
ABSTRACT

YAGNA, KARTHIK. Efficient Collective Communication for Multi-core NOC Interconnects.
(Under the direction of Dr. Frank Mueller.)

Massive multi-core embedded processors with network-on-chip (NoC) architectures are be-

coming common. These architectures provide higher processing capability due to an abundance

of cores. They provide native core-to-core communication that can be exploited via message

passing to provide system scalability. Despite these advantages, multicores pose predictability

challenges that can affect both performance and real-time capabilities.

In this work, we develop efficient and predictable group communication using message pass-

ing specifically designed for large core counts in 2D mesh NoC architectures. We have imple-

mented the most commonly used collectives in such a way that they incur low latency and

high timing predictability making them suitable for balanced parallelization of scalable high-

performance systems and real-time systems alike. Experimental results on a 64 core hardware

platform show that our collectives can significantly reduce communication times by up to 95%

for single packet messages and up to 98% for longer messages with superior performance for

sometimes all message sizes and sometimes only small message sizes depending on the group

primitive. In addition, our communication primitives have significantly lower variance than prior

approaches, thereby providing more balanced parallel execution progress and better real-time

predictability.

© Copyright 2013 by Karthik Yagna

All Rights Reserved

Efficient Collective Communication for Multi-core NOC Interconnects

by
Karthik Yagna

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Computer Networking

Raleigh, North Carolina

2013

APPROVED BY:

Dr. Huiyang Zhou Dr. Yan Solihin

Dr. Frank Mueller
Chair of Advisory Committee

DEDICATION

To my family.

ii

BIOGRAPHY

Karthik Yagna was born in Bangalore, India, on July 18th, 1985 and was raised in a wonderful

family. He completed his schooling in Bangalore, India and graduated in 2004. He studied

Telecommunication Engineering at R.V College of Engineering receiving a Bachelor degree in

2007. After completing college, he worked as a Software Engineer in the field of Computer

Networks and Real-Time Embedded system for over 4 years. He has been part of various teams

at Nortel Networks and Cisco Systems. With a goal to specialize in the field of Computer

Networks and embedded systems, he decided to pursue his Masters at North Carolina State

University in 2011. He has been part of the System Research lab since fall 2012 and focuses

on NoC run-time system design. He will be joining Riverbed Technologies after his Masters to

continue the journey.

iii

ACKNOWLEDGEMENTS

I would like to thank Dr. Frank Mueller, for his invaluable guidance throughout my thesis work.

Your open door policy and availability always encouraged discussions. And our discussions have

always helped me approach the problems with a fresh perspective. Over the last two semesters,

I was able to have a complete research experience : working on challenging problems on next

generation platforms, attending conferences, paper submissions and even giving a talk. I am

forever indebted for providing me with such an opportunity. Thank you again.

I would also like to thank Dr. Huiyang Zhou and Dr. Yan Solihin for serving on my thesis

committee.

Sandhya, thank you for your patience and constant encouragement. You believed in me

even when I doubted myself. You have always been there to cheer me up and give me company

on those long difficult days. You are a wonderful partner, looking forward to the rest of our

journey.

Mom and Dad, thank you for support and putting up with me through this. I am forever

indebted to my Uncle for all his help. Shreyas, for always being there and making this Master’s

program a walk in the park. Without all you wonderful people I would have never lived my

dream.

Chris Zimmer, thank you for your constant help and guidance. Without your awesome code

and setup this thesis would have never been possible. You are a wonderful person and always

wish you the best.

My crazy roommates Varun, Raj and Prashanth, thank you for making every day fun. I

would not have been sane without the constant discussion on ridiculous things.

My fellow lab mates, Nishanth, Srinath, Araash, David, Srinivas, Amir and James, thank

you for making the lab a fun place to be.

Finally, I would like to thank my friends, Shireesh, Suman, Pranam, Ranjitha and Kishore

for the countless fun filled experiences.

iv

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

Chapter 1 Introduction . 1
1.1 Network-On-Chip Architectures . 1
1.2 Wormhole Routing . 3
1.3 XY dimension ordered routing . 3
1.4 Collective communication . 4
1.5 Motivation . 6
1.6 Our Approach . 7
1.7 Hypothesis . 8
1.8 Contributions . 8

Chapter 2 Background . 10
2.1 TilePro64 . 10

2.1.1 Architecture overview . 10
2.1.2 Inter-Tile networks . 10

2.2 OperaMPI . 11
2.2.1 Overview . 11
2.2.2 Collective implementation . 11

2.3 NAS Parallel Benchmarks . 13

Chapter 3 NoCMsg Collectives . 15
3.1 Design . 15

3.1.1 NoC Architecture . 15
3.1.2 NoC Message Layer . 15
3.1.3 Group Communication Primitives . 15

3.2 Implementation . 18
3.2.1 Alltoall and Alltoallv . 19
3.2.2 Barriers . 22
3.2.3 Broadcast . 24
3.2.4 Reduce and AllReduce . 26

Chapter 4 Experimental Results . 28
4.1 Microbenchmarks . 28
4.2 Single packet messages . 29
4.3 Varying message sizes . 31
4.4 NAS Parallel Benchmarks . 34

Chapter 5 Related work . 40

Chapter 6 Conclusion . 43

v

REFERENCES . 44

vi

LIST OF TABLES

Table 1.1 Typical usage of collective communication primitives 5

Table 2.1 Communication Characteristics of NPB . 13

Table 3.1 Summary : Design approaches . 16

Table 4.1 NoCMsg Execution Time Variance . 31
Table 4.2 OperaMPI Execution Time Variance . 31

vii

LIST OF FIGURES

Figure 1.1 Network-on-Chip Architecture . 2
Figure 1.2 Common NoC Topologies . 2
Figure 1.3 Network-on-Chip Architecture . 3
Figure 1.4 XY Dimension Order Routing . 4
Figure 1.5 Collective operations among four processes 5
Figure 1.6 NoC Contention . 7

Figure 2.1 OperaMPI Broadcast Example . 12
Figure 2.2 OperaMPI Reduction Example . 12

Figure 3.1 Alltoall Rounds . 19
Figure 3.2 Alltoall Algorithm . 20
Figure 3.3 Alltoall Rounds Example . 22
Figure 3.4 Barrier Tree: Modified 3-ary Based . 22
Figure 3.5 Broadcast Tree: Static Routes Configuration 25
Figure 3.6 Reduction Tree: Setup . 26

Figure 4.1 Timing Results for Alltoall . 29
Figure 4.2 Timing Results for Reduce . 30
Figure 4.3 Timing Results for AllReduce . 31
Figure 4.4 Timing Results for Barrier . 32
Figure 4.5 Timing Results for Broadcast . 33
Figure 4.6 Alltoall: Inset for Message Sizes up to 4 KB 34
Figure 4.7 Alltoall: Varying Message Sizes . 35
Figure 4.8 Reduce: Varying Message Sizes . 36
Figure 4.9 AllReduce: Varying Message Sizes . 36
Figure 4.10 Broadcast: Varying Message Sizes . 37
Figure 4.11 NPB MG : Strong Scaling . 37
Figure 4.12 NPB IS : Weak Scaling . 38
Figure 4.13 NPB CG : Weak Scaling . 38
Figure 4.14 NPB FT : Weak Scaling . 39
Figure 4.15 NPB LU : Weak Scaling . 39

viii

Chapter 1

Introduction

1.1 Network-On-Chip Architectures

The system architecture has been constantly evolving to meet the computing needs. Initially, the

clock frequency of uni-processor architecture was scaled to make the system faster. However, the

combined pressures from increased power consumption and the diminishing performance returns

led to the adoption of multi-core processor architectures [14]. Currently, multi-core architectures

are widely used in both general-purpose computing chips and application-specific Systems-on-

Chip (SoC). These multi-core architectures mainly use bus or point-to-point interconnects for

information exchange between the cores. This approach has kept the system design simple, but

has resulted in overheads due to increased contention over the interconnect. In systems with

lesser number of cores, this overhead is small and is offset by the improved performance of using

multiple cores.

Over the past several years, the number of cores has been increasing and this trend is

expected to continue. As the number of cores increases, the contention over the interconnect

results in significant performance degradation. This has motivated the design of scalable and

high-bandwidth interconnects and memory layouts [28]. Inspired by the traditional networks,

data switching and packet routing mechanisms was introduced into on-chip communications.

Such on-chip networks have routers/switches at every node. The nodes are connected to their

neighbors via short local interconnects. This is illustrated in Figure 1.1. The use of routers

allows the connected nodes to access the bus immediately without arbitration in most cases.

The routers handle the delivery of data from source to destination according to the chosen

switching protocols and routing policies.

NoC architectures provide several key benefits. NoC provides greater flexibility in laying out

interconnects. NoC topologies includes rings, mesh, torus, and trees, each with its own benefits.

9-core IBM Cell [19] uses two packet-switched rings. 8-core Sun Niagara [21] uses a crossbar

1

Figure 1.1: Network-on-Chip Architecture

interconnect. 64-core Tilera TILE64 [8] uses packet-switched meshes. Figure 1.2 shows three

commonly used NoC topologies. NoCs are expected to be less non-deterministic [25] because

of their regular topology. NoC topologies can reduce the complexity of designing wires for pre-

dictable speed, power and reliability. NoCs can decouple the computation and communication,

making the communication services available transparently to the cores. This also makes the

system modular and reusable via standard interfaces [13, 10]. NoCs offer higher bandwidth and

parallel communication opportunity making them highly scalable [9, 18].

Figure 1.2: Common NoC Topologies

On the downside, NoC accesses results in non-uniform latencies depending on the number

of hops between source and destination nodes. More importantly, they suffer from contention-

based delay at switching level.

2

1.2 Wormhole Routing

In wormhole routing [27], each packet is divided into a number of fixed size flits. Each router

has buffer and physical channels at flit level instead of packet. The flit is the smallest unit on

which flow control is performed. A packet is divided into a header flit, body flit(s) and a tail

flit. The header flit has the routing information which is used to route the flits from source to

destination. The router use cut-through flow control, allowing flits to move on to the next router

as soon as there is sufficient buffering for this flit. Figure 1.3 illustrates a packet decomposition

and transmission.

Figure 1.3: Network-on-Chip Architecture

While wormhole routing results in low buffer cost, low network latency and efficient buffer

usage, it makes inefficient use of link bandwidth. This is because a link is held for the duration

of a packet’s lifetime in the router. When a packet is blocked, all the physical links held by

that packet are left idle. Other packets queued behind the blocked packet are unable to use

the idle physical link reducing the overall throughput. This effect is called chain-blocking.

Chain-blocking coupled with non-uniform latency inherent in NoC topology makes the design

of communication between nodes critical to exploit the performance benefits provided by the

NoCs.

1.3 XY dimension ordered routing

Dimension ordered routing is widely used due to its simplicity. XY dimension ordered routing

in a two-dimensional topology such as mesh in Figure 1.4, sends packets along the X-dimension

first, followed by the Y-dimension. A packet traveling from (0,0) to (2,1) Will first traverse two

3

hops along X-dimension, arriving at (2,0), before traversing one hop along Y-dimension to reach

its destination. XY dimension ordered routing is an example of deterministic routing algorithm.

All messages from node A to node B will traverse through the same path. XY dimension ordered

routing is also deadlock-free as there is turn restriction preventing going from Y link to X link.

This ensures that there are no cycles and hence, no deadlocks.

Figure 1.4: XY Dimension Order Routing

1.4 Collective communication

Multi-core platforms typically use message passing to communicate with each other since it is

scalable and more efficient than using shared memory. For computation-intensive tasks, parallel

applications are typically employed which leverage underlying parallel architecture. These par-

allel applications employ multiple co-operating and communicating processes to speed up the

computation. Communication operations may be either point-to-point, which involves single

source and a single destination, or collective, in which more than two processes participate.

Collective operation is executed by having all processes in the group call the communication

routine with matching parameters.

Figure 1.5 depicts examples of collective operations for a group of four processes. The Alltoall

collective results in all the tasks in the group to exchange messages with each other. A barrier

synchronizes a group of tasks. Each task, when reaching the barrier call, blocks until all tasks in

the group reach the same barrier call. A broadcast sends a message from the process with rank

”root” to all other processes in the group. Reduce applies a reduction operation on all tasks

in the group and relays the result to one task. AllReduce combines values from all processes

4

(reduce) and distributes the result back to all processes (broadcast).

Figure 1.5: Collective operations among four processes

Collective communication operations are particularly important to scientific computing,

where large data arrays are typically partitioned and distributed over different nodes. In such

applications, nodes use collective operations to broadcast, gather and exchange data, to syn-

chronize with one another at specific points in program, and to perform global compute opera-

tions on distributed data. Collective operations are used in numerous sorting, search and graph

algorithms [22]. Collectives are also used in variety of matrix-related algorithms and parallel

numerical algorithms. The importance of collective operation has resulted in their inclusion and

standardization in Message Passing Interface (MPI) [15]. Table 1.1 summarizes the typical use

of collective operations.

Table 1.1: Typical usage of collective communication primitives

Category Primitive Description

data movement
broadcast one task sends message to all other tasks
alltoall every task sends message to every other task

process control barrier all tasks must reach point before any can proceed

global operation
reduce perform global operation on distributed data
allreduce reduce and broadcast result to all tasks

Collective communication operations may involve many messages and may result in exis-

5

tence of concurrent messages in the interconnect network. These messages may simultaneously

require the use of a particular link, resulting in channel contention. The channel contention

among the messages may be exacerbated by the use wormhole routing due to chain-blocking.

This problem increases with the increase in number of cores participating in the collective

communication. Therefore, for massive multi-core platforms with NoC architecture employ-

ing wormhole routing efficient design of collective communication becomes critical for parallel

applications.

1.5 Motivation

Massive multi-core platforms with NoC architectures are starting to penetrate high-performance

systems, three-tier servers, network processing and embedded/real-time systems. These archi-

tectures provide a significant advancement due to an abundance of cores. This allows a large

number of cooperating tasks to be scheduled together. These tasks can employ group commu-

nication via message passing over the NoC to achieve scalability and reduced latency.

However, poor collective communication implementations can result in increased and highly

variant latency due to NoC contention resulting in loss of predictability and imbalance in ex-

ecution progress across cores. Consider the case where tasks on different cores are performing

an all-to-all communication using message passing. One way to implement all-to-all is to have

one task send its message to all other tasks, followed by the next one and so on. This imple-

mentation is not efficient and can be improved by allowing multiple partners to communicate

in each round. Yet, such an optimization may lead to contention. For example, consider 9 cores

taking part in all-to-all communication as in Figure 1.6. The task on core 3 is trying to send

to the task on core 8, and the task on core 4 is trying to send to the task on core 2. This

results in 2 messages, one from 3 → 8 and another from 4 → 2. When sent at the same time,

contention on link 4→ 5 results in a delay for one of these messages due to arbitration within

the NoC hardware routers. As a result, sending tasks experience highly variable latencies. The

effect shown in this example is amplified with increasing NoC mesh sizes. Such situations can

be avoided using intelligent scheduling of each round of message exchanges.

Additionally, implementations that do not leverage the underlying NoC capabilities result in

under utilization of the NoC hardware. Typically, NoC architectures provide multiple message

queues and networks [4, 5, 38, 1]. On the TilePro64 [5], there are five distinct message queues

and two distinct networks available for users. One of them is the User Dynamic Network (UDN),

and another is the Static Network (SN), both of which are freely programmable (in contrast to

the remaining networks). UDN uses dynamic routing to forward messages from a source core to

a destination core. SN, in contrast, uses statically configured routes to forward packets received

on each link. SN is faster than UDN in terms of packet forwarding speed, but is difficult to

6

Figure 1.6: NoC Contention

program and has route setup overhead. Hence, UDN is used for all core-to-core communication

purposes, leaving SN unused. Implementations that can leverage such unused hardware features

can intelligently extract additional hardware performance.

1.6 Our Approach

This work contributes the design and implementation of collective communication for large

core counts utilizing 2D mesh NoC architectures. In our implementation, we employ efficient

algorithms to reduce communication latency and exploit advanced NoC hardware features to

provide better performance. We furthermore ensure that communication uses contention-free

paths and that no deadlock may occur. We have implemented five commonly used collective

communication primitives, namely Barrier, Broadcast, Reduce, AllReduce and Alltoall [15].

We have used different approaches for each collective communication primitive to demon-

strate that NoC-based systems support reliable timing under reduced latency. Our implemen-

tation of Barrier, Broadcast and Reduce uses a communication tree in which the cores are

arranged as nodes and share a parent-child relationship. The communication tree is used to

send messages to/from the root. The Barrier and Reduce implementations utilize the UDN,

whereas Broadcast uses the SN. Our implementation of Alltoall uses a bottom-up approach in

which the communication proceeds from smaller segments to larger segments, but it does not

require dividing the grid into smaller sub-meshes [33]. Other approaches require either dynamic

route calculations or offline pre-calculations to store large routing tables [12]. In contrast, our

implementation exploits simple pattern-based communication, common in MPI [15] run-time

system implementations, to send messages concurrently, yet without contention, to reduce com-

7

munication latency. This neither requires dynamic computation of a routing schedule nor incurs

scheduling overhead or memoization of large routing tables.

Our implementation uses message passing over the NoC of a TilePro64 but is generic enough

to be adopted to any 2D mesh based NoC architecture. Most significantly, our design generalizes

to arbitrary 2D NoCs, and while prior related work generally assumed ideal symmetry with

wrap-around links on the 2D boundaries, our work addresses realistic 2D meshes without wrap-

around, such as present in contemporary NoC hardware designs [4, 5, 38, 1, 3].

1.7 Hypothesis

With the increasing number of cores, NoC architectures become a key factor in maintaining

higher processing capability, flexibility and scalability of computing system. In order to extract

maximum performance in such systems, we need to address their predictability challenges.

The key factor contributing to this is NoC contention. Eliminating NoC contention becomes

particularly challenging for collective operations. Since, most scientific applications use collective

operations, implementing highly efficient and predictable collective communication becomes

critical. Current collective communication implementations are either inefficient or very complex

to implement. We aim to address this challenge in this thesis. The hypothesis of this thesis is :

Scalable contention-free collective communication results in better performance and pre-

dictability than collectives with contention on massive multi-core NoC platforms without adding

significant complexity and contributes to balanced parallel execution benefiting both HPC appli-

cations and real-time systems.

1.8 Contributions

Our contributions are as follows :

• We show that NoC-based systems can support reliable timing under reduced latency.

• We provide different approaches that can be used for collective communication implemen-

tation on NoC-based systems.

• We provide an implementation of commonly used collectives on the Tilera TilePro64

hardware platform. This implementation is generic and can be easily extend to any 2D

mesh based NoC platform.

We used micro-benchmarks and NAS Parallel Benchmarks to compare the performance

of our implementation against OperaMPI [20], a reference MPI implementation for the Tilera

platform. Experimental results on the TilePro hardware platform show that our implementation

8

has lower latencies and lower timing variability than prior work. Performance improvements of

up to 95% are observed in communication for single packet messages with significantly high

timing predictability, which supports more balanced execution progress for high-performance

computing (HPC) and helps to meet deadlines in real-time applications.

9

Chapter 2

Background

In this work, we focus on 2D mesh-based NoC architectures. We have designed and implemented

efficient group communication on Tilera’s TilePro64 NoC platform. We used OperaMPI for

comparing the performance of our implementation. This section provides a brief overview of

the TilePro64, NAS parallel benchmark and high level implementation details of collectives in

OperaMPI.

2.1 TilePro64

2.1.1 Architecture overview

The TilePro64 is a multi-core processor manufactured by Tilera. It consists of 64 programmable

compute engines (each referred to as a tile), connected by means of multiple two-dimensional

mesh networks. Each tile is a powerful, full-featured computing system that can independently

run an entire operating system, such as SMP Linux. It implements a 32-bit integer processor

engine utilizing a three-way Very Long Instruction Word (VLIW) architecture with its own

program counter (PC), cache, and DMA subsystem. An individual tile is capable of executing up

to three operations per cycle. Each tile in the two-dimensional array connects to other tiles using

multiple mesh networks implemented by the network routers in each tile. The Tile Processor

architecture is scalable and provides high bandwidth and extremely low latency communication

among tiles. Each tile in a TilePro64 operates at 700 MHz. The TilePro64 does not support

native floating point operation.

2.1.2 Inter-Tile networks

Tile Processor provides a set of hardware networks for sending messages between cores. These

include the I/O Dynamic Network (IDN), used to communicate with I/O devices; the User

10

Dynamic Network (UDN), used for user space messages; and the Static Network (SN), which can

transmit individual words between user space tasks running on adjacent cores. Most applications

use only the UDN because it is available to user programs and more flexible than the static

network.

These networks transmit packets across a mesh using XY dimension ordered routing. At the

destination, the packet data words are stored in a demux FIFO queue with a capacity of 118

words. Each network packet contains 1 to 128 data words. Cores inject packets into the net-

work by writing words to special registers. When data arrives at the destinations demux buffer,

it is routed to one of four demux queues. The receiving core then reads the incoming data

by inspecting one of four registers, each mapped to a different demux queue. By using these

networks the data is sent directly from registers on one tile, across the network, to registers on

another tile, without having to go through the cache subsystem (which can take 10 cycles on

each tile) for improved performance.

2.2 OperaMPI

2.2.1 Overview

OperaMPI is an implementation of the MPI 1.2 specification for the Tilera platform. It is layered

over Tileras iLib, an inter-tile communication library that utilizes the UDN NoC network. The

iLib library is vendor-supplied software and allows developers to easily take advantage of many

features provided by the Tilera architecture.

OperaMPI was evaluated using MPI benchmarks, namely the IBM test suite, the Intel

test suite, the MPICH test suite and the SPEC MPI. The results show that for sending and

receiving small sized messages the implementation has a latency of about 30µs with a cold

instruction cache and about 6.8µs with a warm instruction cache. As the data size increases,

the initial overhead is amortized and the data transfer time per word reduces. Just like any

other implementation, OperaMPI suffers from communication overhead. This consists of header

generation and processing overhead, cache miss cost, a lower bound on the overhead of sending

one word per cycle, iLib overhead and MPI overhead.

2.2.2 Collective implementation

Broadcast

OperaMPI implements Broadcast using a tree-like communication pattern, where the root task

initiates the broadcast by sending the message to another task. The two tasks send the message

to another two tasks. This transitive distribution of messages continues and eventually termi-

11

nates after log(N) steps, where N is number of tasks. Figure 2.1 shows this procedure for 32

tasks.

Figure 2.1: OperaMPI Broadcast Example

Reduce and AllReduce

Reduce is implemented using a tree-like communication pattern if the reduction operation is

associative. This implementation is effectively the inverse of broadcast. For non-associative

reduction operations serial communication is used, wherein each task sends to root tasks in a

synchronized fashion. The reduction operation (sum) for 32 tasks is shown in Figure 2.2.

Figure 2.2: OperaMPI Reduction Example

Allreduce is implemented as an extension of the Reduce collective. It consists of a reduction

operation followed by a broadcast. The number of cycles for the Reduce collective is much

larger than the broadcast since it involves more processing such as an element-wise reduction

12

operation.

Alltoall

OperaMPI’s Alltoall implementation is split into N-1 stages, where N is the total number of

tasks. At each stage, one task takes a turn to send to a partner. Depending on the message size,

the implementation uses different communication algorithms. If the message size exceeds 1Kilo

Word (KW), then half the tiles send to the other half. If the message size is less than 1KW,

tasks use a non-blocking send followed by a blocking receive. While their setup is subject to

contention to create a virtual channel, transmission proceeds without contention once a channel

has been created.

2.3 NAS Parallel Benchmarks

The NAS parallel benchmarks (NPB) [6] were developed at the NASA Ames research center

to evaluate the performance of parallel supercomputers. The benchmarks are derived from

computational fluid dynamics (CFD) applications and originally consist of five kernels and

three pseudo-applications. The benchmark suite has been extended to include new benchmarks

for unstructured adaptive meshes, parallel I/O, multi-zone applications, and computational

grids.

Table 2.1: Communication Characteristics of NPB

Benchmark Alltoall Alltoallv Barrier Broadcast Allreduce Reduce Send Isend

EP - - 1 - 4 - - -
CG - - 1 - - 1 10 -
MG - - 9 6 6 1 12 -
FT 3 - 2 2 - 1 - -
IS 1 1 - - 1 5 1 -
LU - - 1 9 6 - 12 -
BT - - 2 3 2 - - 12
SP - - 2 3 2 1 - -

The original eight benchmarks specified in NPB 1 mimic the computation and data move-

ment in CFD applications:

• Five kernels

– IS - Integer Sort, random memory access

13

– EP - Embarrassingly Parallel

– CG - Conjugate Gradient, irregular memory access and communication

– MG - Multi-Grid on a sequence of meshes, long- and short-distance communication,

memory intensive

– FT - discrete 3D fast Fourier Transform, all-to-all communication

• Three pseudo applications

– BT - Block Tri-diagonal solver

– SP - Scalar Penta-diagonal solver

– LU - Lower-Upper Gauss-Seidel solver

Table 2.1 shows the communication characteristics of different benchmarks. A detailed de-

scription of the benchmarks can be found in [2].

14

Chapter 3

NoCMsg Collectives

3.1 Design

Our work assumes a generic, generalized 2D mesh NoC switching architecture similar to existing

fabricated designs with high core counts [4, 5, 38, 3]. Each core is composed of a compute core,

network switch, and local caches. The network switch uses XY dimension-ordered routing to

forward messages.

3.1.1 NoC Architecture

NoC architectures use the network-on-chip to replace the conventional system bus or other

topologies of connecting cores. This means that all memory, messaging, and IO communication

occur over the NoC, often through physically separate networks to reduce contention. Most NoC

architectures feature multiple networks for this purpose. Adapteva [1] features three networks

while Tilera [5] features five/six networks in their TilePro/GX, respectively. In this work, we

focus on building group communication over the messaging networks.

3.1.2 NoC Message Layer

Our implementation provides an MPI-style message passing interface on top of the NoC. This

facilitates basic point-to-point communication and supports our group communication. The

NoC message layer implementation optionally provides flow control support. In our design, we

turn off flow control when not required by program logic to further improve performance.

3.1.3 Group Communication Primitives

The key ideas behind our design of group communication primitives are :

1. Reduce contention in the NoC

15

2. Exploit pattern-based communication to exchange messages concurrently

3. Reduce the number of messages by aggregation

4. Leverage hardware features to improve performance

We have used different approaches for each group communication primitive to demonstrate

the ways a NoC-based system can support timing reliability and reduced latency. These ap-

proaches are summarized in Table 3.1.

Table 3.1: Summary : Design approaches

Collective Approach

Alltoall, Alltoallv pattern-based communication, contention-free exchange using UDN
Barrier k-ary tree-based, uses small synchronization messages, uses UDN
Broadcast tree-based, tree mapped onto NoC in contention-free manner, uses SN
Reduce tree-based, tree mapped onto NoC in contention-free manner, uses UDN
AllReduce Extension of other collectives: Reduce followed by Broadcast, uses UDN

and SN

Alltoall

The Alltoall collective results in all the tasks in the group to exchange messages with each

other. The prototype for this collective is as follows:

int NoCMsg_Alltoall(void *sendbuf, int sendcount,

NoCMsg_Datatype sendtype,

void *recvbuf, int recvcount,

NoCMsg_Datatype recvtype,

NoCMsg_Comm comm)

In our design, we exploit pattern-based communication to concurrently exchange messages

between partners. The entire exchange is split into multiple rounds. In each round, a subset of

tasks exchanges messages using Manhattan-path (dimension-ordered) routing [?]. The tasks

in each round are scheduled in such a way that they do not result in link contention. In each

round, the number of hops the message is forwarded to is incremented until all the tasks are

covered.

16

Barrier

A barrier synchronizes a group of tasks. Each task, when reaching the barrier call, blocks until

all tasks in the group reach the same barrier call. The prototype for this collective is as follows:

int NoCMsg_Barrier(NoCMsg_Comm comm)

In order to provide scalable barriers, we designed tree-based barriers that distribute the work

evenly among nodes. This also helps minimize the cycle differences upon barrier completion.

Our design utilizes rooted k-ary trees to this end, where k is configurable. On the TilePro64,

k = 3 provides optimal performance in experiments.

Broadcast

A broadcast sends a message from the process with rank ”root” to all other processes in the

group. The prototype for this collective is as follows:

int NoCMsg_Bcast(void* buffer, int count,

NoCMsg_Datatype sendtype,

int root, NoCMsg_Comm comm)

Our design utilizes the SN to implement broadcasts. We designed a tree-based broadcast

rooted at the task where the broadcast message originates. Tree branches are mapped onto

the NoC in a contention-free manner. The static route of each task is configured inside the

broadcast primitive such that the message from the root flows to each leaf task. To minimize

the overhead of route configuration, our design requires only a single route configuration per

task, again using contention-free paths.

Reduce

This collective applies a reduction operation on all tasks in the group and relays the result to

one task. The prototype for this collective is as follows:

int NoCMsg_Reduce(void *sendbuf, void *recvbuf,

int count,

NoCMsg_Datatype datatype,

NoCMsg_Op op, int root,

NoCMsg_Comm comm)

17

We designed our reduce collective similar to the barrier. The reduction operation is per-

formed along the tree. Each task receives values from its children and performs a partial reduc-

tion. Tasks then send their partial result toward the root. The root will reduce partial results

to obtain the final result.

AllReduce

This collective combines values from all processes (reduce) and distributes the result back to

all processes (broadcast). The prototype for this collective is as follows:

int NoCMsg_AllReduce(void *sendbuf, void *recvbuf,

int count,

NoCMsg_Datatype datatype,

NoCMsg_Op op,

NoCMsg_Comm comm)

AllReduce is is designed as an extension to Reduce. The AllReduce consists of a reduce

followed by a broadcast.

Alltoallv

The Alltoallv collective sends data from each tasks to all (other) tasks; each task may send

a different amount of data and provide displacements for the input and output data. The

prototype for this collective is as follows:

int NoCMsg_Alltoallv(void *sendbuf, int sendcount,

int *senddisplacement,

NoCMsg_Datatype sendtype,

void *recvbuf, int recvcount,

int *recvdisplacement,

NoCMsg_Datatype recvtype,

NoCMsg_Comm comm)

Alltoallv is designed as an extension of Alltoall.

3.2 Implementation

This section provides details on the implementation, called NoCMsg, of each group communica-

tion primitive. Our implementation of these collectives have an MPI-like API for easy usability.

We implemented the group communication on the Tilera TilePro64. Nonetheless, our im-

plementation is generic and can be extended to any 2D mesh NoC architectures.

18

3.2.1 Alltoall and Alltoallv

Alltoall/Alltoallv are the most demanding collectives in terms of network contention, yet they

provide opportunities for flow-control elimination within their implementation. Based on the

particular internal send/receive orders in these collectives, it is possible to guarantee flow-control

free communication for transfers between each pair of cores. Further optimization is provided

by employing pattern-based communication, which allows several sets of tasks to exchange

messages concurrently without contention. The entire exchange is split into multiple rounds.

The rounds are comprised of (1) direct (2) left and (3) right rounds. The direct round is

further split into two sub-rounds. In sub-rounds, each task sends messages only along a straight

path to its partner task. Tasks exchange messages along X direction in direct sub-round 1 and

along Y direction in direct sub-round 2. In left rounds, each task sends messages along the X

direction followed by the Y direction such that their path follows a counter-clockwise direction.

In right rounds, each task sends messages along the X direction followed by the Y direction

such that their paths follow a clockwise direction. These cases are depicted in Figure 3.1. The

XY dimension routing ensures that these directions are maintained consistently.

Figure 3.1: Alltoall Rounds

The implementation details are sketched in Algorithm 1. In each round, the number of

hops the message is forwarded is incremented until all tasks are covered. To begin, each task

starts the direct sub-round one with one hop (lines 5-13). The current column, which can take

part in an exchange, is selected by function Select-col (line 7). Each task then compares its

column number with the currently selected column. Tasks which are on such columns exchange

messages with their neighbors one hop away along the X direction. This is done to ensure that

the exchange is free of contention. Once the round has been completed, tasks increment their

19

hop count and exchange messages with a neighbor two hops away. This is repeated until the

entire width of the grid is covered. After an exchange along the X direction has finished, tasks

start direct sub-round two by sending messages along the Y direction in a similar fashion (lines

14-23). This set of rounds is followed by a left round and a right round (lines 24-49), thereby

covering the entire grid. The logic of the algorithm is depicted in the Figure 3.2. An example of

Alltoall round progression is depicted in Figure 3.3. Tasks exchanging messages in each round

are highlighted using same color.

Figure 3.2: Alltoall Algorithm

20

Algorithm 1 Alltoall

1: function NoCMsg-Alltoall
2: Xmax← gridwidth
3: Y max← gridheight
4: for xhops← 1, Xmax do . Direct subround 1 (DR1)
5: currcol = Select-col(DR1, xhops) . select column
6: if mycol == currcol then . my column’s turn
7: UDN-xchg(x+xhops, y)
8: UDN-xchg(x-xhops, y)
9: end if

10: Barrier()
11: end for
12: for yhops← 1, Y max do . Direct subround 1 (DR2)
13: currrow = Select-row(DR2, yhops) . select row
14: if myrow == currrow then . my row’s turn
15: UDN-xchg(x, y+yhops)
16: UDN-xchg(x, y-yhops)
17: end if
18: Barrier()
19: end for
20: for yhops← 1, Y max do . Left round (LR)
21: for xhops← 1, Xmax do
22: currrow = Select-row(LR, yhops) . select row
23: currcol = Select-col(LR, xhops) . select column
24: if myrow,mycol == currrow, currcol then
25: UDN-xchg(x+xhops, y+yhops)
26: UDN-xchg(x-xhops, y-yhops)
27: end if
28: Barrier()
29: end for
30: end for
31: for yhops← 1, Y max do . Right round (LR)
32: for xhops← 1, Xmax do
33: currrow = Select-row(RR, yhops) . select row
34: currcol = Select-col(RR, xhops) . select column
35: if myrow,mycol == currrow, currcol then
36: UDN-xchg(x+xhops, y+yhops)
37: UDN-xchg(x-xhops, y-yhops)
38: end if
39: Barrier()
40: end for
41: end for
42: end function

21

Figure 3.3: Alltoall Rounds Example

3.2.2 Barriers

We utilize a modified 3-ary tree-based barriers that distribute the work evenly among nodes to

minimize cycle differences upon barrier completion. The root of this tree is placed in the center of

the NoCMsg grid to minimize latency (hops). The tree is constructed as part of the initialization

process. The process of synchronization involves the children notifying their parents when they

have entered the barrier, up to the root. Once the root has received notifications from all

children, it broadcasts a notification back down the tree by replying to its children and exits, as

do the children. UDN is used to send and receive synchronization packets and their replies. The

implementation details are sketched in Algorithm 2. Figure 3.4 shows an example of barrier tree

constructed for 16 cores. The root node is shown in red and its neighboring nodes are shown in

blue. The nodes along the root’s column, highlighted in green act as secondary roots and will

have upto 3 children. Hence, the tree is 3-ary on the interior, 4-ary for the root (to be precise)

and of lower degree (2/1/0) for nodes close to the leaves and leaves themselves.

Figure 3.4: Barrier Tree: Modified 3-ary Based

22

Algorithm 2 Barrier

1: function NocMsg-Init
2:
3: root← gridcenter . grid center becomes root
4: k ← 3
5: Build-barrier-tree(root, k)
6:
7: end function
8:

9: function NoCMsg-Barrier
10: // Recv sync packet from children
11: for n← 0, num− children do
12: UDN-recv(child)
13: end for
14: if myrank 6= root then
15: // Send sync packet to parent
16: UDN-send(parent)
17: // Recv sync reply packet from parent
18: UDN-recv(parent)
19: end if
20: // Send sync reply packet to children
21: for n← 0, num− children do
22: UDN-send(child)
23: end for
24: end function

23

Algorithm 3 AllReduce

1: function NocMsg-AllReduce
2: // Perform reduce at rank 0
3: NoCMsg-Reduce(rank0)
4: // Broadcast the reduction result
5: NocMsg-Bcast()
6: end function

Flow control is not needed in the barrier as the prerequisite of entering into the barrier is

that all outstanding sends/receives of local cores have completed. The synchronization packet

is small enough to fit into the output queue, i.e., the core can drop an entire synchronization

packet into its output queue. It can subsequently begin a blocking send operation that halts

the core’s pipeline until synchronization packets become available. This technique significantly

reduces synchronization costs when all cores are ready, yet conserves power when they are not.

3.2.3 Broadcast

Our Broadcast implementation uses the SN of the TilePro64. The SN is more intricate to pro-

gram and suffers from route setup overhead. However, message forwarding incurs zero overhead

(due to a static route configuration). Since broadcast has a single sender and multiple receivers,

the number of route configurations is low. This was the motivation behind using SN for the

broadcast implementation.

Algorithm 4 describes the Broadcast logic. We designed a tree-based algorithm rooted at

the task performing the broadcast. Each task determines the root’s row and column (line 3 and

4) and invokes SNsetroute, which configures the SN route (line 6). The route setup in the root

is such that the message from the core is sent on its available links. All the tasks in the same

column as the root have their route configured such that they receive from the root along the

Y direction and send the message along other available links. Tasks in other columns receive

along one X direction and send the message along the other X link.

For example, let the task with rank 5 initiate a broadcast. Then, its routes are set up to

send the message from the core to all the links. The routes of tasks on cores in column one

will be set up such that they send out the received message along the X and Y directions. The

routes in all the other tasks will be set up in such a way that they will receive and forward

along the X direction. This results in a broadcast tree as shown in Figure 3.5. Different nodes

have different route setup depending on its relative position to the root node. The root node

is highlighted in red. The nodes highlighted in blue have route configuration such that they

receive along Y direction and send the message along X direction (East and West). The nodes

24

highlighted in blue, have route configuration such that they receive along X direction (from

West) and send the message along X direction (towards East). All the other nodes have route

configuration to receive along X direction.

Figure 3.5: Broadcast Tree: Static Routes Configuration

The static route of each task is configured inside the Broadcast call such that the message

from the root flows to each leaf task. Our current implementation requires only a single route

configuration per task and is contention-free.

Algorithm 4 Broadcast

1: function NoCMsg-Bcast
2: // Get root’s row and col from rank
3: rootcol = Get-root-Col(root)
4: rootrow = Get-root-row(root)
5: // Set SN routes
6: SN-setroute(x, y, rootrow, rootcol)
7: if myrank == root then
8: SN-send()
9: else

10: SN-recv()
11: end if
12: end function

25

3.2.4 Reduce and AllReduce

We designed our Reduce collective similar to the barrier. The reduction operation is performed

along the tree. Each child task sends its partial result upward toward the root. The root reduces

the partial results to obtain the final result. The construction of the reduction tree is different

from that of the Barrier. The reduction tree maps to a NoC grid such that the root task

becomes the root of the tree. The tasks along its row become first-level children. The tasks in

each column become second-level children to the first-level ones.

For example, let rank 5 be the root for the reduction operation. Rank 5 becomes the root

of the reduction tree. The tasks along its row become the first-level children (in this case, tasks

with rank 4,6 and 7). These first-level children become children of the root. Each column will

therefore have a root or a first-level child. All the other tasks become children of the root or

first-level children along their column. In the example, rank 5 becomes the root with ranks

1,4,6,7,9 and 13 as its second-level children. Rank 4, a first-level child, will have ranks 0,8 and

12 as children etc. This reduction-tree setup is shown in Figure 3.6.

Figure 3.6: Reduction Tree: Setup

A reduction tree constructed in this fashion has two major advantages: (1) The implemen-

tation is simple and scalable and (2) the entire reduction takes place in two steps irrespective of

the size of the NoC grid. The first step occurs in parallel for the root and its 1st-level children,

where they receive and reduce values from their respective 2nd-level children. In the second

step, the root will receive partial results from the 1st-level children and perform the reduction

operation.

The reduction tree is constructed as part of the Reduce primitive by the Build-reduction-

tree function (line 6) shown in Algorithm 5. The function takes as arguments the root’s row and

column information along with the task’s position information (x, y) in the NoC grid. Once the

26

tree is constructed, child tasks send their values to the root or 1st-level children (line 23-26).

Lines 14 to 22 correspond to the actions performed by the 1st-level child tasks. A 1st-level

child will receive values from all their 2nd-level children and perform the reduction operation

to obtain partial result (line 16-20). They then send the partial result to the root (line 22). The

root receives the values from its 2nd-level children along its column and 1st-level children in its

row and performs the reduction operation to arrive at the final result (line 7-13).

Algorithm 5 Reduce

1: function NoCMsg-Reduce
2: // Get root’s row and col from rank
3: rootcol = Get-root-col(root)
4: rootrow = Get-root-row(root)
5: // Build reduction tree
6: Build-reduction-tree(x, y, rootrow, rootcol)
7: if myrank == root then
8: // Root of the reduction tree
9: for n← 0, num− children do

10: // Recv values from children
11: val = UDN-recv(child)
12: res = Perform-reduce-op(val)
13: end for
14: else if num− child > 0 then
15: // 1st-level child
16: for n← 0, num− children do
17: // Recv values from 2nd-level child
18: val = UDN-recv(child)
19: partial-res = Perform-reduce-op(val)
20: end for
21: // Send partial result to parent
22: UDN-send(parent, partial − res)
23: else
24: // Send value to parent
25: UDN-send(parent, val)
26: end if
27: end function

AllReduce is an extension of Reduce. It is implemented by performing a Reduce relative to

rank 0, followed by a broadcast from rank 0 to all other tasks in the group. The implementation

details are sketched in Algorithm 3.

27

Chapter 4

Experimental Results

We evaluated our group communication using micro benchmarks and NAS parallel benchmarks

on the Tilera TilePro64. We compare the performance of our implementation against OperaMPI,

an MPI library specific to the Tilera platform.

4.1 Microbenchmarks

Micro-benchmarks have multiple calls to the respective group communication primitive. The

number of times the execution time of the primitive must be measured is configurable. In each

experiment, we determined the average time elapsed in completing the group communication.

The basic template of micro-benchmark is as follows:

NoCMsg_Init(int argc, char **argv)

...

count = 0

while(count < MAX_TRIAL)

NoCMsg_Barrier(NoCMsg_Comm comm)

NoCMsg_Timer_start(int timer_num)

NoCMsg_Bcast(void* buffer, int count,

NoCMsg_Type datatype, int root,

NoCMsg_Comm comm)

NoCMsg_Timer_stop(int timer_num)

exec_time = NoCMsg_Timer_read(int timer_num)

total_exec_time = total_exec_time + exec_time

avg_exec_time = total_exec_time/MAX_TRIAL

...

28

We designed one microbenchmark per collective operation. The timer library returns the

time in microsecond resolution. The same microbenchmark was extended to test the behavior

under varying message sizes.

4.2 Single packet messages

The benchmark timing results for single packet messages are depicted in Figures 4.1-4.5 for

alltoall, reduce, allreduce, barrier and broadcast (in that order). Time on the y-axis is plotted

in microseconds for averaged benchmark runs over different number of tasks (equal to cores)

in the range from 4..49 for both our NoCMsg implementation and OperaMPI, the reference

implementation. (Recall that 64 core runs cannot be conducted since at least two cores are

reserved by Tilera’s hypervisor for administrative tasks.) Execution time variances for each

micro-benchmark for varying number of tasks are shown in Tables 4.1 and 4.2 for NocMsg and

OperaMPI, respectively.

 0

 500

 1,000

 1,500

 2,000

4 9 16 25 36 49

T
im

e
 (

in
 m

ic
ro

 s
e
c
o
n
d
s)

Tasks

NoCMsg

OperaMPI

Figure 4.1: Timing Results for Alltoall

We observe that experimental results follow a common trend. As the number of tasks in-

creases, the execution time of group communication increases. In case of Opera, the increase in

runtime is significant for larger number of tasks. In comparison, our NoCMsg implementation

is highly efficient, and increases in runtime are gradual. Alltoall is the most demanding collec-

tive in terms of network contention. Our pattern-based approach effectively eliminates network

contention resulting a reduction of execution time by about 62% for the grid size of 7x7. Our

29

 0

 200

 400

 600

 800

 1,000

 1,200

4 9 16 25 36 49

T
im

e
 (

in
 m

ic
ro

 s
e
c
o

n
d

s)

Tasks

NoCMsg

OperaMPI

Figure 4.2: Timing Results for Reduce

implementation of Alltoall has a variance ranging from 0.4 to 5.6, depending on the numbers

of cores involved in the collective. This variance is several orders of magnitude lower than that

of the OperaMPI implementation particularly for larger number of cores.

Barrier and Broadcast are our most efficient collectives with up to 98% reduction in execu-

tion time. By mapping the communication pattern onto the NoC in a contention-free manner,

our implementation reduced the communication time by up to 95% resulting in reduced exe-

cution time. Broadcast uses the SN with a single route setup (to configure the communication

tree) and minimal routing overhead. The SN is typically faster than the UDN, which makes

Broadcast our most efficient and predictable collective in comparison. Execution time increases

only by a factor of 3.5 as the grid size is gradually changed from 2x2 to 7x7 with a variance of

less than 0.6 for all cases.

Our implementations of Reduce and Allreduce have 97% and 98% lower execution time,

respectively, than the OperaMPI implementation for all tested grid sizes. However, they have

larger variance than other collectives. This is due to the two-step reduction employed by the

Reduce collective. The root receives partial results from the first-level children in a specific order

(increasing order of ranks). If any of them are busy computing the partial result, the overhead for

the reduction primitive increases as well. In contrast, if the lower ranks have already calculated

their partial result when the root posts a receive, then the root can continue with the reduction

primitive without any delay. Overall, our group communication primitives have lower execution

time and variance for all grid sizes. The lower variance of our implementation results in better

timing predictability making our implementation ideal for real-time applications.

30

 0

 500

 1,000

 1,500

 2,000

 2,500

4 9 16 25 36 49

T
im

e
 (

in
 m

ic
ro

 s
e
c
o

n
d

s)

Tasks

NoCMsg

OperaMPI

Figure 4.3: Timing Results for AllReduce

Table 4.1: NoCMsg Execution Time Variance

Num tasks 4 9 16 25 36 49

Alltoall 0.7 0.4 0.7 5.6 1.3 1.6
Barrier 0.5 0.8 0.4 1.6 1.1 5.6
Broadcast 0 0 0.2 0.24 0.53 0.12
Reduce 7.96 1.26 2.53 13.1 2.77 4.77
AllReduce 3.96 4.49 12.24 36.77 3.92 4.86

Table 4.2: OperaMPI Execution Time Variance

Num tasks 4 9 16 25 36 49

Alltoall 2.81 983.9 18.2 2276.8 133329.8 622903
Barrier 750.2 302.9 29384.5 1838.2 2910.7 32117
Broadcast 7.3 56.9 259.2 4540.8 3003.7 3869
Reduce 545.26 686.2 21.39 2007.06 9979.96 3430.69
AllReduce 11.14 50.98 49.36 3839.44 5536.16 7517.2

4.3 Varying message sizes

Figures 4.6-4.10 depict the averaged performance for varying message sizes and number of tasks

(cores) for both our NoCMsg implementation and OperaMPI, the reference implementation.

Notice that execution times are plotted on a logarithmic scale on the y-axis. The solid lines

represent execution times for NoCMsg while the dotted lines represent execution times for

OperaMPI. The legend further indicates the number of tasks, i.e., key N4 represents NoCMsg

31

 0

 200

 400

 600

 800

 1,000

4 9 16 25 36 49

T
im

e
 (

in
 m

ic
ro

 s
e
c
o
n
d
s)

Tasks

NoCMsg

OperaMPI

Figure 4.4: Timing Results for Barrier

with 4 tasks while O4 depicts OperaMPI with 4 tasks with the same color coding for identical

grid sizes (in the same order as the line graphs). The range of grid sizes ranges from 4 to 49

total number of tasks (cores).

Figure 4.6 shows the execution time of the Alltoall collective for message sizes up to 4KB,

which is an inset to Figure 4.7 the latter of which extends to 1MB sizes. The execution and

communication times increase with an increase in message size for both NoCMSg and Oper-

aMPI. Our NoCMsg implementation of Alltoall performs very well for small messages with

savings between 43%-62% up to a threshold (256 bytes to 4KB depending on message size and

number of tasks, see Figure 4.6). Yet, as message sizes increase, performance degrades, and

for message sizes greater than this threshold, OperaMPI outperforms NoCMsg (see Figure 4.7).

This is because our Alltoall implementation is split into rounds of exchanges followed by barrier

synchronization to ensure absence of contention. For large messages, this results in noticeable

overhead. OperaMPI’s Alltoall implementation is split into N-1 stages, where N is the total

number of tasks. At each stage, one task takes a turn to send to a partner. While their setup

is subject to contention to create a virtual channel, transmission proceeds without contention

once a channel has been created, which provides higher bandwidth for large messages. Yet, prior

work has shown that typical applications tend to utilize collectives with very small message pay-

loads [37], which indicates that our NoCMsg covers the critical path for most applications and

nicely complements OperaMPI’s advantage for large messages.

The timing results for Reduce and Allreduce are shown in Figures 4.8 and 4.9, respectively.

The execution time of our implementation is 48%-98% lower than that of OperaMPI for all

32

 0

 200

 400

 600

 800

 1,000

 1,200

 1,400

4 9 16 25 36 49

T
im

e
 (

in
 m

ic
ro

 s
e
c
o

n
d

s)

Tasks

NoCMsg

OperaMPI

Figure 4.5: Timing Results for Broadcast

message sizes up to 1MB (and beyond). However, the gap gradually decreases. Asymptotically,

the performance results of the two implementations approach each other for very large (but,

in practice, unrealistic) message sizes. The implementation of Reduce in OperaMPI uses a

communication tree but does not map it to the NoC in a contention-free manner. The resulting

contention causes larger communication/execution times. The same observation also holds for

AllReduce, which is a Reduce followed by a Broadcast. Since the Reduce operation dominates

the communication and execution time in AllReduce, its behavior is same as Reduce.

Figure 4.10 represents the execution time of Broadcast for different message sizes. OperaMPI

implements Broadcast using a tree-like communication pattern, where the root task initiates the

broadcast by sending the message to another task. The two tasks send the message to another

two tasks. This transitive distribution of messages continues and eventually terminates after

log(N) steps, whereN is number of tasks. This communication tree approach is efficient but does

not map to the NoC in a contention-free manner. Similar to Reduce, there is always contention

resulting in larger communication and execution time. Our Broadcast implementation uses SN

unlike OperaMPI, which uses UDN. Routing overhead in SN is lower than that in UDN. This

also contributes to better performance and lower execution time. From the NoCMsg curve, we

can see that the execution time remains constant for message sizes up to 256 bytes. Beyond

256 bytes, the execution time of NoCMsg Broadcast increases at a higher rate than that of

OperaMPI. This continues up to a message size of 128KB, after which the rate of increase in

execution time with increase in message size is nearly same for both NoCMsg and OperaMPI.

Again, the execution times of the two implementations approach each other asymptotically for

33

Figure 4.6: Alltoall: Inset for Message Sizes up to 4 KB

very large (but, in practice, unrealistic) message sizes.

Overall, these results show that our NoCMsg implementation is ideal for all / small message

sizes depending on the collective primitive. As prior work has indicated, typical MPI applications

utilize collectives with very small message payloads [37], and real-time applications follow a

similar trend for numerical, actuator-based control systems. This underlines the contribution of

our work for HPC and real-time applications alike as NoCMsg provides better performance and

timing predictability than prior related work for the common case, and, moreover, for realistic

2D meshes without wrap-around network links at grid boundaries.

4.4 NAS Parallel Benchmarks

We used NPB version 3.3 to evaluate our implementation. NPB by default uses strong scaling,

where the input size stays fixed for different number of cooperating cores. We used strong scaling

for MG benchmark and for all other benchmarks we used our own weak scaling inputs [16] where

the number of keys per core is a fixed size. Weak scaling ensures that the computational work per

core remains the same as the number of cores cooperating in a parallel application is increased.

Figure 4.11 depicts the results for MG with strong scaling. MG is memory intensive and

uses long and short-distance inter-processor communication. The number of processes grows

as power of 2 giving 5 different grid sizes. We observe that NoCMsg is faster than OperaMPI

for all the grid sizes. The strong scaling of input size causes the total time to reduce as the

34

Figure 4.7: Alltoall: Varying Message Sizes

number of tasks increases. For small task sizes NoCMsg is much faster than OperaMPI, but as

the number of tasks increases, the difference between the total execution times decreases. This

is because MG is memory intensive with limited inter-process communication, for large grid

sizes the performance improvement due to efficient communication reduces.

We used weak scaling for other benchmarks, namely IS, FT, CG and LU. FT is a discrete

3D Fast Fourier Transform solver for partial differential equations. CG estimates Eigen val-

ues using the conjugate gradient method. FT uses all-to-all communication whereas CG uses

irregular memory accesses and communication. IS features high number of collective commu-

nication. These benchmarks exhibit less computation and more inter-task communication. The

results of IS and CG benchmarks are shown in figures 4.12 and 4.13 respectively. In both cases,

the execution time of NoCMsg is lower than the execution time of OperaMPI. The difference

in execution time increases with increase in number of tasks showing that the inter-process

communication dominates the results for these benchmarks. In case of FT, the difference in

execution time is low between NoCMsg and OperaMPI as shown in figure 4.14.

Figure 4.15 shows the results for the LU pseudo application. For small number of tasks

when computation dominates total execution time, OperaMPI is faster than NoCMsg. As the

number of tasks increases, the inter-task communication starts to dominate the total execution

time. The execution time of NoCMsg grows slower than that of OperaMPI, indicating that for

larger number of tasks NoCMsg provides better performance.

35

Figure 4.8: Reduce: Varying Message Sizes

Figure 4.9: AllReduce: Varying Message Sizes

36

Figure 4.10: Broadcast: Varying Message Sizes

 0

 2

 4

 6

 8

 10

 12

 14

 16

2 4 8 16 32

T
im

e
 (

in
 s

e
c
o
n
d
s)

Tasks

NoCMsg

OperaMPI

Figure 4.11: NPB MG : Strong Scaling

37

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

2 4 8 16 32

T
im

e
 (

in
 s

e
c
o
n
d
s)

Tasks

NoCMsg

OperaMPI

Figure 4.12: NPB IS : Weak Scaling

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

2 4 8 16 32

T
im

e
 (

in
 s

e
c
o
n
d
s)

Tasks

NoCMsg

OperaMPI

Figure 4.13: NPB CG : Weak Scaling

38

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

2 4 8 16 32

T
im

e
 (

in
 s

e
c
o
n
d
s)

Tasks

NoCMsg

OperaMPI

Figure 4.14: NPB FT : Weak Scaling

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

2 4 8 16 32

T
im

e
 (

in
 s

e
c
o
n
d
s)

Tasks

NoCMsg

OperaMPI

Figure 4.15: NPB LU : Weak Scaling

39

Chapter 5

Related work

Communication patterns and communication trees as a means to implement collective op-

erations have been well studied [24]. Different approaches have been proposed for different

collectives.

One interesting algorithm for implementing broadcast was proposed in [7]. In the algorithm,

the source node sends the message halfway across the linear array, partitioning the network into

two sub-networks. In subsequent steps, each node holding a copy of the message forwards it to

a node in its partition that has not yet received the message. This continues until all the nodes

are covered. This approach is loosely based on spanning binomial trees. Another tree based

multicast scheme is proposed in [39]. The scheme constructs a quad-branch multicast (QBM)

tree for transmitting multicast messages. A QBM tree is a logic tree rooted at the source

node of a multicast and has four subtrees. These subtrees are used to distribute the multicast

message to a subset of the destinations through a particular virtual network. The destination

nodes are partitioned according to their positions relative to the source node in the 2D mesh.

Our implementation of Broadcast uses a communication tree rooted at the task performing the

broadcast. We also make use of relative position of nodes to the root for building the broadcast

tree. Tree branches are mapped onto the NoC in a contention-free manner and used to send the

message from the root to all the children. But unlike the QBM implementation, our approach

does not require special registers in the routers, support of double-XY routing and changes to

message headers.

Several approaches apply graph theory concepts to build efficient trees. One such approach

extends the concept of dominating sets from graph theory to build a broadcast tree structure

that is composed of multiple levels of extended dominating nodes (EDN) [36]. This approach

requires an all-port communication architecture to be efficient, where as, typical NoC based

platforms use a single-port communication architecture. Our implementation does not have any

such special requirements and can perform well on both single-port and all-port communication

40

architecture. Our implementation of Reduce and Barrier also use the same approach.

Barrier is the most commonly used collective and needs to be highly efficient. Numerous

efforts have been devoted to developing an efficient implementation of barrier synchronization,

both in software and hardware. Hardware barriers are typically faster than software barriers [30],

but are not scalable. For this reason, a number of methods have been proposed based on the

idea of multidestination mechanism, which combines message-passing with hardware support

in the routers [23], [29]. A multidestination worm is a message that carries multiple destination

addresses so that it can be sent to multiple nodes with a single start up delay. At each inter-

mediate destination, the associated router replicates the message, sends one copy to the local

processor, and forwards the other to the next destination. However, these approaches require

long headers to carry the information of multiple destination and incur additional processing

overhead at each node.

Another way to exploit message-passing is to implement tree-based barrier. One such imple-

mentation is the Collective Synchronization (CS) tree scheme proposed by Yang and King [40].

In this scheme every member node builds the CS tree in a distributed fashion by determining its

parent-child relationship. The basic idea is to partition the 2D mesh into four overlapping quad-

rants using the chosen root node as the origin. Each node searches for its parent node among a

set of member nodes within the same quadrant that are closer to the root node than itself. Once

the CS tree is built special registers in the routers are set up to direct synchronization messages

to appropriate output ports. Another similar approach is the Barrier Tree for Meshes (BTM),

which is a 4-ary synchronization tree constructed in a recursive manner [26]. The algorithm

starts by partitioning the 2D mesh into four disjoint submeshes around the chosen root node.

Then, for each quadrant, a local root node is chosen and the quadrant is partitioned again into

four submeshes around the local root node. The recursive partitioning continues until there

remains only one node in each submesh. These chosen nodes and leaf nodes together form the

BTM tree. Our implementation of barrier also uses a tree rooted at a chosen root node. But

unlike the other approaches, ours does not require dividing the 2D mesh into submeshes and

does not need special registers for building the tree. Our tree-based implementations relies on

the relative position of each node from the root and takes advantage of 2D mesh topology to

build and map the tree in a contention-free manner.

Our implementation of Alltoall exploits pattern-based communication to concurrently ex-

change messages between partners. On the surface, this approach shares design strategies with

the “direct algorithm” of [35]. The direct algorithm assigns nodes of the mesh the ordinal

numbers 0 through N-1 in a row-major fashion. During step k, for k = 1, 2, ..., N − 1, the node

with ordinal number i sends a message to the node whose ordinal number is an exclusive or

(XOR) of i and k. This results in a communication pattern similar to ours under dimension

order routing. However, unlike our approach, the direct algorithm suffers from link contention.

41

Other approaches to implement all-to-all require splitting up the tasks into distinct commu-

nication groups. Message combining algorithms referred to as binary exchange and quadrant

exchange were proposed in [11]. In the binary exchange, the mesh is recursively halved and

nodes symmetrically located with respect to each cut exchange block. The quadrant exchange

treats the mesh as groups of 2x2 submeshes and exchanges blocks among the nodes in each

submesh. Successive groups of 2x2 submeshes are interleaved until all blocks are exchanged.

Another algorithm called cyclic exchange proposed for power-of-two 2D meshes [34] makes use

of multiple communication phases. In each phase of the cyclic exchange, every node communi-

cates in two steps with two other nodes, one in the same row and one in the same column. In a

step of a phase, some pairs of nodes perform the horizontal exchange first, while others perform

the vertical exchange first. Subsequent steps reverse the order.

Another message combining algorithm proposed for multidimensional torus and mesh net-

works splits the mesh into 4x4 block groups [32]. Message exchange is divided into phases.

In Phases 1 and 2, nodes in the same group perform all-to-all personalized communication

among them. In the next two phases (Phases 3 and 4), message transmissions are performed

among nodes in distinct groups and in the same sub mesh. Suh and Yalamanchili [33] introduce

bottom-up algorithms for all-to-all communication where communication proceeds from smaller

submeshes of the NoC to larger ones. Our implementation also uses a bottom-up approach, but

it neither requires division of the grid into smaller submeshes nor does it result in network

contention.

More recent approaches focus on building static schedules for all-to-all communication [12].

Some approaches perform path selection, core mapping and time-slot allocation intelligently

to resolve conflicts on shared networks [17]. Others exploit Time-Division-Multiplexing based

NoC platforms and try to solve the slot and path selection problem to provide contention free

communication [31]. Unlike these approaches, our implementation neither requires dynamic

route calculations nor offline pre-calculations nor storage of large routing tables. This keeps our

implementation simple, generic and scalable with minimum overhead.

42

Chapter 6

Conclusion

We have designed a set of efficient and predictable group communication primitives using mes-

sage passing utilizing NoC architectures. The primitives employ highly efficient algorithms to

provide contention-free communication and utilize advanced NoC hardware features. These

primitives improve performance and reduce imbalance for HPC applications while providing

higher timing predictability for high-confidence real-time systems.

Our implementation of the most commonly used collectives reduces the communication time

over a reference MPI implementation by up to 95% for single packet messages and up to 98%

for larger messages. NoCMsg has superior performance over OperaMPI irrespective of message

size for all but one collective: For Alltoall, NoCMsg performs better for message sizes up to 256

Bytes while OperaMPI performs better for larger messages. Evaluation using NPB also shows

that NoCMsg outperforms OperaMPI. NoCMsg thus nicely complements prior work that is

efficient at larger (yet less common) message sizes for this case. Additionally, the variance of

execution times for our implementation is several orders of magnitude lower than that of the

reference MPI implementation, making our implementation ideal for balanced HPC as well as

hard real-time applications. And instead of assuming ideal NoC symmetry with wrap-around

links on the 2D boundaries, our work addresses realistic 2D meshes without wrap-around, such

as present in contemporary NoC hardware designs.

Therefore, we can conclude that efficient, predictable and scalable contention-free collective

communication can be easily implemented on massive multi-core NoC platforms. Such an im-

plementation can provide balanced parallel execution resulting in improved performance and

low timing variability, as postulated in the thesis statement.

43

REFERENCES

[1] Adapteva processor family. www.adapteva.com/products/silicon-devices/e16g301/.

[2] Nas parallel benchmarks. http://www.nas.nasa.gov/publications/npb.html.

[3] Single-chip cloud computer. blogs.intel.com/research/2009/12/sccloudcomp.php.

[4] Tera-scale research prototype: Connecting 80 simple cores on a sin-
gle test chip. ftp://download.intel.com/research/platform/terascale/tera-
scaleresearchprototypebackgrounder.pdf.

[5] Tilera processor family. www.tilera.com/products/-processors.php.

[6] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, D. Dagum, R. A.
Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakr-
ishnan, and S. K. Weeratunga. The NAS Parallel Benchmarks. The International Journal
of Supercomputer Applications, 5(3):63–73, Fall 1991.

[7] Michael Barnett, David G. Payne, and Robert A. van de Geijn. Optimal broadcasting in
mesh-connected architectures. Technical report, Austin, TX, USA, 1991.

[8] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay, M. Reif, Liewei
Bao, J. Brown, M. Mattina, Chyi-Chang Miao, C. Ramey, D. Wentzlaff, W. Anderson,
E. Berger, N. Fairbanks, D. Khan, F. Montenegro, J. Stickney, and J. Zook. Tile64 -
processor: A 64-core soc with mesh interconnect. In Solid-State Circuits Conference, 2008.
ISSCC 2008. Digest of Technical Papers. IEEE International, pages 88–598, 2008.

[9] D. Bertozzi and L. Benini. Xpipes: a network-on-chip architecture for gigascale systems-
on-chip. Circuits and Systems Magazine, IEEE, 4(2):18–31, 2004.

[10] Tobias Bjerregaard and Shankar Mahadevan. A survey of research and practices of network-
on-chip. ACM Comput. Surv., 38(1), June 2006.

[11] S.H. Bokhari and H. Berryman. Complete exchange on a circuit switched mesh. In Scalable
High Performance Computing Conference, 1992. SHPCC-92, Proceedings., pages 300–306,
1992.

[12] Florian Brandner and Martin Schoeberl. Static routing in symmetric real-time network-
on-chips. In Proceedings of the 20th International Conference on Real-Time and Network
Systems, RTNS ’12, pages 61–70, New York, NY, USA, 2012. ACM.

[13] William J. Dally and Brian Towles. Route packets, not wires: on-chip inteconnection
networks. In Proceedings of the 38th annual Design Automation Conference, DAC ’01,
pages 684–689, New York, NY, USA, 2001. ACM.

[14] Michael J. Flynn and Patrick Hung. Microprocessor design issues: Thoughts on the road
ahead. IEEE Micro, 25(3):16–31, May 2005.

44

[15] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra, Jef-
frey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew Lumsdaine,
Ralph H. Castain, David J. Daniel, Richard L. Graham, and Timothy S. Woodall. Open
MPI: Goals, concept, and design of a next generation MPI implementation. In European
PVM/MPI Users’ Group Meeting, pages 97–104, September 2004.

[16] John L. Gustafson. Reevaluating Amdahl’s law. Communications of the ACM, 31(5):532–
533, May 1988.

[17] Andreas Hansson, Kees Goossens, and Andrei Rǎdulescu. A unified approach to con-
strained mapping and routing on network-on-chip architectures. In Proceedings of the
3rd IEEE/ACM/IFIP international conference on Hardware/software codesign and sys-
tem synthesis, CODES+ISSS ’05, pages 75–80, New York, NY, USA, 2005. ACM.

[18] Jörg Henkel, Wayne Wolf, and Srimat Chakradhar. On-chip networks: A scalable,
communication-centric embedded system design paradigm. In Proceedings of the 17th
International Conference on VLSI Design, VLSID ’04, pages 845–, Washington, DC, USA,
2004. IEEE Computer Society.

[19] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy.
Introduction to the cell multiprocessor. IBM J. Res. Dev., 49(4/5):589–604, July 2005.

[20] M. Kang, E. Park, M. Cho, J. Suh, D.-I. Kang, and S. P. Crago. Mpi performance analysis
and optimization on tile64/maestro. In Workshop on Multi-core Processors for Space —
Opportunities and Challenges, July 2009.

[21] Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun. Niagara: A 32-way
multithreaded sparc processor. IEEE Micro, 25(2):21–29, 2005.

[22] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Introduction to parallel
computing: design and analysis of algorithms. Benjamin-Cummings Publishing Co., Inc.,
Redwood City, CA, USA, 1994.

[23] X. Lin, P. K. McKinley, and L. M. Ni. Deadlock-free multicast wormhole routing in 2-d
mesh multicomputers. IEEE Trans. Parallel Distrib. Syst., 5(8):793–804, August 1994.

[24] Philip K. McKinley, Yih jia Tsai, and David F. Robinson. A survey of collective commu-
nication in wormhole-routed massively parallel computers. IEEE COMPUTER, 28:39–50,
1994.

[25] Giovanni De Micheli and Luca Benini. On-Chip Communication Architectures: System on
Chip Interconnect. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

[26] Sangman Moh, Chansu Yu, Ben Lee, Hee Young Youn, Dongsoo Han, and Dongman Lee.
Four-ary tree-based barrier synchronization for 2d meshes without nonmember involve-
ment. IEEE Trans. Comput., 50(8):811–823, August 2001.

[27] Lionel M. Ni and Philip K. McKinley. A survey of wormhole routing techniques in direct
networks. Computer, 26(2):62–76, February 1993.

45

[28] John D. Owens, William J. Dally, Ron Ho, D.N. (Jay) Jayasimha, Stephen W. Keckler, and
Li-Shiuan Peh. Research challenges for on-chip interconnection networks. IEEE Micro,
27(5):96–108, 2007.

[29] D. K. Panda. Fast barrier synchronization in wormhole k-ary n-cube networks with mul-
tidestination worms. In Proceedings of the 1st IEEE Symposium on High-Performance
Computer Architecture, HPCA ’95, pages 200–, Washington, DC, USA, 1995. IEEE Com-
puter Society.

[30] Vara Ramakrishnan and Isaac D. Scherson. Efficient techniques for nested and disjoint
barrier synchronization. J. Parallel Distrib. Comput., 58(2):333–356, August 1999.

[31] Radu Stefan and Kees Goossens. An improved algorithm for slot selection in the thereal
network-on-chip. In Proceedings of the Fifth International Workshop on Interconnection
Network Architecture: On-Chip, Multi-Chip, INA-OCMC ’11, pages 7–10, New York, NY,
USA, 2011. ACM.

[32] Young-Joo Suh and Kang G. Shin. All-to-all personalized communication in multidimen-
sional torus and mesh networks. IEEE Trans. Parallel Distrib. Syst., 12(1):38–59, January
2001.

[33] Young-Joo Suh and Sudhakar Yalamanchili. All-to-all communication with minimum start-
up costs in 2d/3d tori and meshes. IEEE Trans. Parallel Distrib. Syst., 9(5):442–458, May
1998.

[34] N. S. Sundar, D. N. Jayasimha, D.K. Panda, and P. Sadayappan. Complete exchange in
2d meshes. In Scalable High-Performance Computing Conference, 1994., Proceedings of
the, pages 406–413, 1994.

[35] Rajeev Thakur and Alok Choudhary. All-to-all communication on meshes with wormhole
routing. In In Proceedings of the 8 th International Parallel Processing Symposium, pages
561–565, 1994.

[36] Yih-jia Tsai and Philip K. McKinley. Broadcast in all-port wormhole-routed 3d mesh net-
works using extended dominating sets. In Proceedings of the 1994 International Conference
on Parallel and Distributed Systems, pages 120–127, Washington, DC, USA, 1994. IEEE
Computer Society.

[37] J. Vetter and F. Mueller. Communication characteristics of large-scale scientific appli-
cations for contemporary cluster architectures. In International Parallel and Distributed
Processing Symposium, April 2002.

[38] David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao, Bruce Edwards, Carl
Ramey, Matthew Mattina, Chyi-Chang Miao, John F. Brown III, and Anant Agarwal.
On-chip interconnection architecture of the tile processor. IEEE Micro, 27:15–31, 2007.

[39] Jenq-Shyan Yang and Chung-Ta King. Efficient tree-based multicast in wormhole-routed
2d meshes. In Proceedings of the 1997 International Symposium on Parallel Architectures,

46

Algorithms and Networks, ISPAN ’97, pages 494–, Washington, DC, USA, 1997. IEEE
Computer Society.

[40] Jenq-Shyan Yang and Chung-Ta King. Designing tree-based barrier synchronization on 2d
mesh networks. IEEE Trans. Parallel Distrib. Syst., 9(6):526–534, June 1998.

47

