side of our approach is that compile time in-
creases (by an order of 10x when compared with the base-
line). However, since the compile time for the baseline algo-
rithm was shown to be quite short, and VLIW architectures
depend upon aggressive compilation to obtain performance,
this increase in compile time is not a major concern.

5. Related Work

Finding an optimal schedule in a resource constrained
environment is an NP-complete problem. For this reason,
many heuristics have been proposed in an attempt to find
near-optimal schedules. The objectives of past heuristic-
based approaches have had different goals: increasing
throughput [20, 32], minimizing register pressure [9, 8], re-
ducing the effect of the cache misses, or improving several
objectives simultaneously [8, 19, 26, 34]. All of these stud-
ies focused on modulo scheduling algorithms targeting uni-
fied (i.e., non-partitioned) architectures. A comparison of
some of these techniques can be found in [5].

There are several works related to acyclic code schedul-
ing for clustered architectures [3, 7, 10, 21, 30]. The most
closely related work to our ideas include the work of Kailas,
Ebcioglu and Agrawala [22]. They proposed an approach to
cluster assignment, instruction scheduling and register al-
location in a single compilation phase, all based on a list
scheduling scheme. The approach taken in [22] differs from
the approach presented in this paper in that they target in-
struction scheduling for acyclic code and use different clus-
ter assignment heuristics.

A number of modulo scheduling approaches, targeting
clustered VLIW architectures, have been recently proposed:

� Nystrom and Eichenberger [29] investigated cluster
assignment for modulo scheduling, mainly focusing
on minimizing execution overhead due to inter-cluster
communication with a two-step approach:

1. first partitioning the dependence graph of the
loop body (assigning each operation to a cluster),
and

0

1

2

3

4

5

6

7

8

to
m

ca
tv

sw
im

su
2c

or
hy

dr
o2

d

m
gr

id

ap
pl

u
tu

rb
3d

ap
si

fp
pp

p
w

av
e5

Hm
ea

n

In
st

ru
ct

io
n

s 
p

er
 c

yc
le

s

baseline

PSP

Figure 5. IPC numbers for an architecture with
2 clusters, 64 registers, 1 register bus with a
1 cycle register bus latency (Arch I)

2. then scheduling the operations following the
graph partition.

� Fernandes et al. [12] proposed a modulo scheduling
approach integrating scheduling and cluster assign-
ment in a single step. However, they assume an archi-
tecture with an unusual register file organization based
on a set of local queues for each cluster and a queue
file for each communication channel.

� Sánchez and González [36] proposed a unified assign-
and-schedule approach in which cluster selection and
scheduling are done in a single phase. That work was
later extended to deal with a distributed cache mem-
ory [35], and further extended by Gibert et al. [16] to
consider an interleaved cache.

� Codina et al. [6] presented URACAM, which is a
framework to deal with instruction scheduling, cluster
assignment and register allocation in a single phase,
including a unique approach to insert spill code on-
the-fly and provides effective mechanisms to deal with
communications, register and memory pressure at the
same time.

� Zalamea et al. [38] also proposed a technique to clus-
ter assignment, instruction scheduling and register al-
location based on an iterative scheme [32] with some
heuristics to deal with spill code on-the-fly [37].

� Aletà et al. [1] presented a graph-partitioning based ap-
proach with close interaction to the scheduling phase.
The main goal was to improve the results obtained
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Figure 6. IPC numbers for an architecture with
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Figure 7. IPC numbers for an architecture with
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Figure 8. IPC numbers for an architecture with
2 clusters, 32 registers, 1 register bus with a
1 cycle register bus latency (Arch IV)
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Figure 9. IPC numbers for an architecture with
4 clusters, 32 registers, 1 register bus with a
1 cycle register bus latency (Arch V)



0

1

2

3

4

5

6

7

8

to
m

ca
tv

sw
im

su
2c

or
hy

dr
o2

d

m
gr

id

ap
pl

u
tu

rb
3d

ap
si

fp
pp

p
w

av
e5

Hm
ea

n

In
st

ru
ct

io
n

s 
p

er
 c

yc
le

s

baseline

PSP

Figure 10. IPC numbers for an architecture
with 4 clusters, 32 registers, 1 register bus
with a 2 cycle register bus latency (Arch VI)

for a technique that combines cluster assignment, in-
struction scheduling and register allocation in single
phase [6] with the global view of the whole problem
given by a technique based on a partitioning of graph.
This scheme has been used as the baseline for compar-
ison with the proposal of this paper.

6. Summary

We have presented a new modulo scheduling algorithm
for clustered VLIW processors. The main novelty in our
work is the use of a pseudo-scheduler that guides the graph
partitioning process.

We have compared the proposed scheme with a state-of-
the-art approach that is also based on graph partitioning al-
gorithms. Results show that if we exploit an estimate of the
load placed on critical system resources during partitioning
decisions, we can produce better schedules than previous
approaches.

In future work we plan to consider the effects of memory
latency during graph partitioning.
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