
Bringing the Multicore Revolution to Safety-Critical Cyber-Physical Systems*

Motivation

�Shared hardware like caches & TLBs introduce timing unpredictability

for real-time systems (RTS).

�Worst-case execution time (WCET) analysis for RTS with shared

hardware resources often so pessimistic that extra processing capacity of

multicore systems is negated.

Problem

TLBs – Solution & Results

1University of North Carolina Chapel Hill 2North Carolina State University

PIs: Dr. James Anderson1 & Dr. Frank Mueller2

Students: Bryan Ward1, Jonathan Herman1, Christopher Kenna1, Shrinivas Panchamukhi2

*Funded in part by NSF awards 1239135 and 1239246.

CPU
L1

cache
L2 cache

Main

memory

�a) Memory ref hits in L1 cache – Access latency: 1-4 cycles.

CPU
L1

cache
L2 cache Main

memory

�b) Memory ref misses L1 & L2 cache – Access latency: 40-100 cycles.

W
ay

 0

W
ay

1

W
ay

 7

Color 0

Color 1

Color 31

...

...

T3

T2

T1

Suspended

Locked

Cache Locking

T1 CPU 1

Color Red Color Green

Cache Scheduling

1:……

2:

3: //allocate a huge array

4: int * data = (int *)

calloc(numOfElements,4);

5: pageOffset = 0;

6:

7: //access pages for the first time

8: PAPI read(eventSet, value1);

9: for i = 0 to noOfPagesToAccess do

10: data[pageOffset] = 1;

11: pageOffset = pageOffset + (s *

1024);

12: end for

13: PAPI read(eventSet, value2);

14: initial misses = value2 - value1;

15:

16: //access pages repeatedly

17: GetTimeStamp() nnread TSC

register

18: for i = 0!n do

19: pageOffset = 0;

20: PAPI read(eventSet, value3);

21: for j = 0!noOfPagesToAccess

do

22: temp = data[pageOffSet];

23: process(temp);

24: pageOffset = pageOffset + (s*

1024);

25: end for

26: PAPI read(eventSet, value4);

DTLB misses = DTLB misses +

(value4 -value3);

28: calculateMaxMisses()

29: calculateMinMisses()

30: end for

31: GetTimeStamp()

Pseudo code for TLB reverse engineering

Pages map to same TLB set

50

60

70

80

f
m

is
se

s

No of misses vs no of pages

Initial misses

Repeated access misses
15

20

is
se

s

No of misses vs no of pages accessed

Initial misses

Repeated access miss

Consecutive pages

Caches – Solutions & Results

�b) Memory ref misses L1 & L2 cache – Access latency: 40-100 cycles.

�c) Memory ref misses in TLB – Access latency: +1000 cycles.

�Tighter WCET estimates can be established if we know which

references hit in the cache and which do not.

�Other shared resources like TLBs show similar timing unpredictability.

Solution

� Our solutions focus on two shared resources: shared caches and TLBs.

� Cache Locking:

• Apply a multiprocessor real-time locking protocol to cache colors.

• Treat each job as a critical section.

� Cache Scheduling:

• Apply existing scheduling algorithms (e.g., Rate Monotonic) to

cache accesses.

• Allows for preemptions w.r.t. the cache (see example).

� Reverse engineer the working of TLBs

• Perform experiments to validate our understanding of the TLBs on

different architectures.

• Gain knowledge on the architectural advances made to TLBs.

T2 CPU 2

T3

T4

CPU 3

Preempted Preempted

from redfrom red 2-way set associative

Overhead-Aware

Schedulability Results

0

10

20

30

40

50

0 20 40 60 80

N
o

 o
f

m
is

s

No of pages accessed

0

5

10

0 5 10 15 20

N
o

 o
f

m
is

se
s

No of pages accessed

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0
1
2
3
4
5
6
7
8
9

0 2 4 6 8 10

st
d

 d
ev

ia
ti

o
n

N
o

 o
f

m
is

se
s

Experiment no

No of pages = 1

max no of misses

min no of misses

avg no of misses

initial misses

std dev

35

40

45

50

55

60

65

70

-2

0

2

4

6

8

10

12

14

0 5 10 15

T
h

o
u

sa
n

d
s

o
f

cy
cl

e

N
o

 o
f

m
is

se
s

No of page accesses

Page access vs (misses ,cycles)

Initial misses

rep misses

Cycles

Multiple runs with no of pages =1 Pages map to same TLB set, no of

Repeated accesses = 1

Conclusions

� Developed 2 techniques based on cache coloring

� eliminate cross-core cache evictions.

� Implemented in a mixed-criticality scheduler: LITMUSRT

� Evaluated on an ARM Tegra 3 platform

� Conducted overhead-aware schedulability study

� based on measured overheads.

� Cache scheduling & cache locking � improved schedulability

� over a system with unmanaged cache.

� TLBs not using LRU replacement � maybe PLRU (ongoing work)

� TLB-miss bounds not deterministic � even for accessing <4 pages.

� Current work: mechanisms & policies for TLB predictability

High no. of misses past

the TLB size for x86 Xeon E5

Not indicative of pure LRU replacement.

Max bounds not deterministic. Page accesses and cycles not

proportional.

Cache locking and cache scheduling, significantly improve

hard real-time schedulability.

