Motivation

- Shared hardware like caches & memory introduce timing unpredictability for real-time systems (RTS).
- Worst-case execution time (WCET) analysis for RTS with shared hardware resources is often so pessimistic that the extra processing capacity of multicore systems is negated.
- Different levels of assurance are required for different criticality tasks.

Problem

CPU

L1 L2 cache

Main memory

- b) Memory ref misses L1 & L2 cache – Access latency: 40-100 cycles.
- c) Memory ref misses in TLB – Access latency: >1000 cycles.

- Shared memory shows timing unpredictability. (1) The latency of accessing remote node is significantly longer than local node; (2) conflicts between shared-bank accesses result in unpredictable memory-access latencies.
- Sharing last-level caches (LLCs) results in timing behavior that are exceedingly difficult to characterize for WCETs without excessive pessimism.

Solution

- Our solutions focus on two shared resources: shared caches and memory.
- Controller-Aware Memory Coloring:
 - Design a heap allocator that “colors” memory pages with locality affinity for controller and bank-awareness.
 - Avoid memory accesses to remote node.
 - Reduce conflicts among banks.
- Cache and Bank Isolation:
 - Provide criticality-aware isolation in LLC and DRAM bank.
 - Provide an optimized LLC allocation technique based on linear programming.
 - Isolate the higher-criticality tasks from the operating system (OS).
 - Enable schedulability gains by integrating MC analysis and hardware management.

Controller-Aware Memory Coloring – Solutions & Results

- char * A = (char*) mmap(color id, length, prot | 0x40000000, flag, fd, offset);
- Third parameter triggers our coloring allocator.
- First parameter indicates the memory coloring information.

Cache and Bank Isolation – Solutions & Results

- Criticality-aware optimization techniques based on linear programming are used for allocating LLC.
- Tasks at Level C and OS share the same partition.

Results

- We devised optimized LLC allocation techniques.
- Isolation reduced WCETs by up to 242%.
- MC provisioning improved schedulability for 68% of the scenarios.
- LLC and bank isolation improved schedulability for all scenarios under partitioned earliest-deadline-first (PEDF).
- Combining both approaches enables us to schedule one to two cores’ worth of additional utilization in most cases.
- In run-time experiments, there were no deadline misses at levels A and B. At level C, the least deadline-miss ratio was 1.40x, which is acceptable as level C is soft real-time.

Conclusions

- Designed controller-aware memory coloring techniques to support memory page allocations.
- Designed criticality-aware LLC optimization techniques.
- Provided OS and task isolation in terms of LLC and DRAM banks.
- Avoid remote memory node access.
- Evaluated on Intel and AMD 16 core platforms and I.MX 6 quad-core platform.
- Conducted experiments using synthetic benchmark, Parsec and Data intensive systems (DIS) benchmark.
- Conducted a large-scale overhead-aware schedulability study.
- Conducted run-time experiments to validate our assumptions.