
ABSTRACT

WU, XING. Scalable Communication Tracing for Performance Analysis of Parallel Applications.
(Under the direction of Frank Mueller.)

Performance analysis and prediction for parallel applications is important for the design

and development of scientific applications, and for the construction and procurement of high-

performance computing (HPC) systems. As one of the most important approaches, application

tracing is widely used for this purpose for being able to provide the computation and commu-

nication details of an application. Recent progress in communication tracing has tremendously

improved the scalability of tracing tools and reduced the size of the trace file, and thereby

opened up novel opportunities for trace-based performance analysis for parallel applications.

This work focuses on domain-specific trace compression methodology and puts forth fun-

damentally new approaches to improve the communication tracing techniques. Facilitated by

the advances in this area, novel algorithms are further designed to address the hard problem of

performance analysis, prediction, and benchmarking at scale. Specifically, this work makes the

following contributions:

1. This work contributes ScalaExtrap, a fundamentally novel performance modeling scheme

and tool. With ScalaExtrap, we synthetically generate the application trace for large

numbers of MPI tasks by extrapolating from a set of smaller traces. We devise an innova-

tive approach for topology extrapolation of SPMD (Single Program Multiple Data) codes

with stencil or mesh communication. The extrapolated trace can subsequently be used for

trace-based simulation, visualization, and detection of communication inefficiencies and

scalability limitations at scale.

2. This work contributes novel methods to automatically generate highly portable and cus-

tomizable communication benchmarks from HPC applications. We utilize ScalaTrace to

collect selected aspects of the run-time behavior of HPC applications. We then generate

portable and easy-to-read benchmarks with identical run-time behavior from the collected

traces with C and the rich-featured coNCePTuaL network benchmarking language. Be-

cause our approach supports code obfuscation, it is particularly valuable for proprietary,

export-controlled, or classified applications.

3. This work contributes novel algorithms to improve the trace compression and replay

for SPMD applications. Built on our past experience with ScalaTrace, a spectrum of

compression techniques, including elastic data element representation, approximate loop

matching, loop agnostic inter-node compression, and so on, are designed to improve the

trace compression for applications with iteration-specific program behavior and diverging

parallel control flow. A fully distributed replay tool for probabilistic traces is also de-

veloped for the reproduction of the computation performance of the original application.

The respective design has been implemented in ScalaTrace 2, the next generation of the

ScalaTrace tracing infrastructure.

Overall, this work is centered around scalable tracing of parallel applications. Built upon

the prior research, it contributes novel approaches on communication trace compression and

trace-based performance analysis. To the best of our knowledge, the algorithms and techniques

proposed in this work are without precedence.

c© Copyright 2013 by Xing Wu

All Rights Reserved

Scalable Communication Tracing for Performance Analysis of Parallel Applications

by
Xing Wu

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Computer Science

Raleigh, North Carolina

2013

APPROVED BY:

Xiaosong Ma Yan Solihin

Xiaohui Helen Gu Scott Pakin

Frank Mueller
Chair of Advisory Committee

DEDICATION

To my parents and my lovely wife, Yi Tang, for their tremendous support and constant love.

ii

BIOGRAPHY

Xing Wu was born and raised in Chengdu, China. He attended ShiShi high school in Chengdu.

Thereafter, he began his undergraduate studies in University of Electronic Science and Technol-

ogy of China (UESTC). In 2005, he interned with Infosys Limited in Bangalore, India. In 2006,

he received his Bachelor of Engineering degree in Computer Science from UESTC. He then

joined the master’s program in Computer Science in the same university, where he developed

a keen interest in parallel and distributed computing. In 2008, Xing joined the Department

of Computer Science in North Carolina State University (NCSU) to pursue a Ph.D degree.

Under the guidance of Dr. Frank Mueller, he specialized in the performance analysis of parallel

applications with a focus on scalable approaches for application tracing. During his doctoral

studies, he also interned in Los Alamos National Laboratory and Amazon.com Inc. He will be

joining Amazon.com Inc. after graduation.

iii

ACKNOWLEDGEMENTS

All of a sudden, when I finally had the opportunity to write down my acknowledgement for

this dissertation, I came to realize that it is almost the end of my Ph.D journey. In retrospect,

the memories of so many first times are still fresh: the first time fighting a twelve-hour jet

lag in an operating systems class that I could not really understand, the first time sitting in

Room 3266 struggling to comprehend a complication called ScalaTrace, the first time receiving

a rejection for an ambitious paper submission, the first time standing behind a podium giving a

conference presentation, the first time working in a national lab at an once secret location, the

first time passing a job interview and getting a position in a dream company Throughout

the journey, there were disappointment, depression, frustration, and suffering, but there were

also excitement, cheerfulness, brilliance, and most importantly, achievements, which are never

possible without the encouragement, guidance, and support from the people to whom I shall

show my gratitude.

Firstly, I would like to thank my family. I thank my parents for supporting their only

child to pursue a graduate degree in a country that is thousands of miles away. I thank my

wonderful wife, Yi, for enduring the loneliness of being geographically apart for ten years, and

for all the unselfish sacrifice thereafter. Their constant understanding and tremendous support

encouraged me to move on.

Secondly, I would like to thank my advisor Dr. Frank Mueller, for his patience and encour-

agement to a beginner in the first few years, and for his professional guidance and invaluable

advice throughout my studies. His wisdom, expertise, and insightful thoughts motivated me

and inspired my research. I would also thank Dr. Xiaosong Ma, Dr. Xiaohui Gu, Dr. Yan

Solihin, and Dr. Scott Pakin for serving on my advisory committee and giving me invaluable

suggestions on my dissertation. Particularly, I would like to give special thanks to Dr. Scott

Pakin for being my mentor during my internship at Los Alamos National Laboratory and being

my collaborator of one of my papers. Since we worked together, he has given me substantial

help on my research.

Last but not least, I would like to thank Abhik Sarkar, Chris Zimmer, Yongpeng Zhang,

David Fiala, Arash Rezaei, James Elliott, Feng Ji, and Fei Meng for making Room 3226 a

forum, a coffee/tea house, a soccer field, or anything other than a research lab. I would like

to thank Karthik Vijayakumar and Vivek Deshpande for being my research collaborators. I

would like to thank Zhengzhang Chen, Zhenhuan Gong, Yongmin Tan, and Yaogong Wang, for

the nights with “music and beer”. I am also indebted to my 16-year friend, Yangyang Liu, who

encouraged me to pursue a Ph.D and offered me great help thereafter.

iv

TABLE OF CONTENTS

List of Tables . vii

List of Figures . viii

Chapter 1 Introduction . 1

1.1 Background . 1
1.1.1 The Recent History of Supercomputers 1
1.1.2 Application Trace for Performance Analysis and Prediction 2
1.1.3 ScalaTrace . 3

1.2 Hypothesis . 4
1.3 Contributions . 4

1.3.1 Contributions . 4
1.3.2 Assumptions and Scope . 6

1.4 Organization . 6

Chapter 2 An Overview of ScalaTrace . 8

2.1 Intra-node and Inter-node Compression . 8
2.2 ScalaTrace Encoding Schemes . 9
2.3 Preserving Time in Communication Traces . 10
2.4 ScalaReplay . 11

Chapter 3 ScalaExtrap: Trace Extrapolation for SPMD Programs 12

3.1 Introduction . 12
3.2 Communication Extrapolation . 14

3.2.1 Topology Identification . 15
3.2.2 Matching MPI Events for Extrapolation 17
3.2.3 Extrapolation of MPI Events . 20
3.2.4 Lossy Extrapolation . 23
3.2.5 Extrapolation of Timing Information . 25

3.3 Experimental Framework . 26
3.4 Experimental Results . 27

3.4.1 Correctness of Communication Trace Extrapolation 28
3.4.2 Accuracy of Extrapolated Timings: Timed Replay 30
3.4.3 Lossy Extrapolation . 35

3.5 Application of the Extrapolated Trace . 36
3.5.1 Extrapolated Trace for Code Generation 37
3.5.2 Extrapolated Trace for Performance Experiments 37

3.6 Related Work . 39
3.7 Summary . 42

v

Chapter 4 Automatic Generation of Parallel Benchmarks from Applications . 44

4.1 Introduction . 44
4.2 Related Work . 47
4.3 coNCePTuaL . 49
4.4 Benchmark Generation . 50

4.4.1 Overview . 50
4.4.2 Engineering Details . 52
4.4.3 Combining Per-Node Collectives . 53
4.4.4 Eliminating Nondeterminism . 55
4.4.5 The Generation of Scalable Benchmarks 59
4.4.6 Sources of Performance Inaccuracy . 61

4.5 Evaluation . 61
4.5.1 Experimental Framework . 61
4.5.2 Communication Correctness . 62
4.5.3 Accuracy of Generated Timings . 63
4.5.4 Correctness and Timing Accuracy of Generated Scalable Benchmarks . . 63
4.5.5 Applications of the Benchmark Generator 66

4.6 Summary . 72

Chapter 5 ScalaTrace 2 . 74

5.1 Introduction . 74
5.2 Communication Trace Compression and Replay 76

5.2.1 Elastic Data Element Representation . 76
5.2.2 Compressing Partially Matching Loops . 77
5.2.3 Approximate Stack Signature Matching 81
5.2.4 Loop Agnostic Inter-node Compression 83
5.2.5 Customizable Instrumentation . 85
5.2.6 Replaying Non-deterministic Trace . 86

5.3 Evaluation . 88
5.3.1 Trace File Size . 89
5.3.2 Probabilistic Replay Time Accuracy . 92

5.4 Related Work . 94
5.5 Summary . 96

Chapter 6 Future Work . 97

6.1 Customizable Instrumentation . 97
6.2 A Versatile Tracing Framework with Tunable Precision 98
6.3 Scalable Numerical Data Analysis Techniques . 99

Chapter 7 Conclusion . 100

References . 102

vi

LIST OF TABLES

Table 4.1 Mapping of MPI Collectives to coNCePTuaL 52

vii

LIST OF FIGURES

Figure 1.1 Performance Development of Supercomputers Since June 1993 2

Figure 2.1 Sample Stencil Code for RSD and PRSD Generation 9
Figure 2.2 Ranklist Representation for Communication Group 10

Figure 3.1 Topology Detection . 16
Figure 3.2 Boundary Size Calculation . 16
Figure 3.3 Inter-node Compression and the Positions of Communication Groups . . . 18
Figure 3.4 Generic Representation of Communication Endpoints 21
Figure 3.5 Set of Equations for Communication Endpoint Extrapolation 21
Figure 3.6 Distribution of Communication Groups of a 2D Stencil Code 22
Figure 3.7 A Simple Trace Snippet and the Generated Finite-state Machine 24
Figure 3.8 CG Communication Topology . 27
Figure 3.9 Correctness of Trace Extrapolation and Replay 28
Figure 3.10 Replay Time Accuracy for Strong Scaling Benchmarks 31
Figure 3.11 Replay Time Accuracy for Weak Scaling Benchmarks 34
Figure 3.12 Timing Accuracy of Lossy Extrapolation of Weak Scaling MG 36
Figure 3.13 Timing Accuracy for the Extrapolated Benchmarks 38
Figure 3.14 The Impact of Computational Speedup on the Overall Performance 39

Figure 4.1 Benchmark Generation System . 45
Figure 4.2 Pseudo MPI Code for 1D Torus Communication 49
Figure 4.3 coNCePTuaL Code for the Pseudo MPI Code in Figure 4.2 50
Figure 4.4 Combining Collectives Across Separate Source-code Statements 53
Figure 4.5 Operation of Algorithm 2 . 56
Figure 4.6 Potential Deadlock . 57
Figure 4.7 Communication Pattern of a 2D Stencil Code 60
Figure 4.8 Time Accuracy for Generated Benchmarks 64
Figure 4.9 Timing Accuracy of the Scalable coNCePTuaL Benchmarks 65
Figure 4.10 Communication Performance of BT . 67
Figure 4.11 Impact of Communication Performance on BT 68
Figure 4.12 Complete coNCePTuaL Code for NPB FT (Class C) of 256 MPI Tasks 69
Figure 4.13 Performance of All-to-all Implementations for FT 70
Figure 4.14 Cross-platform Prediction . 72

Figure 5.1 Loop with Iteration-specific Behavior . 78
Figure 5.2 Loop with Trailing Iterations . 80
Figure 5.3 The Simplified NPB BT Code . 83
Figure 5.4 Code Needs Loop Agnostic Inter-node Compression 84
Figure 5.5 Final Trace of the Code in Figure 5.4 . 85
Figure 5.6 Trace Needs Multiple Context Pointers for Replay 87
Figure 5.7 Trace File Sizes for NPB BT, CG, LU, MG, SP, Sweep3D, and POP . . . 90

viii

Figure 5.8 Probabilistic Replay Time Accuracy . 93

ix

Chapter 1

Introduction

1.1 Background

1.1.1 The Recent History of Supercomputers

Processor counts and Flops (FLoating-point Operations Per Second) in modern supercomputers

are rising exponentially. Back in June 1993, when the first Top500 list [1] was announced, the

CM-5/1024, the world’s fastest supercomputer from Los Alamos National Laboratory at the

time had only 1,024 cores and a maximal LINPACK [21] performance (Rmax) of 59.7 GFlops.

Four years later, in June 1997, the world’s first teraflop supercomputer, ASCI Red from Sandia

National Laboratories with 7,264 cores and an Rmax of 1,068 GFlops, became the number one

system in the world. In June 2008, the Roadrunner system at Los Alamos National Labora-

tory with 122,400 cores and an Rmax of 1,026.00 TFlops brought the global high performance

computing community into the era of petascale for the first time. As of the publication of the

latest Top500 list (November 2012), all of the top 20 systems have achieved petaflop/s perfor-

mance. Titan, the Cray XK7 supercomputer at the Oak Ridge National Laboratory capable of

performing more than 17 quadrillion calculations per second (PFlops), currently occupies the

first place in the list. It (together with the June 2012 champion, Sequoia BlueGene/Q with

1,572,864 cores and an Rmax of 16.3 PFlops at the Lawrence Livermore National Laboratory)

exceeds the maximum computation capability of Roadrunner by 16 times after a period of just

4 years — equivalent to a doubling of performance every year! Based on the historical statistics

of the past two decades, it is not unreasonable to expect the advent of exascale computing in

the near future.

1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08
G

F
lo

p/
s

C
or

es

Number of Cores
Maximal LINPACK performance achieved

Figure 1.1: Performance Development of Supercomputers Since June 1993

1.1.2 Application Trace for Performance Analysis and Prediction

Performance analysis and prediction for scientific applications is important for assessing po-

tential application performance and HPC systems procurement. However, as supercomputers

progress in scale and capability toward exascale levels, characterization of communication be-

havior and its impact on the overall application performance is becoming increasingly difficult

due to the application size and system complexity.

Performance modeling is an important approach to predict application behavior. Generally,

this approach takes a number of machine and application parameters as input. It utilizes a

set of formulae to assess the performance of an application when it is executed on a partic-

ular architecture and at a certain scale. Nonetheless, measuring the system and application

performance parameters is non-trivial given the complexity of supercomputers and large-scale

scientific applications. In addition, this approach provides only the predicted overall statistics

for an application. Without detailed application runtime information, neither more sophisti-

cated static analysis nor post-mortem performance debugging is possible.

Profiling is another widely used method for performance analysis and debugging of scientific

codes that utilize MPI-style message passing [34]. Through binary instrumentation or utilizing

the MPI profiling layer, profiling tools, such as mpiP [75], are able to gather runtime information

such as the execution times of the functions and the message volume exchanged in the network.

Nevertheless, as a light-weighted approach, profiling provides only the aggregated statistics of an

application. Without the structural and temporal ordering of events and the information about

each communication event and each computation region, in-depth and fine-grained performance

analysis can hardly be done.

Alternatively, application tracing can be used to capture complete application behavior.

Typically, MPI tracing is implemented with the MPI profiling interface, which is a set of wrap-

2

per functions for the actual MPI functions. By intercepting MPI calls at the profiling interface,

the MPI profiling system can record useful information including the parameters passed to a

subroutine, timestamps, the duration of a subroutine, any statistics from hardware performance

counters, etc. Since event logs are stored in a trace file in the order that the corresponding

MPI calls were issued, the application trace is often able to preserve the temporal and causal

ordering of events. With complete information about the runtime behavior of an application,

tracing can be used to pinpoint the root cause of the performance problems. However, while a

number of tracing tools for communication exist, their storage requirements do not scale well. A

full-blown communication trace with per-event timestamps not only requires a high-bandwidth

parallelized I/O backbone to collect the trace. It also mandates a parallelized approach to ana-

lyze or visualize such traces. Hence, even with the complete information about an application,

performance analysis and debugging is still non-trivial for large-scale applications.

1.1.3 ScalaTrace

This work focuses on novel performance analysis techniques that are built upon ScalaTrace.

ScalaTrace is a lossless yet scalable communication tracing library [56, 64]. More specifically,

ScalaTrace records the communication events in a fully lossless manner with their causal or-

dering preserved, while it preserves the execution times of communication and computational

stages with a histogram-based lossy approach to capture the original performance characteris-

tics [64]. It utilizes the MPI profiling layer to intercept MPI communication calls and record

parameter values and durations of computational regions. A unique feature that distinguishes

ScalaTrace from previous approaches is its capability of performing structure-preserving com-

pression. At runtime, ScalaTrace performs an on-the-fly intra-node loop compression on each

node to obtain a scalable trace size with respect to the repeating workload caused by timestep

simulation in parallel scientific applications. At application termination, ScalaTrace performs

an inter-node compression along a radix tree to further merge the per-node traces to a single

one. By exploiting the similarities between per-node traces caused by the SPMD nature of the

scientific applications, inter-node compression allows the trace size to be scalable with respect

to the total number of MPI tasks.

ScalaReplay is a replay engine designed to replay the ScalaTrace traces. At runtime, it

interprets the application trace and issues MPI calls in the order that they were performed in the

original application. ScalaReplay supports timed replay by sleeping for the number of time units

recorded for the computational phases. With ScalaReplay, the application runtime behavior can

be accurately reproduced for post-mortem performance analysis and cross-platform performance

prediction.

3

1.2 Hypothesis

With supercomputer’s computation power doubled each year and the system size continuously

increasing, the HPC community will embrace the era of exascale in the near future. With such

massive-scale systems, development, debugging, and performance analysis of parallel applica-

tions are becoming increasingly difficult due to the lack of methods and tools that are efficient

at scale. We attempt to address this limitation in this dissertation. Hence, the hypothesis of

this dissertation is:

By exploiting the repetitive nature of time step simulation and the HPC-prevalent SPMD

programming style, it becomes feasible to preserve the communication and runtime behavior

of parallel applications in a lossless or near lossless fashion, while still ensuring scalability of

tracing capabilities. Such scalable tracing methodology has the potential to enable innovative

performance analysis and benchmarking techniques that are otherwise impractical with the past

approaches.

1.3 Contributions

1.3.1 Contributions

This work puts forth fundamentally new approaches to improve communication tracing tech-

niques. We focus on domain-specific trace compression schemes for parallel applications that

utilize the Message Passing Interface. Facilitated by advances in this area, novel techniques and

algorithms were designed to address the hard problems of performance analysis, prediction, and

benchmarking at scale. Specifically, this work makes the following contributions:

1. Scalability is one of the main challenges of scientific applications in HPC. Estimating the

impact of scaling on communication efficiency is non-trivial due to execution time varia-

tions and exposure to hardware and software artifacts. This work contributes ScalaExtrap,

a fundamentally novel modeling scheme and tool. We synthetically generate the appli-

cation trace for large numbers of nodes by extrapolation from a set of smaller traces.

We devise an innovative approach for topology extrapolation of SPMD codes with sten-

cil or mesh communication. The extrapolated trace can subsequently be (a) replayed

to assess communication requirements before porting an application, (b) transformed to

auto-generate communication benchmarks for various target platforms, and (c) analyzed

to detect communication inefficiencies and scalability limitations.

2. Portable parallel benchmarks are widely used and highly effective for performance analysis

and evaluation of scientific codes and for HPC system procurement. Yet, past techniques

to synthetically parametrized hand-coded HPC benchmarks prove insufficient for today’s

4

rapidly-evolving scientific codes particularly when subjected to multi-scale science mod-

eling or when utilizing domain-specific libraries. To address these problems, this work

contributes novel methods to automatically generate highly portable and customizable

communication benchmarks from HPC applications. We utilize ScalaTrace to collect

selected aspects of the run-time behavior of HPC applications while abstracting away

the details of computation. We subsequently generate portable and easy-to-read bench-

marks with identical run-time behavior from the collected traces with coNCePTuaL.

coNCePTuaL is a domain-specific language that enables the expression of sophisticated

communication patterns using a rich and easily understandable grammar yet compiles to

ordinary C+MPI. Such automated benchmark generation is particularly valuable for pro-

prietary, export-controlled, or classified application codes: when supplied to a third party,

our auto-generated benchmarks ensure performance fidelity without the risks associated

with releasing the original code.

3. While a number of communication tracing tools exist, they either produce trace files with

non-scalable sizes, or only gather aggregated runtime statistics without preserving the

program structure and temporal event ordering. ScalaTrace introduces effective commu-

nication trace representation and compression techniques that enable scalable application

tracing. This work contributes ScalaTrace 2, the next generation ScalaTrace that deliv-

ers even higher trace compression capability. In this work, a spectrum of compression

techniques, including elastic data element representation, approximate loop matching,

loop agnostic inter-node compression, and so on, are designed to improve the trace com-

pression for applications with iteration-specific program behavior and diverging parallel

control flow. A fully distributed replay tool for probabilistic traces is also developed

for the reproduction of the computation performance of the original application. With

ScalaTrace 2, we significantly improve on today’s the state-of-the-art compression capa-

bilities.

Experiments were performed to evaluate the proposed approaches for trace-based perfor-

mance analysis. Results demonstrate that 1) the extrapolated trace is able to predict the

performance characteristics of an application at scale, 2) the generated benchmarks can ac-

curately preserve the runtime behavior of the original applications for performance analysis,

and 3) ScalaTrace 2 achieves key improvements on trace compression for applications with in-

consistent time step behavior and diverging task level behavior compared to its predecessor,

ScalaTrace 1.

Overall, this work is centered around scalable tracing of parallel applications. Building upon

prior research, it contributes novel approaches on communication trace compression and trace-

based performance analysis that would otherwise be infeasible. To the best of our knowledge,

5

the algorithms and techniques proposed in this work are without precedence.

1.3.2 Assumptions and Scope

The methodologies and techniques proposed in this work target parallel applications utiliz-

ing the Message Passing Interface (MPI), the de facto standard for scientific computing. The

principles of compression are applicable to other domains as well, e.g., memory trace compres-

sion [50, 49, 13], but this work focuses on MPI communication traces. Particularly, the work

presented in Chapter 3 targets SPMD codes with regular stencil or mesh style communication

patterns. It assumes that the nodes are numbered in a row-major fashion. It makes the as-

sumption that an application’s communication pattern is linearly related to its communication

topology. Being a trace-based approach requiring no binary instrumentation or source code

analysis, this work also assumes that the communication patterns and computational times

evolve continuously with the scale of the execution in a predictable manner. Should any of

these assumptions do not hold for a particular code, the ScalaExtrap approach will fail. For

example, without the knowledge of a given node assignment scheme, identifying the communica-

tion pattern from the communication graph provided by a trace file is equivalent to solving the

graph isomorphism problem, which is known to be NP hard [87]. Also, if the variation trend of

the execution time of a certain computational stage follows a discontinuous function, our curve

fitting approach will be insufficient to capture the discontinuity. The benchmark generation tool

presented in Chapter 4 is generally applicable to any MPI applications that can be traced with

ScalaTrace. It generates concise and easily understandable codes for applications demonstrat-

ing regular event patterns that can be exploited by ScalaTrace for trace compression. Similarly,

ScalaTrace 2 (Chapter 5) is also applicable to all MPI programs in general. Nonetheless, by

incorporating a set of novel compression algorithms, ScalaTrace 2 is particularly suitable for

applications demonstrating inconsistent loop behavior and irregular SPMD behavior. Similar

to the last generation ScalaTrace (see Chapter 2), ScalaTrace 2 also uses a hybrid approach

where communication event tracing can be configured to be fully lossless, but the delta times

of communication and computational stages are recorded in a lossy manner using histograms.

1.4 Organization

The remaining chapters are structured as follows. Chapter 2 introduces ScalaTrace 1, the prior

research that inspired and enabled the work presented in this dissertation. Chapter 3 presents a

trace-based extrapolation algorithm that extrapolates a large trace from several smaller traces

for quick performance analysis at large scale. Chapter 4 describes an automatic benchmark

generation framework that generates performance-accurate benchmarks for scientific applica-

tions from communication traces collected with ScalaTrace. Chapter 5 describes ScalaTrace 2,

6

a fundamental redesign of ScalaTrace that implements novel trace compression algorithms to

cope with applications featuring complicated loop-level and task-level behavior. Chapter 6 dis-

cusses future work. Chapter 7 summarizes the contributions of this research and concludes this

dissertation.

7

Chapter 2

An Overview of ScalaTrace

This chapter provides a brief overview of ScalaTrace. We introduce the internal compression

mechanisms and the unique features of ScalaTrace that serve as the basis for the work presented

in Chapter 3 and Chapter 4. Some of these algorithms and encoding schemes are also adopted

in the ScalaTrace 2 work presented in Chapter 5.

2.1 Intra-node and Inter-node Compression

ScalaTrace is an MPI communication tracing framework for parallel applications. It utilizes the

MPI profiling layer (PMPI) to intercept MPI calls. It collects lossless communication traces

where program structure, event ordering, and temporal information of the original applications

are preserved. By utilizing a set of domain-specific compression techniques, ScalaTrace is able

to generate space-efficient traces for SPMD codes regardless of the number of time steps and

the task count during execution.

During application execution, ScalaTrace performs on-the-fly intra-node compression to

capture the loop structure and represent MPI events in a compressed manner. Upon application

completion, local traces are combined into a single global trace where matching events and loop

structures are merged across node. Specifically, ScalaTrace utilizes Extended Regular Section

Descriptors (RSDs) to record the parameters and information of a single MPI event nested in

a loop. Power-RSDs (PRSDs) are utilized to recursively specify RSDs nested in multiple loops.

For example, for the 4-point stencil code shown in Figure 2.1,

RSD1: {<rank>, MPI_Irecv, (NORTH, WEST, EAST, SOUTH)}

and

RSD2: {<rank>, MPI_Isend, (NORTH, WEST, EAST, SOUTH)}

denote the alternating send/receive calls to/from the 4 neighbors, and

8

PRSD1: {<rank>, 1000, (RSD1, RSD2, MPI_Waitall)}

denotes the outer loop with 1000 iterations. In the loop’s body, RSD1, RSD2, and a succeeding

MPI Waitall are called sequentially. During inter-node compression, matching events are com-

pressed by forming a ranklist , i.e., a set of task IDs, to describe the participants of the events.

For example, the aforementioned task-level RSDs and PRSD become

RSD1: {<ranklist = 0,1,...,n>, MPI_Irecv, (NORTH, WEST, EAST, SOUTH)}

RSD2: {<ranklist = 0,1,...,n>, MPI_Isend, (NORTH, WEST, EAST, SOUTH)}

PRSD1: {<ranklist = 0,1,...,n>, 1000, (RSD1, RSD2, MPI_Waitall)}

neighbors[] = {NORTH, WEST, EAST, SOUTH};

for(i=0; i<1000; i++) {

for(j=0; j<4; j++) {

MPI_Irecv(neighbors[j]);

MPI_Isend(neighbors[j]);

}

MPI_Waitall();

}

Figure 2.1: Sample Stencil Code for RSD and PRSD Generation

2.2 ScalaTrace Encoding Schemes

The key approaches to achieve scalable inter-node compression are the location-independent

encoding and communication group encoding schemes detailed in the following.

• Location-independent encoding: Communication endpoints in SPMD programs differ from

one node to another. By encoding endpoints relative to the index of an MPI task on a node,

a location-independent denotation is created. The location-independent encoding helps to

describe the behavior of large set of nodes that exercise a common communication pattern,

e.g., a 5-point stencil. In a stencil/mesh topology, only few of such distinct sets/groups

tend to exist. Consequently, location-independent encoding opens up opportunities for

inter-node compression to unify endpoints across different computational nodes.

9

• Communication group encoding: Similarity in communication patterns is recognized to

succinctly denote sets/groups of nodes with common behavior. In a topological space,

a communication group refers to a subset of nodes that have identical communication

patterns. With this encoding scheme, a communication group is represented as a ranklist.

Using the EBNF meta-syntax, a ranklist is represented as

< dimension start rank iteration length stride {iteration length stride} >,

where dimension is the dimension of the group, start rank is the rank of the starting

node, and the iteration length stride pair is the iteration and stride of the corresponding

dimension. As an example, consider the row-major grid topology in Figure 2.2. The

shaded nodes form a communication group. This group is represented as ranklist

< 2 6 3 5 3 1 >,

where the tuple indicates that this communication group is a 2-dimensional area starting

at node 6 with 3 iterations of stride 5 in the y-dimension and 3 iterations of stride 1 in the

x-dimension, respectively. Since this encoding scheme takes node placement into account,

it naturally reflects the spatial characteristics of a communication group.

Figure 2.2: Ranklist Representation for Communication Group

2.3 Preserving Time in Communication Traces

Besides communication tracing, ScalaTrace also preserves the timing information of a parallel

application in a scalable way [64]. Along with the intra-node and inter-node compression pro-

10

cesses, “delta” times representing the computation between communication events are recorded

and compressed. For the purpose of scalability, delta times of a single MPI function call across

multiple loop iterations and across MPI tasks are not recorded one by one. Instead, histograms

with a fixed number of bins for delta times are dynamically constructed to provide a statistical

view. Delta times are distinguished by not only the call context of recorded events, but also

by their path sequence, which addresses significant variation of delta times caused by path

differences, e.g., within entry/exit paths of a loop.

2.4 ScalaReplay

Finally, ScalaReplay is a replay engine operating on the application traces generated by ScalaTrace.

It interprets the compressed application trace on-the-fly and issues MPI communication calls ac-

cordingly. During replay, all MPI calls are triggered over the same number of nodes with their

original parameters (e.g., message payload size) but a randomly generated message content.

This ensures comparable bandwidth requirements on communication interconnects. ScalaReplay

emulates computation events in the original application by sleeping/busy waiting so that the

communication contention characteristics are maintained during replay. In general, the replay

engine can be utilized for rapid prototyping and tuning, as well as to assess communication

needs of future platforms for large-scale procurements in conjunction with system simulators

(Dimemas/SST) [44, 73, 65].

11

Chapter 3

ScalaExtrap: Trace Extrapolation

for SPMD Programs

3.1 Introduction

Scalability is one of the main challenges for scientific applications in HPC. A host of automatic

tools have been developed by both academia and industry to assist in communication gathering

and analysis for MPI-style message passing [34]. Most of these tools either obtain lossless trace

information at the price of poor scalability [52] or preserve only aggregated statistical trace

information to limit the size of trace files as in mpiP [75]. Recent work on communication

tracing and time recording made a breakthrough in this realm. ScalaTrace introduced an

effective communication trace representation and compression algorithm [56]. It managed to

preserve the structure and temporal ordering of events, yet maintains traces in a space-efficient

representation. However, ScalaTrace needs to be linked to the original application and executed

on a high-performance computing cluster of a given number of compute nodes to obtain a trace.

Due to the often long application execution times and limited availability of cluster resources

for large numbers of nodes, obtaining the trace information of a large-scale parallel application

remains costly.

In this chapter, we describe ScalaExtrap, a methodology and tool to synthetically generate

communication trace for an arbitrarily large number of MPI tasks. This work contributes a set

of algorithms and techniques to extrapolate full communication traces and execution times of an

application at larger scale with information gathered from smaller executions. Since extrapola-

tion is based on analytical processing of smaller traces with mathematical transformations, this

approach can be performed on a single workstation, much in contrast to analysis or visualiza-

tion of large traces in contemporary tools e.g., Vampir Next Generation [10]). It thus enables,

for the first time, the instant generation of trace information of an application at arbitrary

12

scale without necessitating time-consuming execution. Specifically, we extrapolate two aspects

of the application behavior, namely (1) the communication trace events with parameters and

(2) the timing information resembling computation. The extrapolation of the communication

trace is based on the observation that, in many regular SPMD stencil and mesh codes, com-

munication parameters and communication groups are related to the sizes and dimensions of

the communication topology. Thus, extrapolation of communication traces becomes feasible

with the detection of communication topologies and the analysis of communication parameters

to infer evolving patterns. The extrapolation of timing information involves a process of ana-

lytical modeling. In order to mitigate timing fluctuations under scaling, we employ statistical

methods.

Our extrapolation methodology is applicable for both strong and weak scaling applications.

Weak scaling is typically defined as scaling the problem size and the number of processors at

the same rate such that the problem size per processor is fixed. This should imply that the

communication patterns generally evolve in a similar manner for both strong and weak scaling.

Thus, we hypothesize that the same extrapolation algorithms for patterns and communication

end points should apply to both. For communication parameters, such as message sizes and

computation times different trends can be observed. But we hypothesize that extrapolation

based on curve fitting is still applicable. In this work, we verify these hypotheses by evaluating

our extrapolation algorithm with both strong and weak scaling applications.

Our extrapolation approach follows a trace analysis methodology independent of the tracing

infrastructure and works for any of the existing trace formats. Nonetheless, the approach is

significantly facilitated by ScalaTrace’s compression scheme that preserves application struc-

ture with inherent compression that closely resembles the loop structure of an application. In

contrast, extrapolation with other trace formats, such as OTF [40], would be far more tedious

and time/space consuming as structure is neither established across nodes nor retained after

binary-level compression.

This trace extrapolation approach has been implemented in the ScalaExtrap tool, which we

utilize to evaluate our extrapolation approach with both strong and weak scaling benchmarks,

including the NAS Parallel Benchmark suite [6] and Sweep3D [79]. We utilize up to 16,384

nodes of a 73,728-node IBM Blue Gene/P supercomputer to generate communication traces

for extrapolation and verification. Experiments were performed to assess both the correctness

of communication extrapolation and the accuracy of the timing extrapolation. Experimental

results demonstrate that our topology detection algorithm is capable of identifying and char-

acterizing stencil/mesh and collective communication patterns. Upon topology detection, the

communication trace extrapolation algorithm correctly extrapolates all communication events,

parameters and communication groups at an arbitrary target size for both stencil/mesh point-

to-point and collective communication. The experiments also demonstrate that the extrapo-

13

lation of timing information resembles the running time of the original parallel application.

Compared to the running time of the original application, the accuracy of replay times of the

corresponding extrapolated trace is, in the majority of cases, higher than 90%, sometimes as

high as 98%. Given the difficulty of extrapolating application execution time with only the

time information obtained from several small executions, our approach achieves unprecedented

accuracy that is sufficient for modeling, procurement and analysis tasks.

Overall, this work explores the potential to extrapolate communication behavior of par-

allel applications. Several novel algorithms for communication topology detection and com-

munication trace extrapolation are introduced. Experimental results demonstrate that rapid

generation of an application’s trace information at arbitrary size is entirely possible, which

is unprecedented. In contrast to tedious and application-centric model development, our ap-

proach opens new opportunities for automatically deriving communication models, facilitating

communication analysis and tuning at any scale. Our work further enables system simula-

tion at extreme scale based on a single file, concise communication trace representation. More

specifically, HPC simulation tools (e.g., Dimemas or SST [44, 73, 65]), which currently cannot

operate at petascale levels, could benefit by utilizing our extrapolated single-file traces that

are just 10s of megabytes in size. Benchmark generation is important for cross-platform per-

formance analysis due to its standard and portable source code and the platform-independent

nature. Our work enables code generation at extreme scale by providing large traces that are

otherwise unavailable. Furthermore, by contributing a set of detection techniques of communi-

cation patterns, our work has the potential to enable the generation of flexible and stand-alone

programs that can be executed with arbitrary numbers of nodes and any possible input.

3.2 Communication Extrapolation

This work focuses on the extrapolation of communication traces and execution times. The

respective design is subsequently implemented in a novel tool, ScalaExtrap. The challenge of

communication trace extrapolation is to determine how the communication parameters change

with node and problem scaling. The main idea is to identify the relationship between commu-

nication parameters and the characteristics of the communication topology, i.e., typically the

sizes of each dimension. As a simple example, in Figure 2.2, assume node 0 communicates with

node 4, i.e., a node at distance of 4. If we can identify that the topological communication

space is a grid consisting of 25 nodes with 5 nodes per row, we know that node 0 actually

communicates with the upper-right node. Therefore, when there are 1024 = 32×32 nodes, we

can safely infer that node 0 communicates with node 31, which is still the upper-right node.

Characterizing a communication pattern from one or more traces is non-trivial nonethe-

less. Without the knowledge of a given node assignment scheme and topology, identifying the

14

communication pattern from the communication graph provided by a trace file is equivalent to

solving the graph isomorphism problem, which is known to be NP hard [87]. Therefore, instead

of attempting to find a universal solution, we constrain our work to applications where

1. nodes execute the same program on different data, i.e., the application follow the SPMD

paradigm;

2. nodes are numbered in a row-major fashion; and

3. communication is performed in stencil/mesh point-to-point manner or via collectives in-

volving all MPI tasks.

In essence, our communication trace extrapolation algorithm first identifies the nodes at the

“corner” of a topological space. It then calculates the sizes of each dimension of the topological

space accordingly.

Upon acquiring the topology data, we can perform extrapolation. The extrapolation of a

communication trace consists of two tasks. First, we need to match the records corresponding to

the same MPI call in the source code across the traces of different node sizes. We will discuss the

difficulties involved in this step and our solutions in the following sections. Second, for each MPI

call in the source code, we need to determine which MPI processes execute this call and what are

the values of the parameters when the application is running at the target scale. For the second

task, we represent the ranklist and the communication parameters, e.g., the destination rank

of MPI Send, as a function of the known topology data and their undetermined coefficients. In

order to calculate these coefficients, we correlate multiple traces and construct a set of linear

equations. Finally, we employ Gaussian Elimination to solve the set of equations. With the

fixed coefficients, we can extrapolate the value of the desired communication parameter by

simply substituting the topology data with their values at the desired problem size.

The second aspect of this work concerns the extrapolation of program execution time. In

the input trace files, computation time and communication time between (and optionally dur-

ing) MPI communication events are preserved statistically with histograms. When analyzing

the corresponding delta time, scaling trends can be identified across different number of nodes.

Therefore, statistical curve fitting methods are utilized to model an evolving trend and extrap-

olate the execution time to a desired target size. In order to eliminate outliers, we further

introduce several confidence coefficients to statistically determine the best extrapolated value

under such constraints.

3.2.1 Topology Identification

Topology identification is the basis of communication trace extrapolation. In order to identify

a topology, it is important to find the nodes at the corner or on the boundary of a topo-

15

logical space, which we call critical nodes. We devised a three-step approach to identify the

communication topology.

1. We create an adjacency list of communication endpoints for each node and group nodes

according to their adjacency lists.

2. We identify critical nodes by analyzing the adjacency lists.

3. We calculate the sizes of each dimension (x, y, and z) of the communication topology.

Figure 3.1: Topology Detection Figure 3.2: Boundary Size Calculation

First, our algorithm traverses the input trace to construct communication adjacency lists for

each node. According to the relative positions (encodings) of all the communication endpoints

of each node, nodes with same endpoint patterns are placed into the same group. Figure

3.1 illustrates an example of a 2D mesh topology. In this example, nodes on the boundaries

communicate with nodes at the opposite side in a wrap-around manner while the internal

nodes communicate with their immediate neighbors. Note that wrapping around in the vertical

direction does not lead to different endpoint encoding. Therefore, the nodes are divided in to

three groups (A, B, and C) with group sizes 5, 10, and 5, respectively.

Next, we analyze the adjacency list of each node to identify the critical nodes. Exploiting

the row major constraint, we scan all nodes sequentially to identify loop structures with respect

to communication adjacency list patterns. The underlying rationale is that critical nodes define

a topology. Between corresponding critical nodes, communication patterns emerge repeatedly.

According to the length of a loop structure, the sizes of the groups consist of critical nodes,

16

i.e.,critical groups, are calculated as

critical group size =
n

length of loop
,

where n denotes the number of nodes engaged in MPI communication. For example, in Figure

3.1, each row has the same group distribution (A B B C) and is thus identified as a single

iteration of the loop structure. Since the length of such a loop iteration is 4, the size of the

critical groups (group A and C) is 20/4 = 5. Having obtained the size of the critical groups,

we then associate critical nodes with groups by matching sizes of critical groups.

Finally, we calculate the sizes of each dimension. Again exploiting the row-major constraint,

in a d-dimensional topological space, the number of nodes at the d-th dimension is the total

number of nodes. The number of nodes at the i-th (i < d) dimension, ni, is the inclusive range

of numbers of nodes between node 0 (1st critical node) and the 2i-th critical node. Once we have

determined the number of nodes at each dimension, the boundary size of the i-th dimension,

si, is calculated as

si =
ni

ni−1

For example, in the 3D topology of Figure 3.2, the number of nodes in the 1st dimension,

n1=3, is the number of nodes between A and B inclusively, the number of nodes in the second

dimension, n2=12 , is the number of nodes between A and D, and the number of nodes in the

third dimension n3 is the total number of nodes. Hence, we have

x = s1 = n1/n0 = 3

y = s2 = n2/n1 = 4

z = s3 = n3/n2

3.2.2 Matching MPI Events for Extrapolation

The extrapolation of a trace is performed one-by-one for each recorded MPI event of the trace.

An MPI event is emitted per execution of an MPI function in the source code by the actual

values of the input parameters. Therefore, the extrapolation of an MPI event is actually the

process of inferring the execution of an MPI function at the target scale from its executions

at smaller scales, which are represented as RSDs in the input traces. (In addition, due to

the SPMD nature of parallel applications, the extrapolation also involves the prediction of the

participants of an MPI event, i.e., the callers of an MPI function in the source code, which will

be discussed in Section 3.2.3.) Therefore, being able to match the RSDs corresponding to calls

to the same MPI function originating from source code across traces of different node sizes is

the prerequisite of extrapolation.

Due to its structure-preserving representation, ScalaTrace traces are often similar to the

17

(a) Communication Group
Distribution of 2D Stencil
Codes

(b) Group Distribution for 16
Nodes

(c) Group Distribution for 25
Nodes

(d) Inter-node Compression for 16 nodes (e) Inter-node Compression for 25 nodes

Figure 3.3: Inter-node Compression and the Positions of Communication Groups

source code. In a trace, the queue of RSDs represents the temporal ordering of the MPI events,

which in turn reflects the locations of the corresponding MPI function invocations in the source

code. Therefore, in most cases, traces of different node sizes are inherently aligned. However,

nodes are sometimes partitioned due to differences in their communication patterns and may

thus form different communication groups. For example, Figure 3.3(a) shows the distribution

of the communication groups of 2D stencil codes such as Sweep3D. Since the communication

behavior is different across groups, ScalaTrace cannot merge the per-node traces but appends

them sequentially. Because the inter-node compression are performed with a radix tree and the

order of disjoint subsequences of MPI events are not maintained during compression [55], the

relative positions of RSDs originating from different communication groups are not necessarily

the same in traces of different node sizes. For example, in the final 16-node trace the third group

is Group C (both in Figure 3.3(b) and in the root node of Figure 3.3(d)) while it is Group E in

18

the 25-node trace (in the root node of Figure 3.3(e)) . This illustrates how the order of different

communication groups are determined along with the radix tree style inter-node reduction (cf.

Figures 3.3(d)+(e)). Clearly, extrapolating by relating RSDs of different communication groups

is meaningless.

Algorithm 1 Aligning the Communication Groups

Precondition: Tin: input trace
Postcondition: Tout: output trace in which branches (RSD subsequences for communication

groups) are ordered by rank

1: procedure reorder trace(Tin)
2: for iter ← Tin.head, Tin.tail do
3: if iter is a merging RSD node then

4: merging node ← iter
5: find branching node: merging node’s matching branching RSD node
6: reorder(merging node, branching node) ⊲ reorder the branches between

merging node and branching node by rank
7: end if

8: end for

9: end procedure

10: procedure reorder(merging node, branching node)
11: for each branch between merging node and branching node do

12: traverse branch in depth-first order
13: if m: a merging RSD node is found in branch then

14: find b: m’s matching branching RSD node
15: reorder(m, b) ⊲ recursively reorder the branches
16: end if

17: end for

18: sort the branches between merging node and branching node by rank
19: reorder the branches
20: end procedure

We utilize the dependence graph to reorder the trace. The dependence graph is a data

structure used by ScalaTrace to keep track of disjoint RSD subsequences during the inter-

node reduction [56]. If two per-node traces are partially different, a branching point and a

merging point will be inserted before the first and after the last non-matching RSDs. We

designed a recursive algorithm that traverses the dependence graph in a depth-first manner

and topologically sorts each branch in the rank order (Algorithm 1). Our reordering algorithm

guarantees that the RSD subsequences corresponding to different communication groups are

19

always organized in ascending order of the rank for the leading nodes of groups. With such an

algorithm, we are able to align the communication groups in traces of different node sizes. The

extrapolation is subsequently becomes possible.

3.2.3 Extrapolation of MPI Events

The extrapolation of an MPI event consists of the extrapolation of both communication groups

and communication parameters to indicate who communicates and how they communicate.

The extrapolation algorithm is based on the observation that, in regular SPMD stencil/mesh

codes, strong scaling (increasing the number of nodes under a constant input size) linearly

increases/decreases the value of communication parameters and the topological sizes. Given

several data points, a fitting curve can be constructed to extrapolate the growth rate of the

communication parameters and the topology information (the sizes of each dimension) of the

communication groups.

Specifically, in an n-dimensional Cartesian space, the coordinates of node X and Y are

(X1, X2, ..., Xn) and (Y1, Y2, ..., Yn), where Xi and Yi ∈ [0, Si − 1] and Si is the size of the i-th

dimension of the topological space (1 ≤ i ≤ n). Assuming the locations of node X and Y differ

only in the i-th dimension, the distance between X and Y in the i-th dimension is di = Xi−Yi.

With the assumption of linear correlation between topology size and communication parameters,

di = Xi−Yi = ai×Si+bi, where ai and bi are two constants. Furthermore, with the row-major

node placement assumption, the rank of an arbitrary node A(A1, A2, ..., An) is

RankA =
n
∑

i=1

Ai

i−1
∏

j=1

Sj .

Therefore, di
′, the rank distance between X and Y , is

di
′ = (Xi − Yi)×

i−1
∏

j=1

Sj = (ai × Si + bi)×
i−1
∏

j=1

Sj

In general, for two arbitrarily selected nodes M and N , their rank distance d′ is the sum of

20

their rank distances in each dimension,

d′ = d0
′ + d1

′ + ...+ dn
′

=
n
∑

i=1

(Ni −Mi)
i−1
∏

j=1

Sj =
n
∑

i=1

(ai × Si + bi)
i−1
∏

j=1

Sj

= an

n
∏

j=1

Sj +
n−1
∑

i=1

(ai + bi+1)
i

∏

j=1

Sj + b1 =
n
∑

i=0

ci

i
∏

j=1

Sj ,

where cn = an, c0 = b1, and ci = ai + bi+1(1 ≤ i ≤ n− 1).

In order to extrapolate the rank of a communication endpoint (src/dest), which is defined by

the rank distance between nodes, we need to identify how the topology information is related to

the communication parameter. We construct a set of linear equations to solve ci (1≤i≤n-1). In
general, for an n-dimensional topology, n+1 input traces are needed to solve n+1 coefficients.

We employ Gaussian Elimination to solve the equations. Once the values of ci(1 ≤ i ≤ n− 1)

are determined, a fitting curve for the given parameter is established. In order to extrapolate

the same parameter for a larger execution, we utilize the known coefficients and specify the

topology information at the target task size. The desired value is then calculated accordingly.

As an example, in a 2D space, the bottom-right node in Figure 3.4 communicates with its

EAST neighbor in a wrap-around manner. In order to extrapolate the rank of the communica-

tion endpoint, three input traces with dimensions 4× 4, 5× 5, and 6× 6 are used to construct

the set of linear equations shown in Figure 3.5, and c2 = 1, c1 = −1, and c0 = 1 are obtained as

the values of the coefficients. To extrapolate a 10× 10 mesh, we re-construct the equation with

coefficients and topology information assigned. Subsequently, the target value V is calculated

as V = c2 × 10× 10 + c1 × 10 + c0 = 91.

Figure 3.4: Generic Representation of
Communication Endpoints

c2 × 4× 4 + c1 × 4 + c0 = 13
c2 × 5× 5 + c1 × 5 + c0 = 21
c2 × 6× 6 + c1 × 6 + c0 = 31

Figure 3.5: Set of Equations for Communication
Endpoint Extrapolation

21

Besides the communication parameters, communication groups are also extrapolated. The

topological space of an application can be partitioned into several communication groups ac-

cording to the communication endpoint pattern of each node. Under strong scaling, partitions

tend to retain their position within the topological space but change their sizes for each dimen-

sion accordingly. For example, Figure 3.6 shows the distribution of 9 communication groups of

a 2D stencil code. Despite the changing problem size, groups A, C, G, and I always represent

corner nodes, groups B, D, F, and H are always the boundaries, and group E contains the

remaining (interior) nodes.

Figure 3.6: Distribution of Communication Groups of a 2D Stencil Code

This opens up the opportunity to extrapolate communication groups of the same application

at arbitrary size. In order to extrapolate, we represent communication groups as ranklists, which

effectively specifies the starting node and the dimension sizes of a group. Since the dimension

sizes are defined by the distances between nodes (vertices), we again utilize a set of linear

equations to establish the relation between the topology information of communication groups

and the task sizes. Extrapolation is performed for the start rank, iteration length, and stride

fields of the ranklist. The output ranklist reflects the communication group at the target size.

For example, for the topology shown in Figure 3.6, when the total number of nodes is 16, the

ranklist of group E, as defined in Section 2.2, is <2 5 2 4 2 1>, i.e., a 2D space starting from

node 5 with x- and y-dimensions of size 2. Similarly, the ranklists of group E at sizes 25 and

36 are <2 6 3 5 3 1> and <2 7 4 6 4 1>, respectively. We can thus construct the set of linear

equations for each field in the ranklist to derive a generic representation of the ranklist as:

< 2 x + 1 x − 2 x x − 2 1 >.

22

Subsequently, assuming that we want to extrapolate for size 10 × 10, let x be 10, which

yields the output ranklist<2 11 8 10 8 1> that precisely matches the ranklist representation

of communication group E at this problem size.

By combining the extrapolation of both communication groups and communication pa-

rameters, we are capable of extrapolating the communication trace for a given application at

arbitrary topological sizes.

3.2.4 Lossy Extrapolation

As was discussed in Section 3.2.2, aligning the matching RSDs across traces of different node

sizes is critical for extrapolation. Despite being recognized as one of the existing tracing li-

braries that provides the best compression, there still exist some applications that ScalaTrace

cannot obtain constant-size compression for. In fact, for applications that exhibit new commu-

nication patterns only at or beyond a certain node size, lossless yet constant-size compression

is hardly possible. To extrapolate traces of such applications, we designed a lossy but still pro-

gram structure-preserving approach. We attempt to capture and extrapolate the dominating

communication pattern by optionally dropping events at three different levels: (1) within an

MPI process, (2) among MPI processes of an execution, and (3) across traces of different node

sizes.

The intra-node level event filtering is performed against the per-node queue of MPI events.

We observe that a number of application traces contain a subsequence of events that embody

the dominating communication pattern and comprise a large portion of the trace by repeating

multiple times. Based on this observation, a user-provided trace snippet is utilized as the

reference to drop events. Typically, such a trace snippet is a sequence of RSDs consisting of

tens of MPI events, with the event type (Send, Recv, etc.) and the values of the key parameters

of each event. Based on the trace snippet, we automatically generate a Finite-State Machine

(FSM) to process the input stream of MPI events. At the beginning, the FSM is initialized to

the START state. If the input event is a collective, the FSM directly enters the ACCEPT state.

This indicates that all collectives are directly accepted while the FSM is not in the middle of

accepting a sequence. If the input is neither a collective nor the first event to be accepted,

the FSM enters the ERROR state and the input event is dropped. Once the FSM leaves the

START state, it only accepts the next event expected in a sequence. If an unexpected event

arrives, the FSM enters the ERROR state and all the pending events are dropped, including

the current input if it is not a collective. Finally, if the FSM arrives at the ACCEPT state,

the pending events are accepted. These events will not be affected by future ERROR states.

Figure 3.7 shows a simple trace snippet and the FSM generated.

Beyond the intra-node level event filtering, if necessary, we also drop events during the inter-

23

<MPI_Irecv, (LEFT)>

<MPI_Isend, (RIGHT)>

<MPI_Wait>

<MPI_Wait>

(a) Trace Snippet (b) Generated Finite-state Machine

Figure 3.7: A Simple Trace Snippet and the Generated Finite-state Machine

node compression and when aligning the traces of different node sizes for extrapolation. We

designed a Longest Common Subsequence (LCS) based approach for the event filtering at these

two levels. The LCS problem is to find the longest subsequence that is common to two input

sequences, where a subsequence need not be consecutive in either of the original sequences. If a

trace is considered as a sequence of MPI events, the LCS of two traces reflects the MPI events

that nodes participate in for both traces. We adapted a well-known dynamic programming

based LCS algorithm for trace comparison [9]. In a ScalaTrace trace, the loop structure is

preserved and explicitly indicated. As a building block, loop structures should be evaluated in

their entirety with the number of MPI events in the loop representing the weight. Therefore,

we first enhanced the LCS algorithm to take into account the weight when evaluating how the

length of the LCS will be affected by retaining or removing a loop structure. Second, since loops

are often nested in the source code and in the trace, we further modified the LCS algorithm so

that it can execute in two modes in a recursive manner. In the first pass, this algorithm only

calculates the LCS but does not modify the trace. This is required because modifying the inner

loop may affect the evaluation of the outer loop. Once the LCS is determined, this algorithm

is applied again in the second mode such that any uncommon events are removed.

With these event filtering techniques above, we are able to extrapolate complicated and ir-

regular applications depending on nodes counts such as the NPB MG kernel. We have developed

a replay engine that infers receives from sends to replay a histogram-based communication trace

[85]. In case the event filtering makes the trace incorrect, e.g., when sends and receives mis-

match, this algorithm can be adapted to execute on a single machine to correct the trace. Our

insight here is that instead of dropping the minor communication events that are not matched

by any other MPI processes due to event filtering, preserving them by manually generating the

matching events with probabilistic approaches may be a better solution [85].

24

3.2.5 Extrapolation of Timing Information

Besides the communication traces, we also extrapolate the timing information of the application.

ScalaTrace preserves the “delta” time for each communication event and for the computation

between two communication events. For a single MPI function call across multiple loop itera-

tions, i.e., for a RSD, the delta times are recorded in multi-bin histograms. These histograms

contain the overall average, minimum, and maximum delta time, the distribution of the delta

execution times represented as histogram bins, and the average, minimum, and maximum delta

time for each histogram bin. To extrapolate timing information, we utilize curve fitting to

capture the variations in trends of the delta times with respect to the number of nodes, i.e.,

t = f(n), where t is the delta execution time and n is the total number of nodes. Hence, the

target delta time te is calculated as te = f(ne), where ne is the total number of nodes at a

given problem size. While we can extrapolate only the aggregated average delta time per RSD,

to restrain the statistics of delta time, extrapolation is performed for each field of a histogram.

Currently, we implemented four statistical models based on curve fitting for each extrapolation.

We use a deviation-based metric to determine the best of these models to fit to a given curve.

1. Constant: This method captures constant time, i.e., t = f(n) = c. Before calculating the

constant time, the input time to with the largest absolute value of deviation is excluded

from the input times to mitigate the influence of outliers (which can be caused by either

unstable system state or an empty bin). Subsequently, the average value of the remaining

input times reflects the constant time c, and d1 = std. dev./average is used to evaluate

this fitting curve among the remaining values.

2. Linear: This method captures linearly increasing/decreasing trends, i.e., t = f(n) = an+

b. We use the least-squares method to fit the curve. In order to avoid mis-classifications,

such as a constant time relationship as a linear relationship with a near-zero slope, we

define a threshold slope smin = 0.2 such that ∀a < smin, t = f(n) = b. For curve

evaluation, d2 =
√
residual/average is used, where average refers to the average value

of the estimated running times.

3. Inverse Proportional: This method captures inverse-proportional trends, i.e., t = f(n) =

k/n. We observe this trend in the NAS Parallel Benchmark IS, where MPI Alltoallv

dynamically rebalances the per-node workloads even though the collective workload over

all nodes is constant. Let ti be the input times, ni be the corresponding number of nodes,

and ki = ti × ni. We extrapolate the constant k as the average value of ki. Again, we

exclude the outlier ko, which has the largest absolute value within the deviation. To

evaluate this fitting curve, we calculate the standard deviation of ki and then divide by

the average value of ki, i.e., d3 = std. dev./average is used for comparison.

25

4. Inverse Proportional + Constant: This method captures the execution time consisting of

an inverse proportional phase and a constant phase, i.e., t = f(n) = k/n + c. Instead of

directly extrapolating t, we utilize the least-squares method to extrapolate t′ = tn = cn+k

and use d4 =
√
residual/average for the curve evaluation. With an extrapolated c and

k, t is subsequently calculated as t = t′/n = k/n+ c.

Having obtained the deviations for each curve-fitting process, we compare the values to

determine the curve that best fits. For a closer approximation, we define a threshold value

dt = 0.05, such that if and only if dmin + dt < di holds for all di other than dmin will the

corresponding candidate curve be selected as the fitting curve. Otherwise, the extrapolation

for the current field is postponed until we have processed all the fields in the same histogram.

Since every field in the histogram should have the same variation trend, we finalize the pending

extrapolation according to the decisions of the remaining fields.

3.3 Experimental Framework

Our extrapolation methodology for communication traces was implemented as the ScalaExtrap

tool that generates a synthetic trace for a freely selected number of nodes. The extrapolation

is based on traces obtained from application instrumentation with ScalaTrace on a cluster. For

both base traces generation and results verification, we use a subset of JUGENE, an IBM Blue

Gene/P with 73,728 compute nodes and 294,912 cores, 2 GB memory per node, and the 3D

torus and global tree interconnection networks.

The extrapolation process is run on a single workstation and requires only several seconds,

irrespective of the target number of nodes for extrapolation. This low overhead is due to the

linear time complexity of our algorithm with respect to the total number of MPI function calls

in an application. Results from extrapolation are subsequently compared to traces and runtimes

of an application at the same scale, where runtimes for extrapolated traces are obtained via

ScalaReplay (see Section 2.4).

We conducted extrapolation experiments with the NAS Parallel Benchmark (NPB) suite

(version 3.3 for MPI) [6] and Sweep3D [79]. These benchmarks have either a stencil/mesh

communication pattern or collective communication, both of which are applicable to our ex-

trapolation algorithm. Among these benchmarks, IS originally exhibited imperfect compression

resulting in non-scalable trace sizes due to its dynamic load re-balancing via workload exchange

through the MPI Alltoallv communication collective. In order to utilize our extrapolation tech-

niques, we enhanced ScalaTrace such that minor differences in MPI Alltoallv parameters caused

by load re-balancing are eliminated. The communication pattern of CG is another example of

a complicated dynamic pattern. In CG, nodes are logically organized in a 2D array. Each node

26

communicates with the nodes in the same row with a power-of-two distance and with the node

diagonally symmetric to itself, as indicated in Figure 3.8. We support such more complicated

patterns by allowing programmers to provide plugin functions for compression and extrapola-

tion on a per-parameter basis. The communication trace extrapolation for CG is facilitated by

specifying the communication pattern (i.e., the communication end point described by a func-

tion) as a plugin. With this plugin, the extrapolation of timing information does not require

any extra information.

Figure 3.8: CG Communication Topology

We report the experimental results for both strong scaling and weak scaling. For the strong

scaling experiments, we mostly used class D and E input sizes for the NPB codes. For the

weak scaling experiments, we enhanced the input generator to provide weak scaling inputs for

selected NPB codes.

3.4 Experimental Results

Experiments were conducted with respect to two aspects, namely the correctness of commu-

nication traces and the accuracy of timing information, both for extrapolations under strong

scaling, i.e., when varying the number of nodes. Notice that strong scaling is actually a harder

problem under extrapolation as it tends to affect communication parameters such as message

volume size. In contrast, weak scaling (increasing the number of nodes and problem sizes at

the same rate) is easier as it tends to preserve message volumes sizes irrespective of the number

27

of nodes.

3.4.1 Correctness of Communication Trace Extrapolation

We first evaluated our communication trace extrapolation algorithm with microbenchmarks

and the NPB BT, EP, FT, CG, LU, and IS codes. We assessed the ability to retain communi-

cation semantics across the extrapolation process for these benchmarks at the target scale. The

microbenchmarks perform regular stencil-style/torus-style communication in topological spaces

from 1D to 3D. The NPB programs exercise both collective and point-to-point communication

patterns. We verified the extrapolation results in multiple ways.

1. The extrapolated trace file Te0 was compared with the trace file obtained from an actual

execution at the same scale Ttarget on a per-event basis (Exp1 in Figure 3.9).

2. The extrapolated trace Te0 was replayed such that aggregate statistical metrics about

communication events could be compared to those of a corresponding original application

run at the same problem size and node size (Exp2 in Figure 3.9).

3. After extrapolation, traces Te1 , Te2 , ..., Tei were collected in a sequence of replays to

obtain a fixed point in the trace representation (Exp3 in Figure 3.9).

Figure 3.9: Correctness of Trace Extrapolation and Replay

First, the per-event analysis of trace files showed that extrapolated MPI parameters and

communication groups perfectly matched those of the application trace for all benchmarks ex-

cept one (Exp1 in Figure 3.9). In BT, the message volume of non-blocking point-to-point sends

and receives approximates an inverse-proportional relationship with respect to the number of

28

nodes. However, it diverges slightly from an inverse-proportional approximation for extrapo-

lating the message volume due to integer division (discarding the remainder) inherent to the

source code. This inaccuracy is later amplified in the extrapolation process and results in mes-

sage volumes that are about 13% smaller than the actual ones at a given scaling factor in the

worst case. As imprecisions remain localized to certain point-to-point messages, this effect is

shown to be contained in that resulting timings are deemed accurate within the considered

tolerance range for extrapolation experiments (see timing results below). Such imprecisions

have no side-effect on semantic correctness (causal order) of trace events whatsoever. Overall,

the results of static trace analysis show that our synthetically generated extrapolation trace

is equivalent to the trace obtained from actual execution of the same application at the same

scaling level.

Second, we replayed the extrapolated trace Te0 to assess if the MPI communication events

are fully captured (see Exp2 in Figure 3.9). For this experiment, ScalaReplay is linked with

mpiP [75], which yields frequency information of each MPI call distinguished by call site (us-

ing dynamic stackwalks). During replay, all MPI function calls recorded in the synthetically

generated extrapolation trace were executed with the same number of nodes and their orig-

inal payload size. For comparison, we instrumented the original application with mpiP and

executed it at extrapolated sizes (problem and node sizes). We compared the Aggregate Sent

Message Size reported by mpiP between the original application and the replayed extrapolated

trace. Results show that the total send volumes of these experiments are identical, except for

MPI Isend in BT as discussed above. We also compared the total number of MPI calls recorded

in the mpiP output files. The results allowed us to verify that the number of communication

events in the actual and extrapolated traces match, i.e., the correctness of communication trace

extrapolation is preserved.

Third, we evaluated the correctness of ScalaReplay by replaying the generated trace file in

sequence until a fixed point is reached (see Exp3 in Figure 3.9). The fixed point approach is

a well established mathematical proof method that establishes conversion, in this case of the

trace data. In this experiment, instead of instrumenting ScalaReplay with mpiP, we interposed

MPI calls through ScalaTrace again. As ScalaReplay issues MPI function calls, ScalaTrace

captures these communication events and generates a trace file for it, just as would be done for

any other ordinary MPI application. We start by replaying the extrapolated trace file Te0 and

obtain a new trace Te1 . This trace differs from Te0 in that call sites of the original program

have been replaced by call sites from ScalaReplay. This affects not only stackwalk signatures

but also the structure of trace files due to the recursive approach of replaying trace files in place

over their internal (PRSD) structure without decompressing it. We then replay trace Te1 to

obtain another trace Te2 and so on for Tei . We then compare pairs of trace files Tei , Tei+1 . If

two such traces match, a fixed point has been reached. In these experiments, we verified that

29

pairs of trace files, baring syntactical differences, are semantically equivalent to each other. In

other words, ScalaReplay neither adds nor drops any communication events during replay, i.e.,

by obtaining a fixed point it was shown that all MPI communication calls are preserved during

replay.

3.4.2 Accuracy of Extrapolated Timings: Timed Replay

We further analyzed the timing information of the extrapolated traces. We report the accuracy

of the extrapolated timings for both strong scaling and weak scaling.

Strong Scaling: For this set experiments, we used the NPB BT, EP, FT, CG, and IS codes

with a total number of nodes of up to 16,384. For CG, EP, and FT, we used class D input sizes.

For BT, class E was used so that a sufficient workload is guaranteed at 16,384 nodes. For IS,

we modified the input size to adapt it for 16,384 nodes (the original NPB3.3-MPI provides only

class D problem size and supports a maximum of 1024 nodes). These problem sizes and node

sizes were decided based on the memory constraints (for some benchmarks, memory constraints

compel us to generate the base traces already at large scales, which in turn leaves fewer target

sizes for evaluation) and the availability of computational resources to assess the effects and

limitations of our timing extrapolation approach.

In this set of experiments, we first generated 4 trace files for each benchmark as the ex-

trapolation basis. From these base traces, an extrapolated trace was constructed next using

ScalaExtrap, including extrapolated delta time histograms. We then assess the timing accuracy

by replaying the extrapolated traces. During replay, ScalaReplay parses the timing histograms

of the computation periods in the trace files. It simulates computation by sleeping to delay

the next communication event by the proper amount of time. In this context, the effect of

load imbalance is preserved by ScalaTrace. The timing histogram records not only minimum,

maximum, average and standard deviation values, but also the frequency for each timing bin,

and these statistics are also extrapolated by ScalaExtrap. During replay, the sleeping time is

generated according to these statistics and the unbalanced timing behavior is thus reproduced.

Communication is simply replayed with the same extrapolated end points and payload sizes

but a random message payload. We do not impose any delays on communication as published

results indicate better accuracy with just delays for computation only [56], which we also con-

firmed. In this experiment, ScalaReplay is linked to neither ScalaTrace nor mpiP to avoid

additional overhead caused by the instrumentation layer of these tools. Hence, the output of

ScalaReplay in this experiment is the total time to replay a trace. For each extrapolated trace,

we run the corresponding application at the same problem size and record its overall execution

time for comparison.

Figure 3.10 depicts the extrapolation accuracy of BT, EP, FT, IS, and CG, respectively, for

30

 1

 4

 16

 64

 256

 1024

 4096

 16384

256
400

576
784

1024
2304

4096
6400

9216
12544

16384

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
Replay Time

(a) BT Class E

 1

 4

 16

 64

 256

 1024

64 128
256

512
1024

2048
4096

8192
16384

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
Replay Time

(b) EP Class D

 1

 4

 16

 64

 256

 1024

64 128
256

512
1024

2048
4096

8192
16384

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
Replay Time

(c) FT Class D

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

64 128
256

512
1024

2048
4096

8192
16384

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
Replay Time

(d) IS (Modified Input Size)

 1

 4

 16

 64

 256

 1024

 4096

 16384

16 64 256
1024

4096
16384

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
Replay Time

(e) CG Class D (Square)

 1

 4

 16

 64

 256

 1024

 4096

32 128
512

2048
8192

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
Replay Time

(f) CG Class D (Rectangular)

Figure 3.10: Replay Time Accuracy for Strong Scaling Benchmarks

a varying number of nodes. We show the extrapolation results of CG in separate figures because

they have different communication topologies and thus a different extrapolation basis. As shown

in Figure 3.10, the timing extrapolation accuracy is generally higher than 90%, sometimes even

31

higher than 98%, where accuracy is defined as

Accuracy = (1− |Replay T ime − App T ime|
App T ime

)× 100%.

For BT, we observed slightly lower accuracy when the total number of nodes approaches

16,384. At such sizes the computational workload becomes so small that the influence of non-

deterministic factors, such as system overheads or performance fluctuation of MPI collectives

caused by different process arrival patterns [27], become dominant. Compared to the other

benchmarks, IS shows a constantly lower accuracy (66%-83%). Two reasons may explain this

phenomenon: (a) Although IS dynamically rebalances the workload across all nodes, the exe-

cution time of the application’s sorting algorithm on each process still takes a different amount

of time. Hence, collective MPI calls take unpredictable time to synchronize as the arrival times

of processes at collectives varies significantly due to load imbalance. Since the degree of im-

balance is determined by randomly determined delta times from histograms, it is difficult to

predict/extrapolate this behavior. (b) Source code analysis shows that the most computation-

ally intensive code section in IS consists of two phases, namely (i) an inverse-proportional phase

(runtime is inverse-proportional to the number of nodes), and (ii) a relatively short constant

phase (runtime does not change significantly with node sizes). When the node size is small,

the inverse-proportional phase almost solely determines the computation time. As a result, our

algorithm fails to uncover a small constant factor that contributes to timing for larger node

sizes. ScalaExtrap instead treats it as a pure inverse-proportional timing trend. Without the

short constant factor in the timing curve, the extrapolated runtime drops slightly faster than

the real runtime leading to a constantly shorter replay time. However, since we are able to cap-

ture the dominating inverse-proportional timing trend, we still obtained an acceptable timing

prediction accuracy.

In large, minor inaccuracies during replay stem from imprecise curve fitting for the ex-

trapolation of computation times. For the simulation of communication duration, ScalaReplay

depends only on the communication parameters such as end points and payload sizes, which

are shown to be correctly extrapolated in Section 3.4.1. Overall, the extrapolated timing infor-

mation precisely reflects the runtime of the original application at the target problem size and

node size.

Weak Scaling: Weak scaling refers to varying the problem size and the number of pro-

cesses at the same rate so that the problem size per node stays consistent during scaling [36].

Among the three factors we have to extrapolate, namely communication topologies, message

sizes, and computation times, strong scaling and weak scaling generally do not affect the com-

munication topology in different ways, i.e., the communication patterns often evolve similarly

for both strong and weak scaling. Therefore, the communication topology detection and ex-

32

trapolation algorithms still apply to weak scaling codes. For the other two factors, compared to

strong scaling codes, weak scaling codes may exhibit different runtime behavior. For example,

due to a constant computational workload per node, the computation times often (but not

always) follow a constant trend for weak scaling. In terms of the message sizes, the overall

message volume exchanged among all the participating nodes—typically with MPI Alltoall or

MPI Alltoallv—often increases linearly (or remain constant) under weak scaling when varying

the total number of processes. Nonetheless, the curve fitting approach is still applicable, though

different/additional curve fitting algorithms may have to be supplied in practice.

We verified our extrapolation approach with weak scaling codes. We conducted these ex-

periments with the NPB BT, EP, FT, IS and LU codes, and the Sweep3D neutron-transport

kernel [79]. (For other NPB codes, such as CG, weak scaling inputs could be easily be con-

structed.) Unlike Sweep3D, the NPB codes are originally designed as strong scaling benchmarks.

Hence, we manually changed the input to provide weak scaling workloads.

In the first experiment, we verified the correctness of the generated traces with respect to

the extrapolated communication topologies and the values of the communication parameters.

We applied similar tests, i.e., static trace comparison and mpiP results comparison, for the

synthetically generated traces under weak scaling. The results show that the extrapolated

traces are able to correctly preserve the communication semantics, and hence demonstrate the

applicability of our topology extrapolation algorithm for applications under weak scaling.

In the second experiment, we evaluated the accuracy of the extrapolated timings for weak

scaling problems. We used BT, EP, FT, IS, LU, and Sweep3D benchmarks on runs with up

to 16,384 MPI processes. We first generated four traces for each benchmark as the extrapola-

tion basis. Because these base traces were obtained from a series of weak scaling executions,

the timing information preserved in the traces also reflects the weak scaling trend. We then

performed the extrapolation with ScalaExtrap and replayed the extrapolated traces to obtain

and evaluate the accuracy of the total runtimes against the original runs. In these experiments,

we observed that the duration of most of the computational phases remains consistent during

scaling. This is because for a given weak scaling input, the per-node problem size is fixed

irrespective of the node size. We observed this trend for all benchmarks in this experiment,

including the simpler ones such as EP and FT as well as the more complicated ones such as

Sweep3D and LU. This observation is consistent with our empirical knowledge about the nature

of weak scaling codes. In BT, we also observed a more complicated timing trend for some of the

computational phases caused by the 3D layout of the problem. Nevertheless, our curve-fitting

approach remains still applicable. Figure 3.11 depicts the extrapolation accuracy of the bench-

marks. Quantitatively, the mean absolute percentage accuracy (as defined in Section 3.4.2)

across all benchmarks and test cases is 92.87%. Among all the tests, IS with 4,096 nodes has a

relatively low timing accuracy. IS uses bucket sort to distribute the elements to different nodes

33

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

16 36 64 100
256

1024
4096

16384

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
Replay Time

(a) BT

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

8 16 32 64 256
1024

4096
16384

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
Replay Time

(b) EP

 1

 2

 4

 8

 16

 32

 64

32 64 128
256

512
1024

4096
16384

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
Replay Time

(c) FT

 1

 2

 4

 8

 16

 32

 64

8 16 32 64 256
1024

4096
16384

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
Replay Time

(d) IS

 1

 4

 16

 64

 256

 1024

16 64 256
1024

4096
16384

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
Replay Time

(e) LU

 1

 2

 4

 8

 16

 32

 64

 128

16 36 64 100
256

1024
4096

16384

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
Replay Time

(f) Sweep3D

Figure 3.11: Replay Time Accuracy for Weak Scaling Benchmarks

and then sorts the local elements within each node. When run with 4,096 nodes with the weak

scaling input we provided, IS failed to balance the workload across nodes. Since the base traces

for extrapolation were obtained from runs with good load balance, we cannot extrapolate the

34

inconsistent computational duration caused by the unbalanced workload. We thus simply could

not reproduce the unbalanced timing behavior during replay. Overall, our timing extrapolation

approach is able to accurately predict the runtimes without experiencing additional challenges

beyond those observed under strong scaling. With such a high timing accuracy and the proven

communication semantics, the extrapolated weak scaling traces can be used for trace-based

system simulation or other performance analysis experiments.

3.4.3 Lossy Extrapolation

Compared to all other benchmarks discussed so far, MG demonstrates the most complicated

communication pattern. Overall, MG has a 3D communication topology. All nodes participate

in a regular 7-point 3D torus-style communication. However, as a minor communication pattern,

nodes at particular positions also communicate to nodes one hop (distance of 2) away in the

3D space. This communication is rank dependent even for those participating nodes, which

makes the per-node traces highly divergent and the size of the final trace non-scalable. What

is even more challenging is that the non-SPMD communication pattern does not exhibit any

regular spacial property in forming the communication groups, i.e., there is little information

to be derived from smaller traces about how a node will behave at larger scale. As a result, we

cannot do the extrapolation by utilizing a general approach.

To extrapolate MG, we applied the lossy extrapolation approach. Specifically, we applied

the snippet-based trace event filtering at the intra-node level to eliminate the minor rank

dependent communication events. With events dropped, the generated traces consist of only

the dominating regular 3D torus communication and the collectives. When compared across

different node sizes, the traces are structurally identical, which indicates a perfect compression.

As the result, the extrapolation of MG is largely simplified and becomes equivalent to the

extrapolation of the 3D torus micro-benchmark.

We evaluated the lossy extrapolation of MG with both strong scaling and weak scaling

configurations. For weak scaling experiments, we changed the input generator to provide weak

scaling inputs. We first evaluated the ability of extrapolated traces to preserve communication

events. We replayed each extrapolated trace with mpiP instrumentation under ScalaReplay.

We subsequently compared the generated mpiP results (profile counts) with those obtained by

executing the mpiP-instrumented original benchmark over the same number of MPI processes.

The experimental results show that for all the extrapolated sizes the number of dropped events

is constantly less than 5% of the total number of MPI events, which indicates the communication

workload is well preserved. Figure 3.12 compares the replay times of the extrapolated traces to

the runtimes of the original benchmark. Due to inaccurate curve fitting, the replay times of the

extrapolated traces are slightly longer than the original runtimes at large scales. Nonetheless,

35

even after increasing the replay times by 5% (given less than 5% of the events were filtered),

the extrapolated traces were still able to reflect the total runtime of the original benchmark.

 20

 40

 60

 80

 100

 120

64 128
256

512
1024

2048
4096

8192
16384

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
Replay Time

Figure 3.12: Timing Accuracy of Lossy Extrapolation of Weak Scaling MG

When configured for strong scaling, MG falls into the category of applications that do not

follow the dominating communication pattern at smaller scales, which presents a challenge. On

the positive side, we are able to preserve and extrapolate all the collectives and the regular

7-point 3D torus communication pattern, the latter of which is measured to be the dominating

pattern at smaller scales. However, as the problem size per node decreases, the number of

the 3D torus communication events also decreases. Meanwhile, the number of the MPI events

corresponding to the minor communication pattern stays constant and starts to domineer at

larger scales. For example, with the lossy tracing approach, 96.98% of the MPI Send operations

were preserved in the 64-node trace of MG while only 77.56% were preserved in the trace of 1024

nodes. As a result, the extrapolated trace loses its ability to preserve most of the communication

workload, even though one of the two overlapping communication patterns is fully captured.

Since our trace-based extrapolation is a black box approach relying only on information in the

input traces instead of knowledge about the source code of the application, the extrapolation

of the strong scaling for MG is beyond the scope of ScalaExtrap’s current capabilities.

3.5 Application of the Extrapolated Trace

As shown with the experiments, the extrapolated traces are able to correctly predict the com-

munication semantics and timing behavior of the original applications at large scales. This

capability enables the extrapolated traces to be used for performance analysis. For example,

36

they can be fed into discrete-event-based simulators such as Dimemas for performance sim-

ulation, or be used as the input for visualization tools such as Vampir Next Generation. In

this section, we describe two case studies to demonstrate the potential use of the extrapolated

traces. The experiments in this section were performed on ARC, a cluster with 1728 cores on

108 compute nodes, 32 GB memory per node and both Infiniband and Ethernet Interconnect.

3.5.1 Extrapolated Trace for Code Generation

In the first case study, we use the extrapolated traces to generate parallel benchmarks. The

main idea of benchmark generation is to automatically generate 1) MPI events with the same

parameter values and temporal ordering, and 2) sleeps that mimic the computation stages in the

original application, according to the information in the input trace [84, 20]. The drawback of

the trace-based benchmark generation approach is that the generated code can only be launched

with the same number of MPI processes with which the trace was collected. Nonetheless, this

is complimented by our extrapolation algorithm — with the extrapolated trace, the benchmark

generator is able to generate code for arbitrary number of MPI processes that is valid for an

application.

To demonstrate this idea, we generated C+MPI code from the extrapolated Sweep3D traces.

In this experiment, we first executed the ScalaTrace-instrumented Sweep3D at the node sizes of

16, 36, 64, and 100, to collect the base traces for extrapolation. We then extrapolated a series

of traces for the node sizes of 144, 196, 256, 324, and 400, which were subsequently fed into the

benchmark generator to generate C+MPI parallel benchmarks. Figure 3.13 compares the total

execution times of the generated benchmarks to that of the original applications at the same

node size. Quantitatively, the mean absolute percentage accuracy (as defined in Section 3.4.2)

across all test cases is 93.76%. With such a high timing accuracy, the generated benchmarks

can be used for performance experiments or as the substitute of the classified applications.

3.5.2 Extrapolated Trace for Performance Experiments

In the second case study, we use the extrapolated trace to analyze the impact of computational

speedup on the overall performance. Computational speedup can be achieved in multiple ways.

For example, application developers can optimize performance by overlapping communication

and computation. They may also manually or automatically parallelize their code to take

advantage of the compute power of the multi-core/many-core architectures. A current trend in

high-performance computing is to supplement general-purpose CPUs with more special-purpose

computational accelerators (e.g., GPUs). Unfortunately, it is nontrivial both to predict how

fast a parallel application will run once accelerated and to port a parallel application to an

accelerated architecture.

37

 1

 2

 4

 8

 16

 32

 64

 128

 256

144
196

256
324

400
R

un
ni

ng
 T

im
e

(s
)

Number of Nodes

Application
Generated Benchmark

Figure 3.13: Timing Accuracy for the Extrapolated Benchmarks

To readily assess the effect of computational speedup before implementation, application

developers can perform a quick what-if analysis by modifying the application trace. A unique

feature of ScalaTrace is that the collected trace is concise and structure-preserving. This enables

people to manually modify the trace for performance analysis. Since the extrapolated trace is

equivalent to the trace obtained from a real execution, it shares the same merit.

As an example, we assess the impact of computational speedup on the overall performance

of Sweep3D with the extrapolated Sweep3D trace. In this experiment, we used the Ethernet

interconnect on ARC, which is slower than Infiniband. We first extrapolated the Sweep3D

trace of 400 MPI processes from smaller traces. We then changed the computation times

and message volumes recorded in the trace to simulate different expected improvements due

to acceleration and different communication workload, respectively. Total execution time was

measured to reflect the change of the overall performance. The results are shown in Figure 3.14,

where the x-axis indicates the length of the generated computational phases in percentage

of the original delta time, and different curves correspond to different message volumes. As

shown in Figure 3.14, an interesting observation is that reducing the computation times, i.e.,

“accelerating” the computational stages, does not always lead to a better overall performance.

For example, when the message volume is increased to 1, 2, and 4 time(s) of the actual values,

the best overall performance is achieved when the sleep time is set to be 10%, 20%, and 40%

of the original, i.e., a 10x, 5x, and 2.5x computational speedup, respectively. Particularly,

when the message volume is set to 8 times of the actual value, the optimal sleep time is

180% of the original computation times, which indicates that, instead of trying to accelerate,

application developers actually should slow down the computation stages to achieve the best

overall performance. To understand this puzzling behavior, note that Sweep3D is a stencil

38

code consisting almost exclusively of synchronous point-to-point communication operations.

Shortening the sleep times increases the contention in the network, which in turn offsets the

time saved with computational speedup. Moreover, the larger the message volume, the heavier

the network congestion would be. As a result, the optimal sleep time increases with the message

volume.

 16

 32

 64

 128

 256

 512

 0 20 40 60 80 100 120 140 160 180 200 220 240

T
ot

al
 E

xe
cu

tio
n

T
im

e
(s

)

Computation Time (% of Original)

Message Volume x 1
Message Volume x 2
Message Volume x 4
Message Volume x 8

Figure 3.14: The Impact of Computational Speedup on the Overall Performance

We should note that the experimental result presented in Figure 3.14 is both application-

specific and platform-specific. Yet, with the application trace, what-if analysis on application

performance can easily be done without ever needing to implement a parallel algorithm or port

the original application. Besides, with the trace-based extrapolation, performance analysis

can be done even without the large-scale input data set or the necessary hardware, e.g., large

amount of GPUs.

3.6 Related Work

ScalaTrace is an MPI trace-gathering framework. It generates near constant-size communication

traces for a parallel application with regular SPMD behavior regardless of the number of nodes

while preserving structural information and temporal ordering [56, 64] (see Chapter 2). Our

extrapolation work builds on the trace representation of ScalaTrace.

Xu et al. construct coordinated performance skeletons to estimate application execution

39

time in new hardware environments [86, 87]. They detect dominant communication topologies

by comparing an application communication matrix against a predefined set (library) of refer-

ence patterns. In this work, complicated communication patterns, such as the NAS benchmark

CG, are handled by manually provided specifications of the new patterns. Moreover, the graph

spectrum analysis and graph isomorphism tests utilized in this work lack scalability in terms of

time complexity and thus limit the applicability of this work at large sizes. Most significantly,

their work does not capture all communication events.

Zhai et al. collect MPI communication traces and extract application communication pat-

terns through program slicing [90]. This work utilizes a set of source code analysis techniques

to build a program slice that only contains the variables and code sections related to MPI

events, and then executes the program slice to acquire communication traces. While removing

the computation in the original application enables a fast and cheap trace collection, it also

causes the loss of temporal information that is essential for characterizing the application run-

time behavior. In addition, the lack of trace compression limits its feasibility for large-scale

application tracing. Based on the FACT framework, Zhai et al. employ a deterministic replay

technique to predict the sequential computation time of one process in a parallel application on

a target platform [89]. The main idea is to use the information recorded in the trace to simu-

late the execution result of MPI calls when there is actually only one MPI process, and utilize

the deterministic data replay to simulate the runtime of the computation phases on the target

platform. While this approach manages to predict the computation time, it fails to capture the

communication related effects. In addition, this work focuses on cross-platform performance

prediction but cannot predict the application performance on a cluster that is larger than the

available host platform.

Dimemas is a discrete-event-based network performance simulator that uses Paraver traces

as input [60]. It simulates the application behavior on the target platform with specified proces-

sor counts and network latency. However, Dimemas simulations are infeasible for peta-/exascale

simulations due to a lack of hardware resources to generate the input trace and the sheer size

of traditional application traces. Our work, in contrast, focuses on the trace extrapolation for

larger platforms that applications have not yet been ported to or even future platforms (ex-

ascale). The extrapolated traces can then be either replayed with ScalaReplay (former case)

or used as the input trace for simulators (Dimemas/SST) in the latter case for performance

prediction. Ronsse et al. presented RoltMT , an extension of ROLT (Reconstruction of Lamport

Timestamps) for message passing systems [66]. With the RoltMT approach, send events related

with a promiscuous receive event are attached with Lamport timestamps incremented with a

value larger than one. Since only timestamps for these events are recorded in the trace, the trace

size and the program perturbation caused by tracing are minimized. The recorded Lamport

timestamps are then used in replay with additional synchronizations to allow a deterministic

40

replay of programs with non-deterministic receives. In contrast, ScalaTrace and ScalaReplay

keep the wildcard values such as MPI ANY SOURCE in tracing and extrapolation so that the

nondeterministic features of the original programs are preserved, although eliminating nonde-

terminism can also be easily done with our systems.

Preissl et al. extract communication patterns, i.e., the recurring communication event sets,

from MPI traces [62]. They first search for repeating occurrences of identical events in the trace

of each individual process and then iteratively grow them into global patterns. The output of

this algorithm can be used to identify potential bottlenecks in parallel applications. Preissl

et al. further utilize the detected communication patterns to automate source code trans-

formations such as automatic introduction of MPI collectives [63]. Our method, in contrast,

focuses on the spatial aspect of communication events, i.e., the identification and extrapolation

of communication topology.

Eckert and Nutt [22, 23] extrapolate traces of parallel shared-memory applications. They

take as input the traces collected on an existing architecture and extrapolate them to a target

platform with different architectural parameters, without re-executing the original application.

This work analyzes the causal event stream. It focuses on the correctness of the extrapolated

trace given the existence of program-level non-determinism, e.g., the interleaving of events or

modifications in the actual set of events caused by moving the trace across different architec-

tures. In contrast, our work is based on deterministic application execution. We also preserve

the causal ordering of communication events but our focus is on the communication behavior

at arbitrary problem sizes.

Performance modeling has traditionally taken the approach of algorithmic analysis, often

combined with tedious source code inspection and hardware modeling for floating-point op-

erations per second, memory hierarchy analysis from caches over buses to main memory and

interconnect topology, latency and bandwidth considerations. In particular, Kerbyson et al.

present a predictive performance and scalability model of a large-scale multidimensional hy-

drodynamics code [39]. This model takes application, system, and mapping parameters as

input to match the application with a target system. It utilizes a multitude of formulae to

characterize and predict the performance of a scientific application. Snavely et al. model and

predict application performance by 1) characterizing a system with machine profiles, namely

single processor performance and network latency and bandwidth, 2) collecting the operations

in an application to generate application signatures, and 3) mapping signatures to profiles to

characterize performance [73, 7]. Gruber et al. describes PatternTool, an interactive tool for

creating scalable hierarchical graphs to define the communication patterns and control flows of

a parallel algorithm graphically [35]. The created performance model can be used as the input

to PAPS (Performance Prediction of Parallel Systems), a simulator that can be parameterized

for different computer systems, for performance simulation. Ïpek et al. follow a completely

41

different approach by utilizing artificial neural networks (ANNs) to predict the performance

when application configuration varies [38]. This approach employs repeated sampling of a

small number of points in the design space that are statistically determined through SimPoint

[72]. Only these points are then simulated and results are utilized to teach the ANNs, which

are subsequently utilized to predict the performance for other design points. In contrast, our

work explores the potential of extrapolating the application runtime according to its evolving

trend across increasing problem sizes. Since this method requires neither measurement of per-

formance metrics nor intense computation, it provides a simple and highly efficient approach

to study the effect of scaling across a large numbers of compute nodes. In contrast to all of the

above approaches, our ScalaExtrap does not just simulate communication behavior at scale but

allows such behavior to be observed in practice through replaying on a target platform with

large numbers of nodes, even if the corresponding application itself has not been ported yet.

3.7 Summary

Scalability is one of the main challenges of scientific applications in HPC. Advanced communica-

tion tracing techniques achieve lossless trace collection, preserve event ordering and encapsulate

time in a scalable fashion. However, estimating the impact of scaling on communication effi-

ciency is still non-trivial due to execution time variations and exposure to hardware and software

artifacts.

This work contributes a set of algorithms and analysis techniques to extrapolate commu-

nication traces and execution times of an application at large scale with information gathered

from smaller executions. The extrapolation of communication traces depends on an analytical

method to characterize the communication topology of an application. Based on the obser-

vation that problem scaling increases/decreases communication parameters and topology at a

certain rate, we utilize a set of linear equations to capture the relation between communication

traces for changing number of nodes and extrapolate communication traces accordingly. For

the extrapolation of communication traces, the detection of communication topology is vital

but non-trivial. We currently focus on stencil/mesh topology with nodes arranged in a row-

major fashion. While a large amount of parallel applications fall into this category, we observed

more complex communication topologies that are hard to detect with a generic approach, which

thus limits the applicability of this work. In future work, we plan to support user plugins so

that the extrapolation of complicated and unique communication patterns can be facilitated by

user-supplied information.

For the extrapolation of timing information, we utilize curve fitting approaches to model

trends in delta times over traces with varying number of nodes. Statistical methods are further

employed to mitigate timing fluctuations under scaling. Currently, we capture four categories

42

of the most commonly seen timing trend. However, the prediction of more complicated timing

trends, e.g., the detection of the combination of multiple types of timing trends, may require

more sophisticated algorithms.

Experiments were conducted using an implementation through our ScalaExtrap tool and

with the NAS Parallel Benchmark suite and Sweep3D. We utilized up to 16,384 nodes of a

73,728-node IBM Blue Gene/P. Experimental results show that our algorithm is capable of

extrapolating stencil/mesh and collective communication patterns for both strong scaling and

weak scaling configurations. Extrapolation of timing information is further shown to provide

good accuracy.

We believe that extrapolation of communication traces for parallel applications at arbitrary

scale is without precedence. Without porting applications, communication events can be re-

played and analyzed in a timed manner at scale. This has the potential to enable otherwise

infeasible system simulation at the exascale level.

43

Chapter 4

Automatic Generation of Parallel

Benchmarks from Applications

4.1 Introduction

Evaluating and analyzing the performance of high-performance computing (HPC) systems

generally involves running complete applications, computational kernels, or microbenchmarks.

Complete applications are the truest indicator of how well a system performs. However, they

may be time-consuming to port to a target machine’s compilers, libraries, and operating system,

and their size and intricacy makes them time-consuming to modify, for example, to evaluate

the performance of different data decompositions or parallelism strategies. Furthermore, with

intense competition to be the first to scientific discovery, computational scientists may be loath

to risk granting their rivals access to their application’s source code; or, the source code may be

more formally protected as a corporate trade secret or as an export-controlled or classified piece

of information. Computational kernels address some of these issues by attempting to isolate an

application’s key algorithms (e.g., a conjugate-gradient solver). Their relative simplicity reduces

the porting effort, and they are generally less encumbered than a complete application. While

their performance is somewhat indicative of how well an application will perform on a target

machine, isolated kernels overlook important performance characteristics that apply when they

are combined into a complete application. Finally, microbenchmarks stress individual machine

components (e.g., memory, CPU, or network). While they are easy to port, distribute, modify,

and run, and they precisely report characteristics of a target machine’s performance, they pro-

vide little information about how an application might perform when the primitive operations

they measure are combined in complex ways in an application.

The research question we propose to answer in this chapter is the following: Is it possible

to combine the best features of complete applications, computational kernels, and microbench-

44

marks into a single performance-evaluation methodology? That is, can one evaluate how fast a

target HPC system will run a given application without having to migrate it and all of its depen-

dencies to that system, without ignoring the subtleties of how different pieces of an application

perform in context, without forsaking the ability to experiment with alternative application

structures, and without restricting access to the tools needed to perform the evaluation?

Our approach is based on the insight that application performance is largely a function of

the sorts of primitive operations that microbenchmarks measure and that if these operations

can be juxtaposed as they appear in an application, the performance ought to be nearly iden-

tical. We therefore propose generating application-specific performance benchmarks. In fact,

by “generating”, we imply a fully automatic approach in which a parallel application can be

treated as a black box and mechanically converted into an easy-to-build, easy-to-modify, and

easy-to-run program with the same performance as the original but absent the original’s data

structures, numerical methods, and other algorithms.

We take as input an MPI-based [34] message-passing application. To convert this into a

benchmark, we utilize the approach illustrated in Figure 4.1. We begin by tracing the applica-

tion’s communication pattern (including intervening computation time) using ScalaTrace [55].

The resulting trace is fed into the benchmark generator that is the focus of this chapter. The

benchmark generator outputs a benchmark written in coNCePTuaL, a domain-specific lan-

guage for specifying communication patterns [58]. The coNCePTuaL code can then be com-

piled into ordinary C+MPI code for execution on a target machine.

Figure 4.1: Benchmark Generation System

We utilize ScalaTrace for communication trace collection because ScalaTrace represents the

state of the art in parallel application tracing. It benefits benchmark generation in two aspects.

First, due to its pattern-based compression techniques, ScalaTrace generates application traces

that are lossless in communication semantics yet small and scalable in size. For example,

45

ScalaTrace can represent all processes performing the same operation (e.g., each MPI rank

sending a message to rank+4) as a single event, regardless of the number of ranks. Because

the application trace is the basis for benchmark generation, this feature helps reduce the size of

the generated code, making it more manageable for subsequent hand-modification. In contrast,

previous application tracing tools, such as Extrae/Paraver [60], Tau [70], Open|SpeedShop [68],

Vampir [52], and Kojak [80], are less suitable for benchmark generation because their traces

increase in size with both the number of communication events and the number of MPI ranks

traced. Second, ScalaTrace is aware of the structure of the original program. It utilizes the

stack signature to distinguish different call sites. Its loop-compression techniques can detect the

loop structure of the source code. For example, if an iteration comprises a hundred iterations,

and each iteration sends five messages of one size and ten of another, ScalaTrace represents

that internally as a set of nested loops rather than as 1500 individual messaging events. These

pattern-identification features help benchmark generation maintain the program structure of

the original application so that the generated code will be not only be semantically correct but

also human comprehensible and editable.

We use the domain-specific coNCePTuaL language [58] instead of a general-purpose lan-

guage such as C or Fortran as the target language for benchmark generation. (coNCePTuaL

does, however, compile to C source code.) Because coNCePTuaL is designed specifically for

the expression of communication patterns, benchmarks generated in coNCePTuaL are highly

readable. coNCePTuaL code includes almost exclusively communication specifications. Mun-

dane benchmarking details such as error checking, memory allocation, timer calibration, statis-

tics calculation, MPI subcommunicator creation, and so forth are all handled implicitly, which

reduces code clutter.

We evaluated our benchmark generation approach with the NAS Parallel Benchmark suite

[6] and the Sweep3D code [42]. We performed experiments to assess both the correctness and

the timing accuracy of the generated parallel benchmarks. Experimental results show that the

auto-generated benchmarks preserve the application’s semantics, including the communication

pattern, the message count and volume, and the temporal ordering of communication events

as they appear in the original parallel applications. In addition, the total execution times of

the generated codes are very similar to those of the original applications; the mean absolute

percentage error across all of our measurements is only 2.9%. Given these experimental results,

we conclude that the generated benchmarks are able to reproduce the communication behavior

and wall-clock timing characteristics of the source applications.

The contributions of this work are (1) a demonstration and evaluation of the feasibility of

automatically converting parallel applications into human-readable benchmark codes, (2) an

algorithm for determining precisely when separately appearing collective-communication calls

in fact belong to the same logical operation, and (3) an approach and algorithm for ensuring

46

performance repeatability by introducing determinism into benchmarks generated from nonde-

terministic applications.

We foresee our work benefiting application developers, communication researchers, and HPC

system procurers. Application developers can benefit in multiple ways. First, they can quickly

gauge what application performance is likely to be on a target machine before exerting the effort

to port their applications to that machine. Second, they can use the generated benchmarks

for performance debugging, as the benchmarks can separate communication from computation

to help isolate observed performance anomalies. Third, application developers can examine

the impact of alternative application implementations such as different data decompositions

(causing different communication patterns) or the use of computational accelerators (reducing

computation time without directly affecting communication time). Communication researchers

can benefit by being able to study the impact of novel messaging techniques without incurring

the burden of needing to build complex applications with myriad dependencies and without

requiring access to codes that are not freely distributable. Finally, people tasked with procuring

HPC systems benefit by being able to instruct vendors to deliver specified performance on a

given application without having to provide those vendors with the application itself.

4.2 Related Work

The following characteristics of our benchmark-generation approach make it unique:

• The size of the benchmarks we generate increases sublinearly in the number of processes

and in the number of communication operations.

• We exploit run-time information rather than limit ourselves to information available at

compile time.

• We preserve all communication performed by the original application.

We utilize ScalaTrace to collect the communication trace of parallel applications. With a set

of sophisticated domain-specific trace-compression techniques, ScalaTrace is able to generate

traces that preserve the original source-code structure while ensuring scalability in trace size.

Other tools for acquiring communication traces such as Vampir [11], Extrae/Paraver [60], and

tools based on the Open Trace Format [40] lack structure-aware compression. As a result,

the size of a trace file grows linearly with the number of MPI calls and the number of MPI

processes, and so too would the size of any benchmark generated from such a trace, making it

inconvenient for processing long-running applications executing on large-scale machines. This

lack of scalability is addressed in part by call-graph compression techniques [41] but still falls

short of our structural compression, which extends to any event parameters. Casas et al.

47

utilize techniques of signal processing to detect internal structures of Paraver traces and extract

meaningful parts of the trace files [15]. While this approach could facilitate trace analysis, it is

lossy and thus not suitable for benchmark generation.

Xu et al.’s work on constructing coordinated performance skeletons to estimate application

execution time in new hardware environments [86, 87] exhibits many similarities with our work.

However, a key aspect of performance skeletons is that they filter out “local” communication

(communication outside the dominant pattern). As a result, the generated code does not fully

reproduce the original application, which may cause subtle but important performance charac-

teristics to be overlooked. Because our benchmark generation framework is based on lossless

application traces it is able to generate benchmarks with identical communication behavior to

the original application. In addition, we generate benchmarks in coNCePTuaL instead of C

so that the generated benchmarks are more human-readable and editable.

Program slicing, statically reducing a program to a minimal form that preserves key prop-

erties of the original, offers an alternative approach to generating benchmarks from application

traces. Ertvelde et al. utilize program slicing to generate benchmarks that preserve an applica-

tion’s performance characteristics while hiding its functional semantics [25]. This work focuses

on resembling the branch and memory access behaviors for sequential applications and may

therefore complement our benchmark generator for parallel applications. Shao et al. designed

a compiler framework to identify communication patterns for MPI-based parallel applications

through static analysis [69], and Zhai et al. built program slices that contain only the vari-

ables and code sections related to MPI events and subsequently executed these program slices

to acquire communication traces [90]. Program slicing and static benchmark generation in

general have a number of shortcomings relative to our run-time, trace-based approach: Their

reliance on inter-procedural analysis requires that all source code—the application’s and all its

dependencies—be available; they lack run-time timing information; they cannot accurately han-

dle loops with data-dependent trip counts (“while not converged do. . . ”); and they produce

benchmarks that are neither human-readable nor editable.

Previous work also focused on benchmark synthesis using low-level workload characteris-

tics [8, 81, 74]. For example, Bell et al. [8] synthesize representative test cases from workload

characteristics, such as instruction sequences, branch predictability, and cache miss rates, of

an application binary. Wong et al. concentrate on the locality of references and use the LRU

cache hit function as a workload characterization for benchmark synthesis [81]. Sreenivasan

et al. generate representative synthetic workload by matching the joint probability density of

the real workload with that of the synthetic workload [74].

Automatic code generation approaches can also be utilized to assist in characterizing I/O

performance. Logan et al. generate skeletal I/O applications automatically from XML files with

ADIOS I/O specifications and manually provided runtime parameters [47, 4]. ScalaIOTrace

48

collects trace information for MPI-IO and POSIX I/O operations [77]. As an extension to

ScalaTrace, ScalaIOTrace retains the compression capabilities and structure-preserving features

of ScalaTrace. Thereby, it is feasible to utilize the code generation framework proposed in this

work to generate I/O benchmarks from the ScalaIOTrace traces.

Besides benchmark generation and synthesis, our work is also relevant to performance mod-

eling and prediction [17, 38, 39, 7, 73]. For example, in [17], a modeling and analysis framework

is designed to automatically estimate the resource demand for a given performance target using

program characteristics. In [38], artificial neural networks (ANNs) are utilized to predict the

application performance when configuration varies.

4.3 coNCePTuaL

Our benchmark generation approach utilizes the ScalaTrace infrastructure [55] to extract the

communication behavior of the target application. Based on the application trace, we generate

benchmarks in coNCePTuaL [58], a high-level domain-specific language (with an associated

compiler and run-time system) designed for testing the correctness and performance of com-

munication networks. This section introduces the features coNCePTuaL that enable our

benchmark generation methodology.

coNCePTuaL is a tool designed to facilitate rapid generation of network benchmarks. It

includes a compiler for a high-level specification language and an accompanying run-time library.

coNCePTuaL programs are understandable even to non-experts because of its English-like

grammar. For example, Figure 4.3 shows a complete coNCePTuaL benchmark program

corresponding to the 1D torus communication pseudo MPI code snippet presented in Figure 4.2.

for(i=0; i<1000; i++){

MPI_Irecv(LEFT, ...);

MPI_Isend(RIGHT, ...);

MPI_Waitall(...);

}

Figure 4.2: Pseudo MPI Code for 1D Torus Communication

Note in the above that no variable or function declarations are required; no buffer allocation is

required; no MPI Request or MPI Status objects need to be defined; no MPI communicators

need to be queried for rank and size; no files need to be opened and written to; no statistics-

calculating routines need to be implemented; no error codes need to be checked; no matching

49

FOR 1000 REPETITIONS {

ALL TASKS RESET THEIR COUNTERS THEN

ALL TASKS t ASYNCHRONOUSLY SEND A 1 KILOBYTE

MESSAGE TO TASK t+1 THEN

ALL TASKS AWAIT COMPLETION THEN

ALL TASKS LOG THE MEDIAN OF elapsed_usecs

AS "Time (us)".

}

Figure 4.3: coNCePTuaL Code for the Pseudo MPI Code in Figure 4.2

receive needs to be posted for each send (but can be if the programmer requires more precise

control over posting order); and no special cases for the first and last task (rank) need to

be specified. Nevertheless, coNCePTuaL is able to express sophisticated communication

patterns utilizing a variety of collective and point-to-point communication primitives, looping

constructs, and conditional operations. When executed, the generated code produces log files

that contain a wealth of information about the measured communication performance, code

build characteristics, execution environment, and other information needed to yield reproducible

performance measurements [57].

The aforementioned features make coNCePTuaL an ideal language for benchmark gener-

ation. In the following section, we present our approach to producing coNCePTuaL output

from ScalaTrace input.

4.4 Benchmark Generation

4.4.1 Overview

The process of automatic code generation from traces is the process of traversing the par-

allel application trace, interpreting the RSDs and PRSDs, and generating the corresponding

coNCePTuaL program. We designed a trace traversal framework that walks through the trace

and invokes a language-dependent code generator for each RSD and PRSD. A code generator is

a pluggable function that conforms to a predefined interface. By implementing a generator for a

different target language, we can easily generate code for languages other than coNCePTuaL

as well.

Most of the conversion from RSDs and PRSDs to coNCePTuaL code is straightforward.

An RSD representing point-to-point communication (blocking or nonblocking) is converted to a

coNCePTuaL SEND or RECEIVE statement; computation time encoded in an RSD is converted

to a coNCePTuaL COMPUTE statement; and a PRSD is converted to a coNCePTuaL FOR

50

EACH loop. Behavior that differs across loop iterations (message destinations, compute times,

etc.) is implemented with a coNCePTuaL IF statement conditioned on a loop variable. There

are a few subtleties involved in the mapping from ScalaTrace to coNCePTuaL; Section 4.4.2

discusses these.

Our view, however, is that a naive conversion from a trace to benchmark code has two

important shortcomings. First, one of our goals is for the generated benchmark code to be

readable, so a human can easily examine, understand, and modify the code. Our second goal

is for the performance reported by the benchmark program to be reproducible, to make it a

more suitable vehicle for experimentation. In short, we want it to be possible to reason about a

generated benchmark’s behavior and performance. However, achieving the goals of readability

and reproducibility is a challenging research problem and is the subject of this section.

One difficulty in improving benchmark readability is the elimination of constructs whose

behavior cannot statically be determined. Consider the following snippet of C code:

if (rank == 0)

MPI_Reduce(〈argument list〉);
else

MPI_Reduce(〈the same argument list〉);

It is not possible to know if those two MPI Reduce() calls are part of the same collective

operation without knowing the complete, run-time control flow of the program—on each rank

individually—that led to the execution of the code shown above. The challenge is how to merge

per-rank collective operations found in a trace into a single collective operation whose partici-

pants can be identified statically. An example of such an operation expressed in coNCePTuaL

is “TASKS xyz SUCH THAT 3 DIVIDES xyz REDUCE A DOUBLEWORD TO TASK 0”; no further in-

formation is required to know that tasks 0, 3, 6, 9, . . . are the participants in that reduction

operation. Section 4.4.3 presents our algorithm for matching collective operations specified

separately on each node.

An MPI feature that hinders performance reproducibility is nondeterminism. MPI supports

“wildcard receives” (MPI ANY SOURCE), which can receive messages from any sender. While

this feature can lead to correctness issues [78], and we do address this, we are concerned

primarily with the different performance that can result from different messages matching a

set of wildcard receives. Consider, for example, the following use of the MPI Recv receive

operation:

MPI_Recv(..., MPI_ANY_SOURCE, ..., status);

if (status.MPI_SOURCE == 0)

〈Do some long-running computation.〉

51

else

〈Do some short-running computation.〉
MPI_Recv(..., MPI_ANY_SOURCE, ..., status);

Depending on the sender’s MPI rank (status.MPI SOURCE), the preceding code can take either

a long time or a short time to run. Because the sender whose message matches the MPI Recv

can vary from run to run, the execution time of the preceding code also varies from run to

run. While this behavior may be reasonable for an application, we deem it inappropriate for a

benchmark program. As benchmarks are commonly used to evaluate system performance, small

changes in a target machine’s hardware or system software should not result in arbitrarily large

changes in a benchmark’s execution time. Section 4.4.4 presents our algorithm for removing

performance nondeterminism caused by wildcard receives in the input trace.

4.4.2 Engineering Details

coNCePTuaL is not designed to exactly represent MPI features. In fact, the coNCePTuaL

compiler can compile the same source program to C+MPI, C+Unix sockets, or to any other

language/communication library combination for which a compiler backend exists. Conse-

quently, coNCePTuaL contains collectives that MPI lacks (e.g., arbitrary many-to-many

reductions with non-overlapping source and destination task sets), and MPI contains collec-

tives that coNCePTuaL lacks (e.g., scatters of different-sized messages to different destina-

tions). We therefore had to “impedance match” the benchmark generator’s MPI-centric input

to coNCePTuaL output. Our approach is to replace each unsupported MPI collective with one

or more coNCePTuaL collectives that represent a similar communication pattern (i.e., data

fan in or fan out) and data volume. Table 4.1 presents the substitutions we made.

Table 4.1: Mapping of MPI Collectives to coNCePTuaL

MPI collective coNCePTuaL implementation

Allgather REDUCE + MULTICAST

Allgatherv REDUCE with averaged message size + MULTICAST

Alltoallv MULTICAST with averaged message size
Gather REDUCE

Gatherv REDUCE with averaged message size
Reduce scatter n many-to-one REDUCEs with different message sizes and roots, where n is

the communicator size
Scatter MULTICAST

Scatterv MULTICAST with averaged message size

52

MPI has a notion of a “communicator,” which is a subset of the available ranks, renumbered

and possibly reordered. Every MPI communication operation takes a communicator as an

argument and uses it to specify the participants in the operation. A disturbing consequence

of communicators is that a line in the application source code that seems to be sending a

message to, say, rank 3 may in fact be sending a message to rank 8 in the primordial MPI -

COMM WORLD communicator. To make the generated benchmarks more readable we keep

track of the mapping of every rank within every communicator to an “absolute” rank within

MPI COMM WORLD and express all generated computation and communication operations

in terms of these absolute ranks.

4.4.3 Combining Per-Node Collectives

As discussed in Section 4.4.1, MPI allows multiple statements in the source code to represent

a single, common collective operation. Because ScalaTrace differentiates call sites by call-stack

signatures, this use of collectives generates distinct RSDs in the trace. To improve benchmark

readability, before generating coNCePTuaL code we want to combine these separate RSDs,

each representing a subset of the collective’s participants, into a single RSD that represents

the complete set of participants. Figure 4.4 illustrates the intention, using C+MPI (with the

omission of most MPI arguments) instead of RSDs for clarity. Figure 4.4(a) presents the initial

communication pattern, in which each of ranks 0 and 1 invoke MPI Barrier from a different

source-code line. Assuming these are found to be the same collective, we want to hoist the

MPI Barrier outside of all conditionals on the rank, as shown in Figure 4.4(b).

if(rank == 0) {

MPI_Isend(1);

MPI_Barrier();

}

if(rank == 1) {

MPI_Barrier(1);

MPI_Irecv(0);

}

MPI_Wait();

(a) C+MPI Program

if(rank == 0)

MPI_Isend(1);

MPI_Barrier();

if(rank == 1)

MPI_Irecv(0);

MPI_Wait();

(b) Aligned Collectives

Figure 4.4: Combining Collectives Across Separate Source-code Statements

To perform this transformation, recall that our benchmark generator operates on com-

munication traces, not on application source code; it therefore does not literally perform the

53

source-code transformation shown in Figure 4.4. Rather, it follows the sequence of steps pre-

sented in Algorithm 2 to align in time the RSDs of the same collective operation across nodes

then combine these RSDs into a single RSD specifying the complete set of nodes to which the

collective operation applies.

The main idea, illustrated in Figure 4.5 for RSDs corresponding to the C+MPI code in

Figure 4.4, is to stop the trace traversal for a node at each collective in which it participates

until all of the other participating nodes have arrived at the same collective. Algorithm 2

guarantees that (1) a collective operation corresponds to only one RSD in the output trace,

(2) the ordering of MPI events for each node is preserved in the trace, and (3) the output

trace is still in a compressed format. This algorithm tracks the traversal on different nodes by

maintaining a traversal context for each node. The traversal context stores the current RSD

the node is executing, the loop stack the execution is in, and the iteration count for each loop in

the stack. Upon startup, the algorithm traverses the trace on behalf of node 0, which is called

the current running node. For each RSD of non-collective MPI routines that the running node

is involved in, the algorithm extracts the current MPI event and appends an RSD to the output

queue. (Note that an RSD can contain multiple MPI events across loop iterations and across

nodes due to compression.) For collectives, however, the traversal stops for the current running

node and switches to the next node in the communicator (indicated by the small arrows in

Figure 4.5). When the last node in the communicator arrives at the collective, the algorithm

appends the RSD for all the nodes to the output queue and switches the traversal back to the

first node that is blocked on the same collective. We treat MPI Finalize as a collective so that

the algorithm cannot finish until the traversal is done for all the nodes. To guarantee that the

new trace is scalable in length, we apply ScalaTrace’s loop compression algorithm [55] to the

output RSD queue each time a new RSD is appended to the queue.

The complexity of Algorithm 2 is O(e), where e = Σn−1
i=0 ei is the total number of MPI

events on all the nodes and ei is the number of communication events per node. This can be

derived from the fact that Algorithm 2 traverses every event in the trace exactly once for each

node. In Algorithm 2, the for loop in line 2 initializes the iterator to the head RSD for each

node. During execution, the while loop in line 12 always moves the iterator forward by exactly

one event in each iteration. In case the traversal is blocked at a collective, a context switch

happens at line 27. When the call to Align returns, the traversal proceeds to the next event.

In addition, since MPI Finalize is handled as a collective that all nodes participate in (line 23),

the traversal is performed for all the nodes. Nevertheless, we do not blindly run this algorithm

for arbitrary input traces. Before applying the algorithm we first check the trace to see if there

are unaligned collectives. This check costs only O(r), where r is the number of RSDs in the

trace and is typically much smaller than e due to compression.

54

Algorithm 2 Algorithm to Align Collectives
Precondition: Tin: input trace, N: total number of nodes
Postcondition: Tout: the trace for coNCePTuaL code generation

1: function Initialization(Tin, N)
2: for i ← 1, N do

3: Allocate traversal context C[i]
4: C[i].RSD ← Tin.head
5: end for

6: Initialize Tout to am empty trace
7: Tout ← Align(0, Tout) ⊲ Start with node 0
8: return Tout

9: end function

10: function Align(n, Tout)
11: iter ← C[n].RSD
12: while iter do

13: if node n is not in iter.rank list then

14: iter ← iter.next
15: else

16: if iter.op is not a collective then

17: Extract current MPI event
18: Append a new RSD to Tout

19: Compress Tout

20: iter ← iter.next
21: continue

22: end if

23: if iter.op is a collective or MPI Finalize then

24: if some participants have not arrived yet then

25: C[n].RSD ← iter
26: next ← the next node in the communicator
27: Align(next, Tout)
28: else

29: Append an RSD for all participants to Tout

30: Compress Tout

31: C[n].RSD ← iter
32: for each i ∈ {participants} do
33: C[i].RSD ← C[i].RSD.next
34: end for

35: first ← the first node in the communicator
36: Align(first, Tout)
37: end if

38: end if

39: end if

40: end while

41: return Tout

42: end function

4.4.4 Eliminating Nondeterminism

MPI supports the use of a wildcard value, MPI ANY SOURCE, for the source parameter of

point-to-point receives. For example, in the NAS Parallel Benchmarks’s implementation of LU

decomposition [6], nodes use MPI ANY SOURCE to receive messages in arbitrary order from

their neighbors in a 2-D stencil. The problem with the use of MPI ANY SOURCE from a

benchmarking perspective is that it has the potential to introduce performance artifacts, as

discussed in Section 4.4.1. That is, each run of LU may stress the communication subsystem

55

Task 0 Task 1

RSD1: {0, MPI Isend, 1} ➙ {1, MPI Barrier, 0 1}
RSD2: ➙{0, MPI Barrier, 0 1} {1, MPI Irecv, 0}
RSD3: {0, MPI Wait} {1, MPI Wait}

➘ ➘
Combination

RSD1: {0, MPI Isend, 0}
RSD2: {0 1, MPI Barrier, 0 1}
RSD3: {1, MPI Irecv, 0}
RSD4: {0 1, MPI Wait}➙

TASK 0 ASYNCHRONOUSLY SENDS AN x-BYTE MESSAGE TO UNSUSPECTING TASK 1 THEN

ALL TASKS SYNCHRONIZE THEN

TASK 1 ASYNCHRONOUSLY RECEIVES AN x-BYTE MESSAGE FROM TASK 0 THEN

ALL TASKS AWAIT COMPLETION.

Figure 4.5: Operation of Algorithm 2

slightly differently based on the order in which messages happen to be received. To promote

reproducibility of empirical measurements, our benchmark generator removes nondeterminism

by replacing wildcard receives with arbitrary but valid non-wildcard receives.

As in Section 4.4.3’s algorithm for combining collectives, Algorithm 3 utilizes a trace-

traversal approach to resolve wildcard receives. Let eijk represent an MPI event k that is

issued by node i and has node j as its peer. We maintain two lists for each node x: a list L1

of the to-be-matched MPI events exj11, exj22, exj33, . . . that were issued by node x itself and a

list L2 of the MPI events ei1xk1 , ei2xk2 , ei3xk3 , . . . specifying the events issued by other nodes

that should be matched by node x. Upon startup, this algorithm traverses the input trace

on behalf of an arbitrary node x. During the traversal, it adds the unmatched point-to-point

operations to list L1 of node x and to list L2 of each peer node. The traversal for node x stops

when the execution is blocked on (1) a blocking send/receive, (2) a collective, or (3) a wait

operation. It then switches the traversal to a node y whose execution will potentially unblock

the execution on node x. In order to be selected as the target node to which the traversal

switches (i.e., node y), a node must be (1) the destination/source of the blocking send/receive

on node x, (2) a node in the same communicator with node x, or (3) the destination/source

of one of the nonblocking sends/receives that node x is waiting on, respectively. During the

traversal for node y, we look up every MPI operation we arrived at in list L2 of node y to

56

detect matches. When a match is found, we delete the event from both lists. If possible, we

unblock the execution on node x so that the traversal for it can proceed later on. If the re-

ceiver of a match uses MPI ANY SOURCE, this value is replaced with the rank of the (first)

matching sender so that the wildcard source is resolved. Collectives are handled in a similar

way as Algorithm 2 by blocking the traversal until every participating node arrives. We treat

MPI Finalize as a collective that all the nodes participate in, so that every node is traversed

before the algorithm finishes. Because Algorithm 3 is again based on traversing a trace and

each MPI event is evaluated exactly once in the while loop at line 12, the complexity is O(e),

where e = Σn−1
i=0 ei is the total number of MPI events on all the nodes. Similarly, the use of

wildcard receives is checked at a cost of O(r) before applying this algorithm, where r is the

number of RSDs in the trace and, typically, r ≪ e.

A ScalaTrace trace is obtained from an instance of a correct execution of the original parallel

application. However, ScalaTrace does not represent this or any other specific execution because

it does not replace the wildcard source value with the rank of the actual sender. Consequently,

if the original application potentially deadlocks, Algorithm 3 suffers from the same risk. As an

example, the code fragment in Figure 4.6(a) deadlocks if the wildcard receive is matched with

node 0 but completes if matched with node 2. One possible execution generates the trace shown

in Figure 4.6(b), which causes Algorithm 3 to hang because node 0 is blocked on MPI Finalize

and node 1 is blocked on MPI Recv(0) during trace traversal.

if(rank == 1){

MPI_Recv(MPI_ANY_SOURCE);

MPI_Recv(0);

}

if(rank == 0 || rank == 2){

MPI_Send(1);

}

(a) MPI Program with Potential Deadlock

RSD1: {1, MPI Recv, MPI ANY SOURCE}
RSD2: {1, MPI Recv, 0}
RSD3: {0, MPI Send, 1}
RSD4: {2, MPI Send, 1}

(b) The Trace of (a) that Makes Algorithm 3 Hang

Figure 4.6: Potential Deadlock

To avoid potential hangs in Algorithm 3 caused by nondeterminism in the original applica-

tion, our benchmark generator extends Algorithm 3 to detect deadlock conditions during trace

traversal. Notice that these deadlocks stem from incorrect MPI semantics of the application,

not from our tracing or code-generation framework. We decided to identify such incorrect MPI

programs and report the existence of deadlocks to the user. To this end, we track another two

57

Algorithm 3 Algorithm to Resolve Wildcard Receive (Without Deadlock Detection)
Precondition: T: input trace, N: total number of nodes
Postcondition: T: trace without wildcard receive

1: function Initialization(T, N)
2: for i ← 1, N do

3: Allocate list L1 and list L2 for node i
4: Allocate traversal context C[i]
5: C[i].RSD ← T.head
6: end for

7: T ← Match(0, T) ⊲ Start with node 0
8: return T
9: end function

10: function Match(n, T)
11: iter ← C[n].RSD
12: while iter do

13: if node n is not in iter.rank list then

14: iter ← iter.next
15: else

16: if iter.op is point-to-point operation then

17: if match with an event eink in L2 then

18: L2.delete(eink)
19: nodei.L1.delete(eink)
20: if nodei.L1 is empty then

21: C[i].RSD ← C[i].RSD.next ⊲ unblock
22: end if

23: if iter.peer is MPI ANY SOURCE then

24: iter.peer = i ⊲ resolve the wildcard
25: end if

26: iter ← iter.next
27: continue

28: else

29: p ← iter.peer
30: L1.add(enp(kn++))
31: nodep.L2.add(enpkn

)
32: if iter.op is blocking operation then

33: C[n].RSD ← iter
34: MATCH(p, T)
35: else

36: iter ← iter.next
37: continue

38: end if

39: end if

40: end if

41: if iter.op is collective or MPI Finalize then

42: ... ⊲ refer to Algorithm 2
43: end if

44: if iter.op is wait operation then

45: if L1 is not empty then

46: MATCH(L1.first.getPeer(), T)
47: else

48: iter ← iter.next
49: continue

50: end if

51: end if

52: end if

53: end while

54: return T
55: end function

58

types of events during traversal: (1) Tijk, the transfer of traversal from node i to node j due to

MPI event ek, and (2) U , the unblocking event. We append these events to a global list, L3,

in the order they were encountered during the traversal. If the traversal is switched to node n

while node n is blocked on an MPI event ek, the deadlock detection algorithm traverses L3

to determine if any unblocking event U has taken place since the last time the traversal left

node n due to the same MPI event ek. If there is no unblocking event found, a potential cyclic

dependency is detected. If ek is a blocking send/receive, then a deadlock potential has been

uncovered and the algorithm terminates. If ek is a wait operation blocked on multiple requests,

the traversal is proxied to the peer of another nonblocking communication on which node n

is waiting. If the peers of all the pending nonblocking sends/receives have been traversed and

the cyclic dependency still exists, a deadlock potential has been detected and the algorithm

terminates. This algorithm implements a sufficient deadlock detection scheme. As a result,

Algorithm 3 is guaranteed to be deadlock-free. However, unlike the DAMPI algorithm [78],

Algorithm 3 does not establish or test the permutations of all execution interleavings and thus

does not present a necessary condition for a deadlock as the approach is based on a single trace

sequence of events. It may therefore fail to identify deadlocks in the original application that

were not uncovered by the specific trace execution.

4.4.5 The Generation of Scalable Benchmarks

An inherent drawback of the trace-based benchmark generation approach is that the generated

code is not scalable in a parametric sense; it can be executed only with the exact number

of MPI tasks with which the trace was collected. To alleviate this shortcoming and allow an

arbitrary number of MPI tasks for invocation, we incorporated our benchmark generator with

ScalaExtrap, our prior work that extrapolates a large communication trace (a trace with large

number of MPI tasks) from a series of smaller traces (see Chapter 3).

We combined our benchmark generator with ScalaExtrap by introducing the use of an

auxiliary trace. We extended ScalaExtrap such that for each MPI parameter, a function of the

processor mesh’s x, y, and z dimensions and the solved coefficients is stored in a separate trace

in addition to the extrapolated trace of a specific node size. We store formulae for all the trace

parameters including

1. MPI parameters such as source, dest, count, etc.,

2. application parameters such as the loop iteration counts, and

3. trace parameters such as the ranklists (see Chapter 2).

In addition, the fitting curves for the computation times are also stored in the auxiliary trace.

The auxiliary trace is structurally similar to a normal ScalaTrace trace so that the formulae

59

in the auxiliary trace can be easily mapped to parameters once a trace size is selected for an

actual run.

Figure 4.7: Communication Pattern of a 2D Stencil Code

To auto-generate the extrapolation benchmark of an application, both the extrapolated trace

of a specific size and the auxiliary trace are read into the code generator. During generation,

whenever there is a formula in the auxiliary trace for a certain parameter in the normal trace,

the code generator generates a coNCePTuaL communication statement that uses the scalable

representation in the auxiliary trace. As an example, Figure 4.7 shows a 2D communication

pattern in which the gray nodes send messages to the nodes below them. ScalaExtrap identifies

that the relative distance d of the receiving nodes is d = x, i.e., a linear correlation with the size

of the x dimension. Hence, a scalable coNCePTuaL send statement using a formula instead

of a particular value as the destination will be generated as

TASKS t1 SUCH THAT ... SEND ... TO TASKS t2 SUCH THAT t2 = t1 + x,

where x is initialized according to the total number of MPI tasks of a particular run.

Moreover, since all the gray nodes follow the same communication pattern, their send events

are merged into a single trace record with an associated ranklist

〈 2 x y − 2 x x 1 〉

indicating the participating MPI tasks. During code generation, this ranklist is used to generate

the range expression that defines the source tasks of this MPI event. coNCePTuaL implements

the ranklist with a list comprehension using n variables to recursively define the iteration count

and stride for each of the n dimensions in a ranklist. By utilizing list comprehensions, we can

60

conveniently generate the scalable ranklist representation above with the coNCePTuaL range

expression shown below:

TASKS t1 SUCH THAT t1 IS IN {i1+i2

FOR EACH i1 IN {x,2x,...,x+((y-2)-1)*x}

FOR EACH i2 IN {0,1,...,(x-1)*1}

} SEND ...

Parameters other than the source/dest and ranklists, such as count, loop iterations, and

computation times, are also generated with the auxiliary formulae. Because a generated bench-

mark cannot automatically infer the user’s intentions when selecting a processor layout, the

user must explicitly provide the processor mesh’s x, y, and z dimensions through command-line

arguments. The generated benchmark then automatically uses these values to extrapolate the

various other parameters described above.

By introducing ScalaExtrap’s parameter-extrapolation functionality into our benchmark-

generation framework, we are able to generate coNCePTuaL communication benchmarks

that can be executed with an arbitrary valid number of MPI tasks while performance remains

accurate at different processor counts. Note that generating scalable benchmarks is nontrivial

due to the challenges in trace-based extrapolation such as detecting communication topol-

ogy, matching trace events across scales, and inferring scale-dependent communication events.

ScalaExtrap currently focuses on stencil/mesh topology with nodes arranged in a row-major

fashion, which represents the structure of many parallel applications.

4.4.6 Sources of Performance Inaccuracy

As indicated, there are a number of ways in which our benchmark generator trades off perfor-

mance fidelity for an improved ability to reason about the generated code and its performance:

computation times are summarized across ranks instead of being specified individually; some

complex MPI collectives are implemented in terms of more basic coNCePTuaL collectives

(Section 4.4.2); and nondeterministic receive ordering is replaced with an arbitrary determinis-

tic ordering (Section 4.4.4). In Section 5.3 we examine the impact of these design decisions in

the context of a suite of test programs.

4.5 Evaluation

4.5.1 Experimental Framework

To evaluate our benchmark-generation methodology, we generated coNCePTuaL codes for

the NAS Parallel Benchmarks (NPB) suite (version 3.3 for MPI, comprising BT, CG, EP, FT,

61

IS, LU, MG, and SP) using the class C input size [6] and for the Sweep3D neutron-transport

kernel [79]. These benchmarks all have either a mesh-neighbor communication pattern or rely

heavily on collective communication. Some of them (e.g., Sweep3D) require collective alignment

(Section 4.4.3), and some (e.g., LU) require the resolution of wildcard receives (Section 4.4.4).

Hence, the key features of our code-generation framework are fully tested in this set of ex-

periments. We believe results from the NPB codes and Sweep3D, combined with previous

ScalaTrace experiments [56, 83], are sufficient to demonstrate the correctness of our approach,

and we do not foresee any algorithmic or technical problems with generating code for larger

applications. Moreover, these benchmarks are sufficient to demonstrate our ability to retain

an application’s performance characteristics. In particular, several kernels in the NPB suite,

including CG, FT, and MG, are known to be memory-bound [67], which stresses our generated

benchmarks’ ability to mimic computation with spin loops of the same duration.

Benchmark generation is based on traces obtained on (a) Ocracoke, an IBM Blue Gene/L [3]

with 2,048 compute nodes and 1 GB of DRAM per node and (b) ARC, a cluster with 1728

cores on 108 compute nodes, 32 GB memory per node, and an Ethernet interconnect. Due to

limited access to these systems our experiments generally run on only a subset of the available

nodes. Benchmark generation is performed on a standalone workstation.

4.5.2 Communication Correctness

Our first set of experiments verifies the correctness of the generated benchmarks, i.e., the bench-

mark generator’s ability to retain the original applications’ communication pattern. For these

experiments, we acquired traces of our test suite on Blue Gene/L, generated coNCePTuaL

benchmarks, and executed these benchmarks also on Blue Gene/L. To verify the correctness of

the generated benchmarks, we linked both them and the original applications with mpiP [75],

a lightweight MPI profiling library that gathers run-time statistics of MPI event counts and

the message volumes exchanged. Experimental results (not presented here) showed that, for

each type of MPI event, the event count and the message volume measured for each generated

benchmarks matched perfectly with those measured for the original application.

We then conducted experiments to verify that the generated benchmarks not only resemble

the original applications in overall statistics but also that they preserve the original semantics

on a per-event basis. To this end, we instrumented each generated benchmark with ScalaTrace

and compared its communication trace with that of its respective original application. Due to

differences in the call-site stack signatures between the original application and the generated

benchmark, these traces are never bit-for-bit identical. Therefore, we replayed both traces with

the ScalaTrace-based ScalaReplay tool [83] to eliminate spurious structural differences and

thereby fairly compare the pairs of traces. The results (again, not presented here) show that

62

the original applications and the generated benchmarks generated equivalent traces. That is,

the semantics of each of the original applications was precisely reproduced by the corresponding

generated benchmark.

4.5.3 Accuracy of Generated Timings

Having determined that benchmarks produced using our benchmark generator faithfully repre-

sent the communication performed by the original applications, we then assessed the generated

benchmarks’ ability to retain the original applications’ performance. To measure the total exe-

cution time of the original applications, we extended the PMPI profiling wrappers of MPI Init

and MPI Finalize to obtain timestamps). The corresponding coNCePTuaL timing calls were

also added to the generated benchmarks. We ran both the original application and the gener-

ated benchmark on the Blue Gene/L system and compared the total elapsed times. Figure 4.8

shows that the timing accuracy is qualitatively extremely good. Quantitatively, the mean ab-

solute percentage error (i.e., 100% × |(TcoNCePTuaL − Tapp)/Tapp|) across all of Figure 4.8 is

only 2.9%, and only two data points exhibit worse than 10% deviation: LU at 256 nodes ob-

serves a deviation of 22% (40 s for the benchmark versus 52 s for the original application), and

SP at 16 nodes observes a deviation of 10% (980 s for the benchmark versus 1092 s for the

original application).

4.5.4 Correctness and Timing Accuracy of Generated Scalable Benchmarks

By combining the benchmark generator with ScalaExtrap, we are able to generate extrapolation

benchmarks under coNCePTuaL that can be executed with an arbitrary number of MPI tasks.

In this section, we evaluate the correctness of the extrapolation benchmarks in terms of their

ability to retain the communication pattern under scaling. In addition, we also assess the

timing accuracy of the extrapolation benchmarks. In this set of experiments, we generated

extrapolation benchmarks under coNCePTuaL for the NPB BT and FT codes. We chose BT

and FT because they represent two widely used communication patterns: stencil/mesh codes

and applications with collective communication, and thus demonstrate the ability of generating

scalable codes for such patterns in general. BT is a 2-dimensional 7-point stencil code. Due

to strong scaling, various application parameters vary across different node sizes, including

the MPI parameters source, dest, and count, the loop iteration count, the ranklists for MPI

events, and the computational delta times. FT performs a fast Fourier transform (FFT). Its

communication workload is mainly comprised of repetitive calls of MPI Alltoall in multiple

iterations.

In the first experiment, we generated an extrapolation benchmark under coNCePTuaL

for BT of the Class D input size. We used traces of 16, 64, 144, and 256 tasks as the input of

63

 1

 4

 16

 64

 256

 1024

16 36 64 100
144

196
256

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
coNCePTuaL Time

(a) BT

 1
 2
 4
 8

 16
 32
 64

 128
 256
 512

16 32 64 128
256

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
coNCePTuaL Time

(b) CG

 1

 2

 4

 8

 16

 32

 64

 128

 256

16 32 64 128
256

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
coNCePTuaL Time

(c) EP

 1

 2

 4

 8

 16

 32

 64

 128

 256

16 32 64 128
256

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
coNCePTuaL Time

(d) FT

 1

 2

 4

 8

 16

 32

16 32 64 128
256

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
coNCePTuaL Time

(e) IS

 1

 4

 16

 64

 256

 1024

 4096

4 16 64 256

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
coNCePTuaL Time

(f) LU

 1

 2

 4

 8

 16

 32

 64

 128

 256

16 32 64 128
256

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
coNCePTuaL Time

(g) MG

 1

 4

 16

 64

 256

 1024

 4096

16 64 144
256

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
coNCePTuaL Time

(h) SP

 1

 2

 4

 8

 16

 32

 64

16 32 64 128

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
coNCePTuaL Time

(i) Sweep3D

Figure 4.8: Time Accuracy for Generated Benchmarks

64

ScalaExtrap. With an extrapolated trace and the auxiliary trace generated during extrapola-

tion, we generated an extrapolation benchmark under coNCePTuaL. We then executed the

extrapolation benchmark at different scales from 16 to 400 MPI tasks and evaluated their com-

munication correctness and timing accuracy. To demonstrate the communication correctness,

we collected the message density matrices for both the original application and the extrapola-

tion benchmark. The heat maps of the original application and the extrapolation benchmark

are identical, showing that the generated extrapolation benchmark is able to preserve the com-

munication pattern of the original application under scaling.

In the second experiment, we evaluated the timing accuracy of the generated extrapolation

benchmarks under coNCePTuaL with different numbers of MPI tasks. For BT, we used the

same scalable code that we used in the experiment described above. For FT, we used the Class

C input size instead of Class D so that we can collect the input traces for ScalaExtrap starting

with a minimum of 8 MPI tasks. With traces collected for 8, 16, 32, and 64 MPI processes, we

generated an extrapolation benchmark for FT under coNCePTuaL. We then executed both

the original application and the extrapolation benchmarks at different scales and compared

their total execution times. Figure 4.9 shows the experimental results. As demonstrated,

the auto-generated extrapolation codes under coNCePTuaL have total execution times that

closely resemble those of the original applications at each tested scale. Quantitatively, across

all the tested node sizes, the mean absolute percentage errors for BT and FT are only 5.12%

and 3.42%, respectively.

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

16 36 64 100
144

196
256

324
400

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
coNCePTuaL Time

(a) BT, Class D

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

8 16 32 64 128
256

512

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
coNCePTuaL Time

(b) FT, Class C

Figure 4.9: Timing Accuracy of the Scalable coNCePTuaL Benchmarks

65

4.5.5 Applications of the Benchmark Generator

The experimental results presented in Sections 4.5.2 and 4.5.3 indicate that the performance

of the generated benchmarks can be trusted. We now present examples of what-if analysis

and cross-platform performance prediction that are made practical by automatic benchmark

generation.

Impact of Computational Speedup

A current trend in high-performance computing is to supplement general-purpose CPUs with

more special-purpose computational accelerators (e.g., GPUs).1 However, by Amdahl’s Law [5],

accelerating only an application’s computational phases does not always lead to proportional

overall speedup. Unfortunately, it is nontrivial both to predict how fast a parallel applica-

tion will run once accelerated and to port a parallel application to an accelerated architecture.

Application developers may also optimize performance by overlapping communication and com-

putation. This too takes time to implement and leads to a reduction in execution time that

can be difficult to predict.

Because the coNCePTuaL benchmarks produced by our generator are easy to modify, we

can use our framework to estimate how fast an application can be expected to run once accel-

erated or once communication and computation fully overlap. We generated a benchmark from

the NPB BT code on 64 cores using the class C input. We then modified the coNCePTuaL

code to vary the time spent in all computation phases from 100% down to 0% of their original

time to simulate different expected improvements due to acceleration. We ran the resulting

benchmark variations on the ARC cluster (cf. Section 4.5.1) and plotted the results in Fig-

ure 4.10.

Reading Figure 4.10 from right to left, the data points ranging from 100% down to 30% of

the original application’s compute time are essentially what one might expect: a steady but

sublinear decrease in total execution time. That is, a fabricated 3.3x speedup of computation

leads to only a 21% reduction in total execution time for BT. However, as computation time

continues to decrease, rather than reach a plateau, the total execution time increases. At

the 0% computation mark, which represents infinitely fast processors on a modern Ethernet

network, there is essentially no speedup over the unmodified BT execution time.

To understand this puzzling behavior, note that BT is a stencil code consisting almost ex-

clusively of asynchronous point-to-point communication operations, with only a few collectives

at the beginning and end of the execution. Reducing the time between subsequent communica-

tion operations alters the dynamics of the messaging layer and leads to the observed increase in

1In fact, four of the world’s ten fastest supercomputers contain accelerators (http://www.top500.org/,
November 2010).

66

http://www.top500.org/

 300

 350

 400

 450

 500

 0 10 20 30 40 50 60 70 80 90 100

T
ot

al
 E

xe
cu

tio
n

T
im

e
(s

)

Computation Time (% of Original)

Figure 4.10: Communication Performance of BT

performance. For example, if messages begin arriving faster than they can be processed, they

will start being directed to the MPI implementation’s unexpected-receive queue, which incurs

a performance cost in the form of an extra memory copy to transfer unexpected messages to

the target buffer. Once all available space for storing incoming messages on a given node is

exhausted, the MPI implementation’s flow-control mechanism must stall any senders and later

pay a cost in network latency to resume them. It is the nonlinear effects such as those that

make it important to quantify potential performance improvements using a framework such as

ours before investing the effort to accelerate an application.

We should note that the experimental result presented in Figure 4.10 is both application-

specific and platform-specific. Yet, with our benchmark-generation approach, the experiment

can easily be repeated on different platforms without ever needing to port the original ap-

plication. In addition, our BT experiment can easily be refined to utilize different speedup

factors for different computational phases. We foresee this type of performance experimenta-

tion, enabled by our benchmark generator, becoming increasingly important as HPC hardware

increases in complexity and requires expanded efforts to port large applications (for potentially

small performance gains).

Impact of Communication Performance

In the second case study, we evaluate the impact of network bandwidth on the overall perfor-

mance of an application. We keep the computation times and communication pattern as they

are but vary the message sizes to mimic the impact of different problem sizes or different data

decomposition on the communication behavior. For each configuration, we further evaluate the

impact of the maximum bandwidth by varying the number of MPI tasks on each node.

For this experiment, we used the ARC cluster with an Infiniband QDR interconnect. We

67

generated the coNCePTuaL benchmark for the NPB BT code with 16 MPI tasks and class A

input size, which allows us to modify the generated benchmark by manually customizing mes-

sage sizes from 0.1x to 256x of their original sizes. We then executed the modified codes with a

node count from 1 to 16, which increases the available bandwidth per MPI task as node counts

become higher. Figure 4.11 shows the overall execution time of the modified benchmark for

each configuration. Each curve represents the results obtained for a different message size.

 81

 243

1
(16)

2
(16)

4
(16)

8
(16)

16
(16)

T
ot

al
 E

xe
cu

tio
n

T
im

e
(s

)

Number of Nodes
(Number of Cores)

Message Size x 0.1
Message size x 0.25
Message Size x 0.5

Message Size x 1
Message Size x 4

Message Size x 16
Message Size x 64

Message Size x 256

Figure 4.11: Impact of Communication Performance on BT

We observe that, in the figure, the curves for 0.1x, 0.25x, 0.5x, 1x, and 4x message sizes

overlap with each other. This indicates, for this particular application and this particular

system, that neither increasing the available bandwidth nor decreasing the message size may

improve overall performance. Therefore, optimizations in the computation design are required

to accelerate this application. Yet, when the message size is 16 times the original size, the

communication starts to saturate the network bandwidth. From there on, notable speedup can

be observed if more nodes and hence higher overall bandwidth are allocated for this application.

Impact of Collective Implementation

With easy-to-modify coNCePTuaL benchmarks, application developers not only can mod-

ify the parameter values for what-if analysis, they can also quickly modify the communica-

tion implementation for performance comparison. This is made practical by the conciseness of

coNCePTuaL programs. For example, no buffer allocation or explicit request handle manage-

68

ment is necessary. In addition, because computation is removed and replaced with idle spinning

in the generated benchmarks, the generated benchmarks tend to be much shorter and simpler

than the original application. For example, the coNCePTuaL version of FT has only 22 lines

of code (Figure 4.12) while the original FT code has 2,131 lines (approximately 35 pages) of

code. As Figure 4.8(d) shows, there is no qualitative difference between the performance of the

original code and the generated benchmark, even though the latter is only 1% of the length

of the former. With the generated communication skeleton, application developers can readily

assess a communication design without having to modify the entire parallel algorithm and keep

track of the changes in multiple source files.

01: ALL TASKS SYNCHRONIZE THEN

02: TASK 0 RESETS ITS COUNTERS THEN

03: ALL TASKS COMPUTE FOR 52 MICROSECONDS

04: TASK 0 MULTICASTS A 12-BYTE MESSAGE TO ALL OTHER TASKS

05: ALL TASKS COMPUTE FOR 0 MICROSECONDS

06: TASK 0 MULTICASTS A 4-BYTE MESSAGE TO ALL OTHER TASKS

07: ALL TASKS COMPUTE FOR 295410 MICROSECONDS

08: ALL TASKS MULTICASTS A 32768-BYTE MESSAGE TO ALL OTHER TASKS

09: ALL TASKS COMPUTE FOR 133044 MICROSECONDS

10: ALL TASKS SYNCHRONIZE

11: ALL TASKS COMPUTE FOR 317381 MICROSECONDS

12: ALL TASKS MULTICASTS A 32768-BYTE MESSAGE TO ALL OTHER TASKS

13: FOR EACH i1 IN {1, ..., 20} {

14: IF i1 <> 1 THEN ALL TASKS COMPUTE FOR 167332 MICROSECONDS THEN

15: IF i1 = 1 THEN ALL TASKS COMPUTE FOR 312861 MICROSECONDS THEN

16: ALL TASKS MULTICASTS A 32768-BYTE MESSAGE TO ALL OTHER TASKS THEN

17: ALL TASKS COMPUTE FOR 254450 MICROSECONDS THEN

18: ALL TASKS REDUCE 4 INTEGERS TO TASK 0

19: }

20: ALL TASKS COMPUTE FOR 24 MICROSECONDS

21: ALL TASKS SYNCHRONIZE THEN

22: TASK 0 LOGS ELAPSED_USECS/1E6 AS "Seconds"

Figure 4.12: Complete coNCePTuaL Code for NPB FT (Class C) of 256 MPI Tasks

In this experiment, we evaluate different communication implementations for the NPB FT

code. FT solves a three-dimensional partial differential equation using the fast Fourier trans-

form (FFT). It uses MPI Alltoall to exchange data among all the participating MPI tasks in

each timestep. Alternatively, point-to-point communication routines can also be used to imple-

69

ment the same communication pattern. We compared the performance of these two different

implementations by modifying the generated FT benchmark. To migrate from the MPI All-

toall implementation to the point-to-point implementation with MPI Isend, we do not need to

understand the FFT algorithm to find out which buffer should be changed or to implement

the all-to-all style point-to-point communication for the communicators representing the user-

defined processor layout. Instead, only one line of the coNCePTuaL code needs to be changed

from

ALL TASKS MULTICAST A xxx-BYTE MESSAGE TO ALL OTHER TASKS

to

ALL TASKS ASYNCHRONOUSLY SEND A xxx-BYTE MESSAGE TO ALL OTHER TASKS

ALL TASKS AWAIT COMPLETION

where the matching receive operations will be posted automatically by the coNCePTuaL

runtime framework.

 20

 40

 60

 80

 100

 120

 140

 160

16 32 64 128 256

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

MPI_Alltoall
Point-to-Point

Figure 4.13: Performance of All-to-all Implementations for FT

We compared the performance for different implementations by executing the coNCePTuaL

FT codes on ARC. Figure 4.13 plots the overall execution times for different implementation

strategies with different number of nodes. Not surprisingly, the MPI Alltoall implementation

outperforms the point-to-point implementation. Because the point-to-point implementation

blindly exchanges data between each pair of nodes without any communication pattern opti-

mization, it suffers from scalability constraints: the overall runtime of the point-to-point version

with 256 MPI tasks is 46.2% longer than the collective version even though its performance is

0.5% slower for 16 nodes.

70

With this experiment, we show the ability to utilize the generated benchmark to assess

the efficiency of different communication options in rapid prototyping. This becomes feasible

due to the ease of modifying the generated coNCePTuaL benchmark for what-if analysis.

In practice, developers may evaluate various optimizations, such as replacing point-to-point

message-based multicasting with collectives within a communicator or replace a single col-

lective with sets of group-based collectives using modified communication patterns, which is

facilitated by coNCePTuaL benchmarks. Moreover, developers may even completely change

the communication design for evaluation before modifying the implementation of the associated

data and problem decomposition in the original application. Modifying the output of conven-

tional MPI tracing tools is tedious and error-prone. For example, given that MPI Alltoall is

called 22 times by each MPI process, altering the communication pattern of a 256-rank FT run

requires that 22×256 locations be changed. In contrast, our approach of using coNCePTuaL

benchmarks generated from compressed traces requires modifying only one statement and hence

significantly facilitates this process.

Cross-platform Performance Prediction

The benchmark generation approach presented in this work may also benefit system designers

and procurers by providing a means for fast cross-platform performance prediction for existing

or even future systems. In this section, we present our prediction results for two different

architectures, ARC and Juqueen. Juqueen is an IBM Blue Gene/Q system with 131,072 cores

on 8,192 compute nodes, 16 GB SDRAM-DDR3 per node, and a 5D Torus interconnect. In

this set of experiments, we predict the performance of the NPB CG and MG codes on Juqueen

by modifying and executing the generated coNCePTuaL benchmarks on ARC. For these

experiments, we pretend that Juqueen is a future supercomputer for which one compute node

is available and the network performance is known. In practice, the same approach can also be

used for cross-platform prediction between existing systems.

The runtime of a parallel application consists of the sequential computation time in each

process, the communication time between processes, and their convolution. To predict the

runtime of an application on a future platform, we generate coNCePTuaL benchmarks of

different node sizes that reflect the computational speedup with modified sleep times, execute

the generated benchmarks on an existing system, and adjust the communication times to es-

timate the total runtime. In this set of experiments, we obtained the computational speedup

by executing the application on only one node on each of the existing (ARC) and the future

(Juqueen) platforms. The communication speedup was calculated by performing a ping-pong

test on both systems. To adjust the total runtime, mpiP was utilized to measure the time spent

in MPI communication events. Hence, with the known communication time Tcomm, communi-

cation speedup s, and the computation time Tcomp of the simulation run, the predicted runtime

71

T can be calculated with equation T = Tcomm × s + Tcomp. In case that the interconnect on

the future platform is not yet available, estimation or analytical modeling results can be used

instead.

Figure 4.14 shows the cross-platform prediction results. According to the single-node com-

putational speedup tests, ARC is 5.9 times faster than Juqueen for MG and 6.2 times faster

for CG. Accordingly, the coNCePTuaL benchmarks were generated to reflect the speedup.

We then measured the communication speedup by performing ping-pong tests for messages of

different sizes on both systems. The message sizes chosen for this test are the send volumes

of the dominating send operations in the applications. The communication speedup is then

used together with the mpiP results (not presented) to calculate the adjusted total runtime

prediction shown in Figure 4.14. Compared to actual runtimes for MG and CG on Juqueen,

our execution time predictions match closely, with an accuracy of 97.72% for MG and 96.81%

for CG.

This experiment demonstrates the feasibility to perform such experiments—enabled by our

benchmark generation tools—via quick cross-platform performance prediction for either existing

or future HPC systems, yet without porting the actual applications to those platforms.

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

16 32 64 128 256

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

ARC Time
ARC Prediction with Computation Adjustments

ARC Prediction with Computation and Communication Adjustments
Juqueen Time

(a) MG, Class C

 1

 4

 16

 64

 256

 1024

16 32 64 128 256

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

ARC Time
ARC Prediction with Computation Adjustments

ARC Prediction with Computation and Communication Adjustments
Juqueen Time

(b) CG, Class C

Figure 4.14: Cross-platform Prediction

4.6 Summary

To bridge the gap between the performance realism of a complete application and the con-

venience of porting and modifying a benchmark code, we have designed, implemented, and

72

evaluated a benchmark-generation framework that automatically generates portable, customiz-

able communication benchmarks from parallel applications. Our approach is based on an

application’s dynamic behavior rather than its statically identifiable characteristics. We use

ScalaTrace [55] to recover application structure from a communication trace. Subsequently,

coNCePTuaL [58] is used to express the resulting benchmarks in a readable, editable, yet ex-

ecutable format.2 Algorithms we developed to assist in this process merge collective operations

described by disparate source-code lines into a single call point and eliminate nondeterminism

caused by wildcard receives. Empirical measurements indicate that the performance of the

generated benchmarks is faithful to that of the original application.

There are two main conclusions one can draw from this work. First, it is in fact feasible

to automatically convert parallel applications into benchmark codes that accurately reproduce

the applications’ performance yet are easy to port, read, edit, and reason about. Second, as

demonstrated in Section 4.5.5, nonlinear performance effects come into play as applications are

modified for nascent architectures, and performance-accurate, application-specific benchmarks

are an important new technology for quantifying these effects before exerting the effort involved

in application porting.

The benchmarks we generate preserve all communication operations, represent applications’

actual run-time behavior, and do not grow proportionally to the process count or message

volume. To our knowledge, our work is the first successful attempt at automatically converting

parallel applications into performance-accurate benchmarks that exhibit all of those features.

2ScalaTrace and coNCePTuaL are freely available from, http://moss.csc.ncsu.edu/~mueller/ScalaTrace/
and http://conceptual.sourceforge.net/.

73

http://moss.csc.ncsu.edu/~mueller/ScalaTrace/
http://conceptual.sourceforge.net/

Chapter 5

ScalaTrace 2

5.1 Introduction

The compute power of supercomputers has been doubling each year in the past two decades.

The era of exascale computing is projected to arrive in the near future. With such large systems,

recording the program behavior of parallel applications for post-mortem performance analysis is

becoming increasingly difficult. On the one hand, analyzing complicated scientific applications

requires complete and accurate performance data. On the other hand, the large number of pro-

cessors/cores and the increasing gap between computational power and I/O performance pose

great challenges on the efficiency and scalability of performance analysis tools. Consequently,

traditional analysis tools either collect lossless traces by sacrificing scalability [52] or report only

aggregated statistical information that might be insufficient for in-depth performance analysis

and debugging [75]. To address this discrepancy, we designed ScalaTrace, a scalable parallel

communication and I/O tracing library that features on-the-fly trace compression [56, 64] (see

Chapter 2). For single program, multiple data (SPMD) parallel applications, ScalaTrace is able

to collect lossless traces that are much more space-efficient than the past approaches.

ScalaTrace represents the state-of-the-art of parallel application tracing for high performance

computing (HPC). In this chapter, we present ScalaTrace 2, the next generation ScalaTrace

that features a fundamental redesign in every aspect. ScalaTrace 2 is designed to address the

shortcomings of the previous work. It targets inefficiencies in the compression of communication

traces for applications with inconsistent program behavior across time steps and diverging

parallel control flow. For example, coupled large-scale scientific codes such as the Community

Earth System Model (CESM) [16] exhibit multiple program, multiple data (MPMD) behavior.

They perform multi-physics simulation with different modules using different inputs, executing

different algorithms, and running on different sets of processors. To generate scalable traces

for these applications, methodologies that better exploit the trace similarities across time steps

74

and MPI tasks are in demand.

With ScalaTrace 2, we contribute a spectrum of novel compression and replay techniques

that are fundamentally different from our past approaches. In ScalaTrace 2, MPI parameters

and loop information are stored with the elastic data element representation, a redesigned low-

level encoding scheme that is automatically evolving and self-explanatory. By annotating the

loop information with participant information, we designed a loop agnostic inter-node com-

pression scheme that guarantees the optimal event matching for applications with task-specific

communication patterns. We also redesigned the task-level loop compression to perform ap-

proximate loop iteration matching, which is particularly effective for applications exhibiting

inconsistent behavior across time steps.

ScalaTrace 2 inherits the lossy philosophy proposed in our previous work [85]. In essence,

ScalaTrace 2 can be configured to compress MPI parameters to the utmost using probabilistic

methods while still preserving most of the advantages of the lossless approach. As part of the

redesign, we developed ScalaReplay 2, a brand-new probabilistic replay engine that is compat-

ible with the loop agnostic trace format. With ScalaReplay 2, we improved the coordinated

random value selection of the replay algorithm. Optimizations such as multi-context traversal

are also designed to boost the robustness, replay accuracy, and scalability of the replay engine.

We evaluated ScalaTrace 2 with regard to two aspects: (1) the effectiveness of trace com-

pression and (2) the correctness and the timing accuracy of the probabilistic replay. We con-

ducted experiments with a subset of the NAS Parallel Benchmark suite, the Sweep3D neutron-

transport kernel, and the Parallel Ocean Program (POP). Experimental results demonstrate

that ScalaTrace 2 achieves key improvement on trace compression for benchmarks exhibit-

ing task-specific communication pattern, inconsistent loop behavior, and/or diverging parallel

control flow. Results on probabilistic replay show that ScalaReplay 2 is able to accurately re-

produce the execution times of the original applications. Across all the test cases, the mean

absolute percentage error of the replay times is only 5.7%. Given such accuracy, we conclude

that the lossy compression scheme, which is powerful for reducing the trace size, is equally

applicable to the scenarios where timing accuracy is required.

To summarize, we made the following contributions in this work:

• We proposed ScalaTrace 2, a fundamental redesign of ScalaTrace that features a spectrum

of novel compression techniques to improve the trace compression for applications with

inconsistent loop-level and task-level behavior.

• We designed ScalaReplay 2, a probabilistic replay engine compatible with ScalaTrace 2

that is more robust, accurate, and scalable.

• By comparing the compression ratio of two generations of ScalaTrace with computational

kernels and real-world applications, we studied the crux of compression inefficiency and

75

demonstrated potential solutions to obtain better compression.

5.2 Communication Trace Compression and Replay

5.2.1 Elastic Data Element Representation

ScalaTrace 2 features a complete redesign of ScalaTrace, ranging from the very low-level data

structures, to the core trace compression algorithms. In this section, we introduce the new

elastic data element representation.

A ScalaTrace trace file is a human-readable text file. A data element in the trace file is

an integer that represents the value of either an MPI event parameter, such as the destination

of a send, or a program control flow parameter, such as the trip count of a loop. From our

experience with the previous version of ScalaTrace, we learned that even though a data element

is apparently simple as an integer, it may become complicated when the trace is compressed

to a high degree. For example, assume a scalar integer value d represents the destination of

an MPI Send operation. When the same MPI Send is called twice with destinations d1 and

d2 in consecutive loop iterations, the two events will be compressed due to ScalaTrace’s loop

compression mechanism (see Section 5.2.2). Thus the scalar value d evolves into a vector (d1,

d2). When the same loop has multiple iterations, the destination vector may grow in a non-

scalable fashion. Hence, a vector compression mechanism is activated. Finally, the inter-node

compression further imposes another level of complexity on the data element representation.

In a nutshell, a compressed data element ought to contain not only the parameter value, but

also the loop information and participant information.

In ScalaTrace 2, we introduce the elastic data element representation and apply this repre-

sentation to all the data elements in the trace. The elastic data element representation is a list

of < value vector, ranklist > pairs, where a value vector is simply a C++ vector of primitive

integer values. On initialization, there is only one such pair in the list consisting of a value

vector of a single parameter value and a ranklist of a single participant. During loop com-

pression, new values are appended to the value vector in the order they are generated so that

the replay engine or other trace analyzers can traverse the values in the correct order. During

inter-node reduction, we merge the ranklists when the value vectors fully match, otherwise a

new < value vector, ranklist > pair is added to the list. As such, the data element is fully

self-explanatory; no additional information is required to resolve a data element for a particular

rank and loop iteration.

To keep the size of the value vector scalable, we constantly perform a loop compression

against the entries in the vector. Whenever possible, a vector ofm·n elements is represented as a

vector of m elements and n iterations. Note that the choice of the vector compression algorithm

76

is not unalterable. For example, run-length encoding might be more efficient for loop parameters

when an MPI event is specific only to certain loop iterations (see Section 5.2.2). Since the vector

compression mechanism is encapsulated in the elastic data element representation, it is possible

to intelligently choose the best compression strategies and convert to the most space-efficient

format when necessary.

As the fundamental data structure of ScalaTrace 2, it is vital to guarantee its scalability

even under extreme circumstances. We realized that there always exist cases where even a

sophisticated algorithm fails to compress the value vectors. We therefore further enhanced the

elastic data element representation to exploit probability-based compression using histograms

(see Section 2.3) for selected parameter types, such as SOURCE, DEST, and COUNT of point-

to-point communication routines. Nonetheless, utilizing such lossy compression techniques

poses challenges for the trace replay. We have updated our past probabilistic trace replay

technique to address these challenges. The new approach is discussed in detail in Section 5.2.6.

5.2.2 Compressing Partially Matching Loops

ScalaTrace utilizes the MPI profiling layer (PMPI) to intercept MPI calls during application

execution. It performs loop detection and compression by searching for consecutive repeating

patterns in the MPI event sequence. In contrast to the instruction-level binary instrumentation,

which is able to pinpoint the entry and exit points of loop structures, the ScalaTrace approach

relies heavily on recognizing repeating patterns. With ScalaTrace 2, we redesigned the task-

level loop compression algorithm from the ground up to support the compression of loops with

iteration-specific behavior.

Handling Iteration-specific Behavior

Production-grade scientific applications such as the Parallel Ocean Program (POP) demon-

strate inconsistent behavior across time steps. POP performs a set of computations and com-

munications of an inner loop in multiple iterations in each time step. Due to inconsistent

data-dependent convergence in the computation , the trip counts of the inner loop varies across

different time steps. In addition, branches inside loop structures also lead to loop iterations with

different event counts and unmatching event sequences. This behavior can also be observed in

many Adaptive Mesh Refinement (AMR) applications in which the input set is dynamically re-

balanced on a periodic basis. Due to the iteration-specific behavior, ScalaTrace’s task-level loop

compression fails to compress the loop iterations because its loop detection algorithm requires

the loop iterations to be identical event sequences with matching inner loop structures.

In ScalaTrace 2, we overcome the shortcoming by loosening the iteration matching criteria.

In order for two consecutive sequences of events E1, ..., Ea and Eb, ..., En to be considered

77

matching loop iterations, ScalaTrace 2 only requires their beginning and ending events to match,

i.e., E1 == Eb and Ea == En. Under such criteria, once two matching loop iterations are

identified, ScalaTrace 2’s aggressive longest common subsequence (LCS) based loop compression

algorithm will merge the rest of the events, irrespective of the loop lengths or the inner loop

structures. As an example, if a certain node executes the following code,

for(int i=0; i<2; i++){

MPI_Barrier(); // E1

if(i == 0)

MPI_Isend(); // E2

if(i == 1)

MPI_Irecv(); // E3

MPI_Barrier(); // E4

}

Figure 5.1: Loop with Iteration-specific Behavior

the trace after loop compression will be

E1(4,2) E2 E3 E4,

where the subscript of E1 indicates that E1 is the beginning event of a loop structure of 4

member events and 2 iterations. In general, we use the following mnemonic to describe the

loop stack associated with a loop head event E:

E(m1 ,i1)(m2 ,i2)...(mn ,in): E is the head event of a series of n-nested loops, where the outermost

loop has a loop length (member event count) of m1 and an iteration count of i1, the second

outermost loop has a loop length of m2 and an iteration count of i2, and so on.

A unique challenge of forcibly merging partially matching loop iterations is to preserve the

information of in which iteration a certain event was actually called. As in the example above,

a mechanism is needed to tell that E2 was only called in the first iteration whereas E3 was

only called in the second iteration. To address this problem, we represent the loop information

as elastic data elements. Recall that the value vector grows as more values are appended to

the vector due to loop compression. For example, assuming event E is the head event of loop

L, E(a1 a2,b1 b2) indicates that when the first time loop L is executed, it has a1 member events

and b1 iterations, whereas in the second time, it has a2 member events and b2 iterations. (This

78

is possible when loop L is executed in two iterations of its parent loop). We hence treat every

event as a loop of length 1 and iteration 1. During loop compression, we merge the events

according to the results of the longest common subsequence analysis and manipulate the loop

information according to the following rules:

1. An event E(1,0) is called a dummy event because the loop information indicates that it is

executed zero times.

2. For event E(a1 a2...,b1 b2...)(c1 c2...,d1 d2...)..., adding an outer loop of one iteration to obtain

a new event E(a1 a2...,1 1...)(a1 a2...,b1 b2...)(c1 c2...,d1 d2...)... does not change the loop structure

in terms of the times and order the events in the nested loops are executed. The added

outer loop is thus called a pseudo-loop with just one iteration.

3. Assume I1 and I2 are matching loop iterations. If event E1(a1 a2...,b1 b2...)(c1 c2...,d1 d2...)...

in iteration I1 matches with event E2(i1 i2...,j1 j2...)(k1 k2...,l1 l2...)... in iteration I2, merge

E1 and E2 by merging the loop information at corresponding levels. Merging the value

vectors is accomplished by appending the value vector of I2 to the value vector of I1. If

the loop stack depth d1 at E1 does not match the depth d2 at E2, e.g., d1 > d2, align the

loop stacks by adding pseudo-loops to the top of the loop stack at E2 as placeholders to

avoid mismatching the extra outer loops at E1 with E2 during traversal.

4. If event E is in iteration I1 but not in iteration I2, create a dummy event E′ of E and

insert it into I2 immediately before the matching event M of I1 and I2 returned by the

longest common subsequence analysis. The loop stack of E′ is created according to that

of E by adding pseudo-loops. The vector values at each nest level of E′ are generated

by referring to M for the number of times it would be encountered if it were in I2. As

such, E′ acts as a placeholder to avoid mistakenly calling E when executing I2. After the

insertion of all the iteration-specific events, merge iterations I1 and I2 according to the

third rule.

5. When merging iteration I2 into iteration I1, if the outermost loop of the head event E

of I1 is not a loop of the entire event sequence of I1, a new outer loop is identified and a

new loop descriptor (n, 2) is added to the top of the loop stack of E, where n equals to

number of events in both I1 and I2.

In essence, the rules above ensure that the iteration-specific events will only be executed in

the correct iterations. The introduction of the pseudo-loops as placeholders guarantees that 1)

iteration-specific events are evaluated but not executed in the loop iterations they do not belong

to, and, therefore, 2) meaningful loop information is evaluated and fetched in the correct loop

iteration. Nevertheless, the core of the loop compression algorithm is still the longest common

79

subsequence analysis performed against the two sequences of MPI events. The matching event

pairs returned by the LCS analysis are the basis for loop information adjustment. Therefore,

the complexity of this algorithm is O(m · n), where m and n are the numbers of events in the

two event sequences, respectively.

By applying the aforementioned loop compression guidelines, ScalaTrace 2 is able to com-

press loops with iteration-specific behavior. For example, the MPI code shown in Figure 5.1 is

eventually compressed as follows:

E1(4,2) E2(1,1 0) E3(1,0 1) E4

Handling the Trailing Iteration

The NAS Parallel Benchmarks (NPB) BT code exemplifies a pattern of an MPI event sequence

that a multitude of stencil codes share at the end of a time step. Each MPI task communicates

with its neighbors with a series of send, receive, and wait operations in a loop, as illustrated

with the simplified example in Figure 5.2.

/* m time steps */

for(int i=0; i<m; i++){

... // MPI events

for(int j=0; j<n; j++){

MPI_Isend();

MPI_Irecv();

MPI_Waitall();

}

}

Figure 5.2: Loop with Trailing Iterations

The original ScalaTrace compresses the outer loop only if n, the trip count of the inner

loop, is a constant. In contrast, ScalaTrace 2’s more aggressive loop compression discussed in

Section 5.2.2 can always compress the outer loop even if n is not a constant, e.g., n = f(i).

However, since ScalaTrace 2 eagerly compresses the detected loops, the second iteration of the

outer loop will be compressed immediately when the first iteration of the inner loop terminates.

As a result, the remaining n−1 iterations of the inner loop cause the trailing iteration problem.

To address the trailing iteration problem, we redesigned the entire loop detection and com-

pression algorithm to perform a delayed merge, as shown by Algorithm 4. Essentially, Al-

gorithm 4 does not eagerly merge a newly identified loop iteration. It rather marks it as a

80

pending iteration so that a potential trailing iteration can be merged with the pending iteration

later without having to perform any decompression. Specifically, after an event E is appended

to the trace, DetectLoop() is called to find the target head, merge tail, and merge head

for two matching loop iterations ending with target tail == E. Assuming a loop structure

is found, the sequence merge head, ..., merge tail can be 1) the ending subsequence of a

pending iteration detected previously, 2) a pending iteration whose match has already been

found, or 3) an independent sequence in no loop structures. In the first case, the sequence

target head, ..., target tail is identified as a trailing iteration. An event sequence can simul-

taneously be the trailing iteration of multiple pending iterations in a nested manner, so line

16 - 21 of Algorithm 4 updates all the pending iterations by appending the trailing iteration

to each of them. In the second case, where the sequence merge head, ..., merge tail is itself

a pending iteration, the sequence target head, ..., target tail is then identified as the next

iteration of the pending iteration. Since it is now safe to conclude that there will be no more

trailing events for the pending iteration merge head, ..., merge tail, Algorithm 4 performs

the delayed iteration merge by calling MergePendingIteration() (line 22 - 24). Finally,

the newly detected iteration target head, ..., target tail is always marked as a pending itera-

tion in either case. The function MergePendingIteration() merges the iteration between

the events pending head and pending tail with the iteration between the memorized events

head and tail. Before calling LCSLoopCompression() which implements the algorithm in-

troduced in Section 5.2.2, MergePendingIteration() first compresses the pending iterations

of all the nested inner loops (line 32 - 51) by recursively calling itself. Finally, when MPI Final-

ize is called, all loops have either zero or one pending iteration. To eventually merge them, the

function FinalizePendingIterations() is called, which treats the entire trace as an iteration

and recursively merges the inner loops by calling MergePendingIteration().

5.2.3 Approximate Stack Signature Matching

ScalaTrace preserves a call stack signature by logging the call sites of the calling stack for

each event. Using these stack signatures, ScalaTrace is able to distinguish MPI calls of the

same type by their locations in the program. The stack signature therefore serves as the only

basis for comparison of events, which then makes loop detection possible. Nonetheless, strictly

enforced stack signature comparison may not always benefit trace compression. For example,

POP wraps MPI Bcast of different data types with different functions, which are then invoked

in 36 different files at approximately 400 different locations. Experimental results show that

due to such usage, the size of the trace of the initialization stage — a stage that is usually

less important for performance analysis — accounts for 26% of the size of the final trace.

More commonly, a number of scientific applications, including POP and the NPB BT and SP

81

Algorithm 4 Loop Compression with Delayed Merge
Precondition: T: the trace after a new event was appended as the new tail

1: function DetectLoop(T)

2: target tail ← T.tail
3: merge tail ← T.FindMatch(target tail)

4: target head ← merge tail.next
5: while true do

6: merge head ← T.FindMatch(target head)

7: if merge head.isPendingMember == true then ⊲ potential trailing iteration, more checks

8: pending tail ← FindPendingTail(merge head)

9: if pending tail == merge tail then ⊲ trailing iteration of a pending iteration must follow the pending iteration immediately

10: break

11: end if

12: else ⊲ not a trailing iteration, no more check

13: break

14: end if

15: end while

16: if target head...target tail is a trailing iteration then

17: PIs ← FindPendingsForTrailing(target head, target tail)

18: for pendingIteration ← PIs.first, PIs.last do

19: pendingIteration.AddTrailing(target head, target tail)

20: end for

21: end if

22: if merge head...merge tail is a pending iteration then ⊲ perform the delayed merge: merge a pending iteration only when the next
iteration (namely, target head...target tail) is found

23: MergePendingIteration(merge head, merge tail)

24: end if

25: for event ← target head, target tail do

26: event.isPendingMember ← true

27: end for

28: end function

29: function MergePendingIteration(pending head, pending tail)

30: head ← FindKnownMergeHead(pending head)

31: tail ← FindKnownMergeTail(pending tail)

32: for event ← head, tail do

33: if event.IsKnownMergeHead() == true then

34: h ← FindPendingHead(event)

35: t ← FindPendingTail(event)

36: new tail ← MergePendingIteration(h, t)

37: if tail == t then

38: tail ← new tail
39: end if

40: end if

41: end for

42: for event ← pending head, pending tail do

43: if event.IsKnownMergeHead() == true then

44: h ← FindPendingHead(event)

45: t ← FindPendingTail(event)

46: new tail ← MergePendingIteration(h, t)

47: if pending tail == t then

48: pending tail ← new tail
49: end if

50: end if

51: end for

52: LCSLoopCompression(head, tail, pending head, pending tail)

53: DeleteEvents(pending head, pending tail)

54: return tail
55: end function

56: function FinalizePendingIterations(T)

57: ...
58: end function

codes, are coded according to the data decomposition, their communication topology, or their

simulation stages, with the MPI events hidden deep in the call stack, as shown in Figure 5.3. As

a result, these applications also create trace events with various stack signatures even though

82

they are functionally symmetric. In both cases, there exists the need to trade the call stack

information for better compression.

simulate(){

while(i<s){

solve_x();

solve_y();

i++;

}

}

solve_x(){

// compute

MPI_Isend();

MPI_Irecv();

MPI_Wait();

MPI_Wait();

}

solve_y(){

// compute

MPI_Isend();

MPI_Irecv();

MPI_Wait();

MPI_Wait();

}

Figure 5.3: The Simplified NPB BT Code

In ScalaTrace 2, we loosened the stack signature comparison criteria to tolerate a pre-defined

number of different frames. When comparing two stack signatures, we start from the first call

site (the main function) and compare the call sites in corresponding frames one by one. The

comparison returns true only if the number of different frames is less than the user-defined

threshold. As an ongoing improvement, we also allow users to specify a range of instruction

addresses, so that the call sites within it will always be considered a match. During loop com-

pression, we compare event E1 in iteration I1 with event E2 in iteration I2 by both event type

and stack signature. If their signatures differ less than the pre-defined limit, we replace E2’s

signature with that of E1 and update all the signature-annotated statistics of E2’s succeeding

events accordingly. With such user-configurable stack signature imprecision, ScalaTrace 2 is

able to better exploit the potential of trace compression than the original ScalaTrace for appli-

cations like POP or BT, as illustrated in Figure 5.3. The user-defined limit serves as a tuning

parameter to trade off compression against accuracy.

5.2.4 Loop Agnostic Inter-node Compression

ScalaTrace performs inter-node trace compression to exploit the single-program multiple-data

(SPMD) paradigm of scientific applications. However, the compression capability of the original

ScalaTrace is limited by the fact that loop structures must be treated as an indivisible unit.

For example, the code in Figure 5.4 cannot be compressed across nodes because the for loops

on different nodes have mismatching trip counts and event sequences. The heavy dependence

on the perfect matching of loop structures is partially alleviated by the recursive loop matching

algorithm proposed in our previous work [85], but it still cannot handle the case where loop

trip counts do not match.

83

Rank 0:

1: for(i=0;i<5;i++){

2: MPI_Isend(1);

3: MPI_Irecv(1);

4: }

5: MPI_Isend(1);

6: MPI_Irecv(1);

7: MPI_Waitall(12);

Rank 1:

1: for(i=0;i<6;i++){

2: MPI_Isend(0);

3: MPI_Irecv(0);

4: MPI_Waitall(2);

5: }

Figure 5.4: Code Needs Loop Agnostic Inter-node Compression

The restrictions on loop structures for inter-node compression is eliminated in ScalaTrace 2

due to the introduction of the elastic data element representation. Close examination shows

that the crux of the compression problem stated above is the coupling of the loop information

and the event participants information. Specifically, the loop structure is formed during task-

level loop compression and only applies to the same task. Given two loop head events from

different MPI tasks, they cannot be merged if the loop structures diverge, because there is no

mechanism to recover the task-specific loop information once it is compressed. By representing

the loop information with the elastic data elements, a separate ranklist is attached for each

loop data element (including the trip count and the loop length). When merging two loop head

events, we simply merge the loop structures at each corresponding loop level by following the

general rules of compression of the elastic data element representation. Namely, if the loop

structures match, they are compressed by merging their ranklists. If the loop structures at a

certain loop level do not match, they are merged by adding another < value vector, ranklist >

pair to distinguish the task-specific loop information.

By decoupling the loop information and the event participants information, ScalaTrace 2 is

able to perform loop structure agnostic inter-node compression. During inter-node compression,

the longest common subsequence is determined by evaluating only the stack signatures of the

events from different MPI tasks, and the events are then merged accordingly. For example,

the events of the code shown in Figure 5.4 will be merged into the trace shown in Figure 5.5,

where the number in [and] shows the ranklist of the loop information before it, and the MPI

parameters are ignored.

Lastly, since the new inter-node compression algorithm is loop agnostic, it does not have

to perform the LCS analysis recursively for each level of the nested loops. Hence, assuming

m and n are the lengths of two task-level traces, the complexity of the inter-node compression

algorithm is O(m · n).

84

Rank Event

0 1 MPI Isend()(2,5)[0](3,6)[1]
0 1 MPI Irecv()
0 MPI Isend()
0 MPI Irecv()
0 1 MPI Waitall()

Figure 5.5: Final Trace of the Code in Figure 5.4

5.2.5 Customizable Instrumentation

Diagnosis of an application’s performance problem requires the collection and analysis of per-

formance data describing the application’s behavior. To ensure tool scalability, it is important

that one collects only the data relevant to the performance problems at hand. This is because

blindly collecting useless performance data inevitably introduces unnecessary perturbation, and

thus may cause the user to mis-identify the real cause of the problem. In addition, collecting

excessive performance data also makes data analysis difficult as more resources are required for

analysis.

We propose to solve this problem with dynamically customizable instrumentation. ScalaTrace

utilizes the MPI profiling interface to collect the performance data about the MPI events and

the preceding computation at the entry and exit points of MPI routines. With ScalaTrace 2,

we allow the users to conveniently supply customized profiling functions that will be called at

the same locations as the native profiling code by simply inheriting from a base class named

Stat and overriding two virtual methods, start() and end(). The functions start() and end()

operate on a data structure that is internal to the user-provided child class to gather the perfor-

mance data. When being called automatically by ScalaTrace 2 at runtime, start() initializes or

resets the data structure, and end() calculates the performance data and returns the result as a

floating point number to the runtime framework. Once the performance data is returned to the

framework, it is placed into the histogram with the correct predecessor stack signature. During

trace compression, the base class Stat invokes the Stat :: merge() function to merge the his-

tograms of matching execution paths to engage in context-aware statistical data compression.

In ScalaTrace 2, we also made the Event class accessible to the Stat class (and thus all of its

children) associated with it, so that the user-defined profiling code will have additional infor-

mation to selectively collect the performance data for particular messages/functions/libraries.

Currently, ScalaTrace 2 only supports the collection of numerical performance data with cus-

tomizable instrumentation. Internally, ScalaTrace 2 utilizes histograms to store and compress

performance statistics. Numerical data is sufficient for expressing most types of performance

data, such as execution time and performance counter values. In fact, the StatT ime class —

85

a class that records the execution times of the computation and communication stages of each

event — is implemented as a child class of Stat using numerical data. Nonetheless, we are also

working on supporting various complicated data types. In the case where the histogram rep-

resentation is incapable of storing the performance data, the users can define their customized

data types T with a compression scheme T :: merge(T) provided. As such, the ScalaTrace 2

runtime framework can merge the customized data type by referring to the user-provided com-

pression function while still being responsible for the context-aware statistical data compression

integrated within the built-in algorithm.

5.2.6 Replaying Non-deterministic Trace

For scalability reasons, ScalaTrace 2’s elastic data element representation may internally trans-

form from the lossless < value vector, ranklist > pair representation to the lossy histogram

representation for pre-configured parameters including SOURCE, DEST, and COUNT. As was

discussed in our prior work, representing non-performance data, such as DEST, as histograms

still preserves meaningful information regarding the communication topology [85]. However, it

poses a great challenge to the re-creation of the program behavior from the probabilistic trace

because the critical communication parameters are not accurate anymore.

ScalaReplay 2 is the new replay engine designed to cope with probabilistic traces. In contrast

to the previous version of ScalaReplay, we redesigned the trace traversal algorithm to support

ScalaTrace 2’s loop agnostic traces. We have also made key improvements in ScalaReplay 2 to

boost the robustness and replay accuracy. ScalaReplay 2 utilizes the coordinated random value

selection approach described in our previous work. In essence, during replay, nodes parse send

events but skip receive events in the trace. At send events, senders select receivers from the

DEST histograms by referring to random numbers. In order to generate matching receives for

the send operations, each node parses the traces of the other nodes to locate the send operations

addressed to itself. This is made possible by the fact that the senders and the potential receivers

agree on the random numbers used for value selection. In this way, the overhead of exchanging

control messages via back-channel communication is avoided.

Improvements for ScalaReplay 2 center around a novel trace traversal strategy. In the past

approach, each node used a single pointer to traverse a global trace; whenever there is a loop

structure, the node traverses it as a participant. However, this is impossible with ScalaTrace 2’s

new trace format because loop structures interleave in the final trace, as shown in Figure 5.5.

In addition, traversing with a single pointer also causes timing accuracy problems. With the

previous approach, a node parsed every event in the order it was seen during the traversal.

However, due to a stack signature mismatch, events that happened simultaneously may be

recorded far apart in the trace, as shown in Figure 5.6. With the single pointer approach, task

86

0 will not issue MPI Irecv(1) until it reads event 4 after having performed some computation

for 10 seconds at event 2. As a result, task 1 will be blocked at the blocking send (event 4) for

10 seconds and the total runtime of the program approximates 20 seconds, i.e., almost twice as

much as it ought to be.

1: if(rank==0){

2: MPI_Irecv(1);

3: compute(10s);

4: MPI_Wait();

5: }else if(rank==1){

6: MPI_Send(0);

7: compute(10s);

8: }

ID Rank Event

1 0 MPI Irecv(1)
2 0 compute(10s)
3 0 MPI Wait()
4 1 MPI Send(0)
5 1 compute(10s)

Figure 5.6: Trace Needs Multiple Context Pointers for Replay

To address these issues, ScalaReplay 2 utilizes multiple traversal context pointers during re-

play. Intuitively, a trace reflects the result of a parallel execution, where the parallel processes

progress concurrently through potentially distinct control flows with occasional synchroniza-

tions. The replay engine mimics this process by replaying with one primary traversal pointer

while keeping track of the other nodes’ parallel executions with multiple additional traversal

context pointers. In ScalaReplay 2, a traversal context is a lightweight data structure that

keeps track of the progress of the traversal on behalf of a certain MPI task. It consists of an

event pointer, a loop information manager, a random number manager, and a timer. The event

pointer always points to the next event to be replayed/evaluated. It supports the operations

such as hasNext() and next(). The loop information manager keeps track of the traversal

by memorizing the current loop stack as well as the iteration counts at each loop level. The

random number manager guarantees that contexts of the same rank on different nodes always

agree on the same series of random numbers. Lastly, the timer is used to calculate the aggre-

gated execution time at a certain event according to the recorded times of the events already

traversed so far.

During replay, each node progresses according to its primary context, i.e., the context

with the rank of the node. It issues all the events other than receives, and sleeps for all the

recorded computational phases within its context as a normal replay. To post matching receives

for potential senders, each node also traverses the trace of the other nodes by maintaining

secondary traversal contexts for them. When traversing the secondary contexts, all the non-

87

send events and computations are ignored so that the current node can quickly identify the send

operations addressed to itself. However, the current node does not post the receive immediately

when a send is identified. Instead, it postpones the receive until approximately the time the

corresponding send operation is issued at the sender side, which can be estimated by referring

to the timer of the sender’s secondary context. By posting receives in this way, ScalaReplay 2

manages to clear the system receiving buffer in a timely manner and thus improves the replay

time accuracy.

To further improve the performance and scalability of ScalaReplay 2, additional optimiza-

tions are implemented. In practice, most parallel applications are designed such that each node

only has a limited number of point-to-point communication destinations (otherwise, collectives

are used). We therefore have introduced a negotiation stage before the replay in which each

node calculates a destination set of a configurable size and informs the selected receivers so

that each node only has to maintain a limited number of traversal contexts during the replay.

In addition, we also improved the performance of the replay engine by overlapping the context

management with simulated compute times that the primary context has to perform anyhow.

With these optimizations, the replay engine manages to scale to a large number of nodes.

5.3 Evaluation

We evaluated ScalaTrace 2 with regard to two aspects: (1) its effectiveness of trace compression,

as well as the advantages of different compression optimizations, and (2) the correctness and the

timing accuracy of the probabilistic replay. For experiment (1), we used a subset of the NAS

Parallel Benchmark suite (version 3.3 for MPI) [6], including BT, CG, LU, MG, and SP, the

Sweep3D neutron-transport kernel [79], and the Parallel Ocean Program [61]. We chose these

benchmarks because they exercise both collectives and point-to-point communications in mul-

tiple time steps. Besides, some of these benchmarks either do not have consistent loop behavior

or do not show strict SPMD regularity. Consequently, these benchmarks poses great challenges

to the existing trace compression libraries, including the last generation ScalaTrace. In these

experiments, we configured ScalaTrace 2 to use different compression algorithms and we study

the impact of each option. In experiment (2), we assessed ScalaTrace 2 and ScalaReplay 2’s

capability of preserving and re-producing the computational performance with respect to wall

clock execution times. Particularly, we conducted all the replay experiments with probabilis-

tic traces, which is significantly more challenging than replaying with lossless traces. For the

second experiment, we still used the same benchmarks as in experiment (1).

We conducted all the experiments on ARC, a cluster with 1,728 cores on 108 compute nodes,

32 GB memory per node, and an Infiniband QDR interconnect. Due to limited access to the

system, our experiments generally run on a subset of the available nodes that is sufficient to

88

reflect the trend of the trace size with respect to the increasing execution scale.

5.3.1 Trace File Size

In the first experiment, we evaluated ScalaTrace 2’s compression effectiveness with the NPB

BT, CG, LU, MG, SP codes, Sweep3D, and POP. We chose these benchmarks because they

are all stencil codes exhibiting multi-dimensional communication topologies and complicated

loop structures. Among these benchmarks, MG, SP, and POP demonstrate inconstant message

sizes and irregular SPMD behavior, and are hence particularly challenging for lossless and

structure-preserving trace compression. In these experiments, we compared ScalaTrace 2 with

our past approach. In order to demonstrate the effect of different configurations, we itemize

the optimizations (as explained below) and collected traces by applying the options in an

incremental manner:

• ScalaTrace II : features only the loop agnostic inter-node compression enabled by the

elastic data element representation;

• LCS Loop Compression: additionally performs the longest common subsequence based

loop compression;

• Approximate Signature Matching : adds a finer-grained optimization that matches and

merges events when stack signatures differ by no more than a pre-defined threshold;

• Parameter Histogram: adds lossy compression that converts overlong value vectors into

histograms.

According to the improvement achieved with ScalaTrace 2, benchmarks are divided into three

categories and the results are shown in Figure 5.7.

The first category consists of BT and CG. These benchmarks either demonstrate perfectly

matching loop iterations or regular SPMD behavior that leads to structurally identical task-

level traces. Hence, our past approach is able to capture the loop structures and has little

difficulty merging the time step loops across tasks. Consequently, ScalaTrace 2 only shows

limited improvement in trace size for BT and CG when configured to be fully lossless. Never-

theless, there is still room for improvement when fuzziness is allowed. For example, by applying

the approximate stack signature matching, ScalaTrace 2 manages to deliver another 22% trace

size reduction on average for BT. More importantly, when parameter histograms are enabled

for the elastic data elements, we eventually obtained constant sized traces for BT and CG — a

critical improvement that makes key difference at large scale.

LU and Sweep3D constitute the second category for which ScalaTrace 2 improves the trace

compression by forcibly merging the task-level traces in a loop agnostic way. Both LU and

89

 0

 20000

 40000

 60000

 80000

 100000

16 64 144 256 400

T
ra

ce
 S

iz
e

(B
yt

e)

Number of Nodes

ScalaTrace I
ScalaTrace II

LCS Loop Compression
Approximate Signature Matching: 1-frame Difference
Approximate Signature Matching: 2-frame Difference

Parameter Histogram

(a) BT

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

16 32 64 128 256

T
ra

ce
 S

iz
e

(B
yt

e)

Number of Nodes

ScalaTrace I
ScalaTrace II

LCS Loop Compression
Approximate Signature Matching: 1-frame Difference
Approximate Signature Matching: 2-frame Difference

Parameter Histogram

(b) CG

 0

 50000

 100000

 150000

 200000

 250000

 300000

16 32 64 128 256

T
ra

ce
 S

iz
e

(B
yt

e)

Number of Nodes

ScalaTrace I
ScalaTrace II

LCS Loop Compression
Approximate Signature Matching: 1-frame Difference
Approximate Signature Matching: 2-frame Difference

Parameter Histogram

(c) LU

 0

 20000

 40000

 60000

 80000

 100000

 120000

16 32 64 128 256
T

ra
ce

 S
iz

e
(B

yt
e)

Number of Nodes

ScalaTrace I
ScalaTrace II

LCS Loop Compression
Approximate Signature Matching: 1-frame Difference
Approximate Signature Matching: 2-frame Difference

Parameter Histogram

(d) Sweep3D

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

16 32 64 128 256

T
ra

ce
 S

iz
e

(B
yt

e)

Number of Nodes

ScalaTrace I
ScalaTrace II

LCS Loop Compression
Approximate Signature Matching: 1-frame Difference
Approximate Signature Matching: 2-frame Difference

Parameter Histogram

(e) MG

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

16 36 64 100 144 196 256

T
ra

ce
 S

iz
e

(B
yt

e)

Number of Nodes

ScalaTrace I
ScalaTrace II

LCS Loop Compression
Approximate Signature Matching: 1-frame Difference
Approximate Signature Matching: 2-frame Difference

Parameter Histogram

(f) SP

 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07
 1e+08
 1e+09

16 32 64 128 256

T
ra

ce
 S

iz
e

(B
yt

e)

Number of Nodes

ScalaTrace I
ScalaTrace II

LCS Loop Compression
Approximate Signature Matching: 1-frame Difference
Approximate Signature Matching: 2-frame Difference

Parameter Histogram

(g) POP (Increasing Node Counts)

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

10 20 40 60 80

T
ra

ce
 S

iz
e

(B
yt

e)

Number of Time Steps

Basic Loop Compression Requiring Perfect Match
LCS Loop Compression

(h) POP (Increasing Time Steps)

Figure 5.7: Trace File Sizes for NPB BT, CG, LU, MG, SP, Sweep3D, and POP

90

Sweep3D are stencil codes with a 2D task layout. Depending on the location in the 2D com-

munication topology, a node may have a different number of neighbors, and thus follow a

communication pattern that is unique to one of the nine communication groups (4 corners, 4

boundaries, and the interior nodes). Because the past approach matches the loop structures as

an entirety during the inter-node reduction, it fails to exploit the similarities in the time step

loops across communication groups. ScalaTrace 2 takes advantages of these similarities. Con-

sequently, by applying the loop agnostic inter-node compression alone, ScalaTrace 2 manages

to reduce the trace size by 28% for LU and 41% for Sweep3D. By enabling extra optimizations,

ScalaTrace 2 eventually generates traces that are 43% and 65% smaller, for LU and Sweep3D,

respectively.

The most compelling improvement, however, is observed for the NPB MG and SP codes,

and the Parallel Ocean Program. Among these benchmarks, SP sends messages with fluctuat-

ing sizes in loops. This prevents loop compression of the last generation ScalaTrace but can be

handled with ScalaTrace 2 where all parameters are represented as elastic data elements. MG is

the most challenging test case of the NAS Parallel Benchmark suite. It features a complicated

communication pattern consisting of a primary 7-point 3D torus and a secondary nested 3D

torus among the nodes at particular positions in the topological space. Due to the interleav-

ing of the two patterns, MG demonstrates both iteration-specific behavior and task-specific

behavior, and thus poses great challenges for both intra-node and inter-node compression. By

utilizing the approximate loop iteration matching and the loop agnostic inter-node compression,

ScalaTrace 2 produces lossless traces that are orders of magnitude smaller for MG and SP, as

shown in Figure 5.7(e) and 5.7(f) on a logarithmic y axis. To further compress the varying

message sizes for SP, we enabled lossy tracing with parameter histograms and thus obtained

near constant sized traces that are collectively only 0.5% of the trace size of the past approach.

POP performs ocean simulations for multiple time steps. It demonstrates both inconsis-

tent loop behavior across time steps and diverging task-level behavior that hinders inter-node

compression. In previous work, we applied the probabilistic compression technique at the MPI

parameter level and managed to greatly reduce POP’s trace size [85]. With ScalaTrace 2, we

improve our previous work by more systematically exploiting the structural properties in the

trace. As shown in Figure 5.7(g), by utilizing the loop agnostic inter-node compression, we

reduced the trace size by a maximum of two orders of magnitude. This is almost as much of an

improvement as we obtained with the previous lossy approach, yet still maintain lossless traces.

Furthermore, after additional optimizations are enabled, we eventually obtained near constant

sized traces that are 48 to 351 times smaller. Besides, we also conducted experiments to as-

sess the time step scalability, namely how efficient ScalaTrace 2’s longest common subsequence

based loop compression can detect and compress the time step loops. For this experiment, we

keep the execution scale at 64 MPI tasks and increase the number of time steps. Experimental

91

results in Figure 5.7(h) show that, by utilizing the LCS based approximate loop matching,

ScalaTrace 2 is able to produce a constant sized trace. In contrast, the traditional approach

is sensitive to iteration-specific events and thus is not time step scalable for POP. From these

experimental results, we conclude that even with the parameter-level probabilistic compression

techniques, it is still possible to analyze the structural properties in the trace systematically

and perform compression in a top-down manner.

5.3.2 Probabilistic Replay Time Accuracy

In the second set of experiments, we assess ScalaTrace 2 and ScalaReplay 2’s capability of

preserving and re-producing computational times. We focus on 1) whether ScalaReplay 2 is

able to correctly coordinate the random value selection across nodes to replay the probabilistic

traces without deadlock, and 2) how accurate the probabilistic replay can re-produce the exe-

cution times of the original applications. We conducted these experiments with the same set of

benchmarks that we used for the first experiment. Among these benchmarks, the NAS Parallel

Benchmarks and POP are strong-scaling codes and Sweep3D is a weak-scaling code. The prob-

lem sizes were chosen for the strong-scaling benchmarks to ensure that there is a reasonable

amount of computation across all the tested scales. To provide input for the replay engine,

we configured ScalaTrace 2 to collect probabilistic traces where the critical MPI parameters,

including SOURCE, DEST, and COUNT, are represented with histograms. Particularly, we

set the histogram-triggering threshold to 1 to forcibly convert all the elastic data elements into

histograms irrespective of how concise the lossless value vectors actually are.

Figure 5.8 compares the probabilistic replay times with the execution times of the original

applications. First, being able to obtain these results allows us to validate that the coordinated

random value selection of the replay algorithm is deadlock free for the evaluated benchmarks.

Besides, the experimental results also show that ScalaReplay 2 can accurately re-produce the

computational performance of the original applications. Quantitatively, the mean absolute

percentage error of the replay times (i.e., 100%×|(Treplay−Tapp)/Tapp|) across all the test cases in
Figure 5.8 is only 5.7%. Such high replay timing accuracy indicates that 1) the execution times

are accurately preserved by the lossy traces and 2) the probabilistic replay approach is able to

re-produce the runtimes of the original applications without introducing unmanageable control

overhead. Overall, given the accurately preserved and re-produced performance characteristics,

we conclude that the histogram-based lossy compression, which has been shown to produce

powerful reductions in the trace size, is equally applicable to the scenarios where timing accuracy

is required.

92

 1

 4

 16

 64

 256

 1024

16 36 64 100 144 196 256

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
Replay Time

(a) BT, Class C

 1

 4

 16

 64

 256

 1024

16 32 64 128 256

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
Replay Time

(b) CG, Class D

 1

 4

 16

 64

 256

 1024

16 32 64 128 256

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
Replay Time

(c) LU, Class C

 1

 4

 16

 64

 256

 1024

16 32 64 128 256

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
Replay Time

(d) MG, Class D

 1

 4

 16

 64

 256

 1024

16 36 64 100 144 196 256

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
Replay Time

(e) SP, Class C

 20

 40

 60

 80

 100

 120

 140

16 32 64 128 256

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
Replay Time

(f) Sweep3D

 0

 100

 200

 300

 400

 500

 600

 700

16 32 64 128 256

R
un

ni
ng

 T
im

e
(s

)

Number of Nodes

App Time
Replay Time

(g) POP

Figure 5.8: Probabilistic Replay Time Accuracy

93

5.4 Related Work

Our work is closely related to prior research in the area of parallel application tracing and

profiling [52, 59, 32, 71]. Traditional tracing tools such as Vampir [52], Extrae [26], and Par-

aver/Dimemas [59] collect plain application traces that are not scalable due to the sheer size of

the performance data gathered. The Open Trace Format (OTF) aims at scalable tracing [40].

However, since OTF utilizes regular zlib compression, the tools based on it generally lack

structure-aware compression. Consequently, these tool cannot fully exploit the structural simi-

larities, nor are they suitable for trace-based scalability analysis and code generation [83, 84, 82].

SEQUITUR exploits hierarchical structures in sequences of discrete symbols for compres-

sion [53, 54]. It constructs a context-free grammar for a given sequence by representing repeating

digrams as non-terminals. Because SEQUITUR excels in both data compression and structural

inference, it is employed by an array of algorithms and tools as the compression infrastructure

for a variety of purposes. For example, Marathe et al. utilize SEQUITUR to compress data

access instructions in their memory tracing work [51]. Larus proposes whole program paths

(WPP) to capture a program’s dynamic control flow, where an enhanced SEQUITUR algo-

rithm is designed to compress acyclic path traces [45]. Krishnamoorthy et al. present a trace

compression algorithm that is largely based on SEQUITUR [43]. To fully exploit the pattern

detection capability of SEQUITUR, this work performs trace compression at argument level

instead of event level. While this optimization is effective in improving the compression, it

also makes the final trace unreadable and not structure-preserving. In general, if the program

structure is not preserved at the event level, most post-processing or trace-based performance

analysis becomes difficult or even infeasible because decompressing and effectively rendering

the trace may require large amounts of memory and computing power that are not available on

commodity desktops or laptops.

Recent advances in online trace compression utilize domain-specific techniques to achieve

trace size reduction. ScalaTrace performs task-level loop compression and cross-node trace

compression in a memory-efficient manner [56]. It generates near constant sized or orders

of magnitude smaller traces for SPMD codes. Xu et al. construct coordinated performance

skeletons from traces to estimate application execution time in new hardware environments [86,

87]. They adapt a pattern analysis algorithm from bioinformatics to perform loop analysis.

Nonetheless, due to the lack of on-the-fly loop compression, this tool is subject to limitations

on time step scalability. Knupfer et al. utilize Complete Call Graph (CCG) to hierarchically

store an application trace according to the call stack [41]. By comparing and merging similar

subgraphs, the trace is compressed in a bottom-up fashion. In contrast to our work, the CCG

based approach cannot handle inconsistent program behavior that leads to mismatching low-

level sub-structures in the CCGs.

94

Besides lossless or near lossless tracing techniques, our work is also related to the work that

provides lightweight application profiling functionalities. For example, mpiP collects aggre-

gated statistical information about MPI functions and computation times [75]. Gprof measures

the durations and frequencies of procedures using a hybrid approach of instrumentation and

sampling [33]. HPCToolkit collects call path profiles [28, 2]. To further reduce the overhead

involved in profiling, Gamblin et al. utilize statistical sampling and parallel clustering tech-

niques to reduce the number of parallel processes from which the performance data is collected,

and thus improve the scalability of parallel profiling tools [31, 30, 29]. In contrast to the

lossless tracing approach, tools like mpiP generally report simple and high-level information

that is only suitable for a superficial understanding of performance problems. For in-depth

performance debugging or complicated analysis, application tracing is still necessary. As an

instrumentation framework for both communication event tracing and performance data col-

lection, ScalaTrace 2 can employ the statistical methods proposed in prior research to improve

its numerical performance data collection and compression. This is left as a future work.

A unique approach for quick acquisition of communication traces involves program slicing.

Program slicing is a source code analysis technique that effectively reduces a program to a subset

of the statements (a program slice) that is relevant to a target statement or variable. As an

example, Zhai et al. proposed the FACT approach [90]. This approach constructs a program

slice for MPI calls and strips out the computation. With the communication-only program

slice, it then becomes feasible to obtain the communication trace readily without executing

the computation. While it is possible to combine the program slicing approach with existing

communication trace compression techniques, an inherent shortcoming of program slicing is

that it neither captures the execution times, nor can it handle data-dependent control flows.

Consequently, this technique is only applicable in limited scenarios.

In addition to techniques on communication tracing and profiling, our work is also relevant

to prior research on parallel replay. For example, RoltMP proposes a Lamport timestamp-

based approach for the deterministic replay of programs with non-deterministic receives [66].

MPIWiz is a deterministic replay method that is able to replay only a subset of the tasks of

an MPI application [88]. Phantom employs deterministic replay and cross-node performance

clustering techniques to predict the performance of parallel applications for future systems [89].

In a broader sense, prior research on memory tracing and memory trace-based performance

analysis supplements this work. As the next generation of ScalaTrace, ScalaTrace 2 continues

to utilize the Regular Section Descriptors (RSDs) and the Power-RSDs (PRSDs) to describe

the nested loop structures in trace (see Chapter 2). RSDs were originally proposed to track

inter-procedural side effects on common substructures of arrays to promote compiler-aided

parallelization [37]. Marathe et al. adapted the RSD representation and proposed PRSDs

for memory trace compression [50, 49]. Budanur et al. further designed Extended-PRSD

95

to perform multi-level scalable parallel memory tracing in their work ScalaMemTrace [13].

SIGMA employs online trace compression to collect lossless memory traces for simulation and

performance tuning [19]. Elnozahy et al. utilize loop detection and reduction for address

trace compression [24]. VPC3 employs value predictors to compress events comprising program

counter values and extended data fields [14].

5.5 Summary

Application tracing is one of the most important and useful vehicle for performance analysis and

debugging of parallel applications. Yet, designing scalable and efficient parallel tracing tools for

exascale systems and grand-challenge HPC applications remains an open problem. In this work,

we contribute ScalaTrace 2, a fundamental redesign of ScalaTrace that features a spectrum of

innovative lossless compression techniques aiming at scalable trace compression of large-scale

scientific codes with irregular SPMD behavior or even MPMD characteristics. We designed

an elastic data element representation to address compression inefficiencies of previous work.

Enabled by the new encoding scheme, novel algorithms are devised to perform approximate

loop matching and loop agnostic cross-node trace compression. We also incorporated the pa-

rameter histogram-based lossy compression capability into ScalaTrace 2 and adapted the replay

subsystem to achieve a more accurate probabilistic replay. As the first step towards customiz-

able instrumentation, ScalaTrace 2 also supports the collection of performance statistics with

user-defined plugins. We evaluated ScalaTrace 2 with the NAS Parallel Benchmarks, Sweep3D,

and a real-world application, the Parallel Ocean Program. Experimental results demonstrate

that the redesigned trace compression algorithms are particularly effective for applications with

inconsistent behavior across time steps and MPI tasks. In comparison to the prior research, we

deem ScalaTrace 2 a solid improvement towards exascale performance analysis.

96

Chapter 6

Future Work

This decade is projected to usher in the period of exascale computing with the advent of systems

featuring more than 500 million concurrent tasks. Harnessing such hardware with coordinated

computing in software poses significant challenges. To facilitate exascale performance analysis,

this work contributes novel techniques for communication tracing and trace-based analysis. In

this chapter, we discuss additional directions that can be pursued in the future.

6.1 Customizable Instrumentation

To ensure tool scalability, it is important that one collects only the data needed for the diagno-

sis of a particular performance problem. ScalaTrace 2 is our first step towards a customizable

tracing framework. It currently supports the collection of numerical performance data, such as

execution times and hardware counter values, at the entry and exit points of communication

and computational stages. To further improve the flexibility and granularity of the customiz-

able instrumentation, we propose to improve our current work along two orthogonal directions:

(1) the actual instrumentation of the applications or libraries and (2) its customization and

dynamic selection. In addition to relying on the existing PMPI interface layer, we can also

employ the binary instrumentation and interpositioning techniques to handle other libraries

or sets of API functions, e.g., systems libraries like libc or libpthreads. Several relevant tech-

nologies exist that may be used to implement such a capability, including the Dyninst [12]

dynamic instrumentation library, Pin [48], the Program Database Toolkit [46], and the GNU

linker’s capability to automatically interpose wrapper functions. We propose to investigate

the scalability and performance properties of each solution and then integrate the best suited

mechanism with ScalaTrace 2. Once a function call is intercepted, we can dynamically decide

whether we record the observed event or not. Such filter predicates will be light weight and can

be based on one of several conditions, including the function name (to select particular function

97

groups), the passed arguments (to extract only certain use cases, like large messages or short

I/O write operations), the context in which the function was called (to separate callpaths and

only record events caused by specific libraries), or simply time (to allow sampling techniques).

This approach further allows us to control the instrumentation to trace only those events orig-

inating from a particular library. This not only reduces the data, but provides users with the

ability to disambiguate overlapping message patterns, a common occurrence in many complex

scientific codes. This ability to dynamically adjust the instrumentation provides us with the

fine granularity required to control the data volume and to restrict the performance data to

only the data required for the particular analysis targeted by the user.

6.2 A Versatile Tracing Framework with Tunable Precision

We propose to design a framework to create customized tools for trace extraction. Our approach

generalizes existing concepts of trace compression so that they become applicable to arbitrary

trace events, ranging from system calls over I/O, communication and memory references, to

performance counters. Being a fully customizable tracing framework, we also propose to use

event specification to guide trace compression. A trace event specification not only consists

of the trace entry (e.g., name of a call, instruction type) but also of a parameter mask. This

mask indicates which parameters should be captured and what compression approach should

be applied to each.

ScalaTrace 2 focuses on systematically exploiting the structural properties in the sequences

of events to achieve lossless or near-lossless trace compression. In the future, we propose

to employ approximate tracing techniques to handle applications with drastically irregular

event patterns that are not suitable for being traced in a lossless or near-lossless manner.

Particularly, we propose to support user-specified precision levels for the lossy compression

of not just the MPI parameters, but also the loop structures, the participant lists, and even

the trace events. For example, event sequences themselves can be represented as histograms

effectively indicating a probability for a data-dependent event to be issued by a given node.

This recursive definition of histograms on the trace structure itself departs with conventional

PRSDs in the sense that the PRSD becomes conditional (C-PRSD), which creates another

dimension in our data representation. A C-PRSD also represents the analytical behavior of an

application relative to its input data, and thus opens up the opportunity to unify data reduction

and program behavior analysis. By pursuing multi-level approximate tracing, we propose to

design a set of relevant lossy compression algorithms and to investigate the effectiveness of such

a scheme compared to the current approaches.

98

6.3 Scalable Numerical Data Analysis Techniques

With the massive core count on a leadership-class supercomputer, even a carefully designed

instrumentation strategy may add considerable volumes of numerical data to traces, which can

lead to data volumes too high to record. We propose to solve this problem using prior work on

in-situ clustering and in-situ wavelet analysis [31, 30, 29] to discover the relationships between

performance data elements distributed across many processes. CAPEK [30] is a generic algo-

rithm and has been shown to work well for simple data such as vector traces, simple points,

and objects in well-defined, low-dimensional spaces. It is also known to scale to hundreds of

thousands of processes. We propose to use CAPEK as a foundation for structurally cluster-

ing numerical trace data and structural trace elements. First, we propose to develop distance

metrics that will enable CAPEK to be applied to traces in the ScalaTrace trace format. To

accomplish this goal, we will need to deduce appropriate measures for “similarity” between

structural trace components. We will develop graph comparison algorithms to compare behav-

ioral patterns among similar processes, and we will develop error measures to quantify how

well these measures differentiate actual program behavior. Next, we propose to design sta-

tistical approaches to perform root cause analysis for performance problems. For example,

the performance data obtained with the custom instrumentation APIs and the collected trace

will be used as inputs to two runs of CAPEK. With the representatives from the resulting

equivalence classes, we can then perform root cause analysis by employing correlation analysis

techniques [76, 18].

99

Chapter 7

Conclusion

With the advent of systems with millions of cores and exascale performance in the near future,

performance analysis for parallel applications becomes increasingly important for the design

and development of scientific applications, and for the construction and procurement of high-

performance computing systems. Recent progress on scalable communication tracing opens up

opportunities for novel performance analysis approaches. This work advances the scalable com-

munication tracing techniques and contributes a spectrum of trace-based algorithms for perfor-

mance analysis, prediction, and benchmarking at scale. To facilitate extreme-scale performance

analysis and prediction, this work introduces ScalaExtrap. ScalaExtrap is a trace-based algo-

rithm that automatically extrapolates traces at large scales from smaller traces for stencil and

mesh style SPMD codes. It enables — for the first time — fast trace-based performance predic-

tion and simulation at arbitrarily large scales, yet without requiring running the application at

those scales. To bridge the gap between the performance realism of a complete application and

the convenience of obtaining, porting and modifying a benchmark code, this work proposes a

trace-based benchmark generation framework that automatically extracts performance-accurate

communication benchmarks from parallel applications. By supporting application logic obfus-

cation, this code generation tool is particularly valuable for proprietary, export-controlled, or

classified application codes. Moreover, this work also contributes ScalaTrace 2, the next gen-

eration ScalaTrace that targets inefficiencies in the compression of communication traces for

applications with irregular SPMD behavior or even MPMD characteristics. By incorporating a

spectrum of novel trace compression algorithms, such as elastic data element encoding, approxi-

mate loop matching, and loop agnostic inter-node trace compression, ScalaTrace 2 demonstrates

key improvement in trace compression. With ScalaTrace 2, we bring our prior research to the

next stage and prepare the ScalaTrace framework for exascale performance analysis.

Overall, by utilizing domain-specific knowledge on scientific computing and exploiting the

unique features of ScalaTrace, this work puts forth fundamentally new methodologies for com-

100

munication trace compression and for trace-based performance analysis, prediction, and bench-

marking at scale. Thereby, it validates the hypothesis of this dissertation.

101

REFERENCES

[1] Top 500 list. http://www.top500.org/, June 2011.

[2] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and
N. R. Tallent. Hpctoolkit: tools for performance analysis of optimized parallel programs
http://hpctoolkit.org. Concurr. Comput. : Pract. Exper., 22(6):685–701, April 2010.

[3] N. R. Adiga et al. An overview of the BlueGene/L supercomputer. In Proceedings of the
2002 ACM/IEEE Conference on Supercomputing, Baltimore, Maryland, November 16–22,
2002. IEEE Computer Society Press.

[4] ADIOS 1.3 user’s manual. http://users.nccs.gov/ pnorbert/ADIOS-UsersManual-1.3.pdf.

[5] Gene M. Amdahl. Validity of the single processor approach to achieving large scale com-
puting capabilities. In Proceedings of the AFIPS Spring Joint Computer Conference, pages
483–485, Atlantic City, New Jersey, April 18–20, 1967. ACM.

[6] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, D. Dagum, R. A.
Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakr-
ishnan, and S. K. Weeratunga. The NAS Parallel Benchmarks. The International Journal
of Supercomputer Applications, 5(3):63–73, Fall 1991.

[7] D.H. Bailey and A. Snavely. Performance modeling: Understanding the present and pre-
dicting the future. In Euro-Par Conference, August 2005.

[8] R Bell and L. John. Improved automatic testcase synthesis for performance model valida-
tion. In Int’l Conf. on Supercomputing, pages 111–120, June 2005.

[9] L. Bergroth, H. Hakonen, and T. Raita. A survey of longest common subsequence al-
gorithms. In Proceedings of the Seventh International Symposium on String Processing
Information Retrieval (SPIRE’00), pages 39–, Washington, DC, USA, 2000. IEEE Com-
puter Society.

[10] H. Brunst, D. Kranzlmüller, and W. Nagel. Tools for Scalable Parallel Program Analysis -
Vampir NG and DeWiz. The International Series in Engineering and Computer Science,
Distributed and Parallel Systems, 777:92–102, 2005.

[11] Holger Brunst, Hans-Christian Hoppe, Wolfgang E. Nagel, and Manuela Winkler. Per-
formance optimization for large scale computing: The scalable VAMPIR approach. In
International Conference on Computational Science (2), pages 751–760, 2001.

[12] Bryan Buck and Jeffrey Hollingsworth. An API for runtime code patching. The Interna-
tional Journal of High Performance Computing Applications, 14(4):317–329, Winter 2000.

[13] Sandeep Budanur, Frank Mueller, and Todd Gamblin. Memory trace compression and
replay for SPMD systems using Extended PRSDs. SIGMETRICS Perform. Eval. Rev.,
38(4):30–36, March 2011.

102

[14] M. Burtscher. Vpc3: A fast and effective trace-compression algorithm. In SIGMETRICS
Conference on Measurement and Modeling of Computer Systems, pages 167–176, N.Y.,
June 2004.

[15] Marc Casas, Rosa Badia, and Jesus Labarta. Automatic structure extraction from mpi
applications tracefiles. In Euro-Par Conference, August 2007.

[16] Community earth system model. http://www.cesm.ucar.edu/index.html.

[17] Jian Chen, Lizy Kurian John, and Dimitris Kaseridis. Modeling program resource demand
using inherent program characteristics. SIGMETRICS Perform. Eval. Rev., 39(1):1–12,
June 2011.

[18] Cristian Coarfa, John Mellor-Crummey, Nathan Froyd, and Yuri Dotsenko. Scalability
analysis of spmd codes using expectations. In Proceedings of the 21st annual international
conference on Supercomputing, ICS ’07, pages 13–22, New York, NY, USA, 2007. ACM.

[19] L. DeRose, K. Ekanadham, J. K. Hollingsworth, and S. Sbaraglia. SIGMA: A simulator
infrastructure to guide memory analysis. In Supercomputing, November 2002.

[20] Vivek Deshpande. Automatic Generation of Complete Communication Skeletons from
Traces. Master’s thesis, North Carolina State University, Raleigh, NC, USA, 2011.

[21] Jack J. Dongarra, Piotr Luszczek, and Antoine Petitet. The linpack benchmark: Past,
present, and future. concurrency and computation: Practice and experience. Concurrency
and Computation: Practice and Experience, 15:2003, 2003.

[22] Z. Eckert and G. Nutt. Trace extrapolation for parallel programs on shared memory
multiprocessors. Technical Report TR CU-CS-804-96, Department of Computer Science,
University of Colorado at Boulder, Boulder, CO, 1996.

[23] Zulah K. F. Eckert and Gary J. Nutt. Parallel program trace extrapolation. In International
Conference on Parallel Processing, pages 103–107, 1994.

[24] E. N. Elnozahy. Address trace compression through loop detection and reduction. In
Proceedings of the 1999 ACM SIGMETRICS international conference on Measurement
and modeling of computer systems, SIGMETRICS ’99, pages 214–215, New York, NY,
USA, 1999. ACM.

[25] Luk Van Ertvelde and Lieven Eeckhout. Dispersing proprietary applications as bench-
marks through code mutation. In Architectural Support for Programming Languages and
Operating Systems, pages 201–210, 2008.

[26] Extrae. http://www.bsc.es/computer-sciences/extrae.

[27] Ahmad Faraj, Pitch Patarasuk, and Xin Yuan. A study of process arrival patterns for MPI
collective operations. In Int’l Conf. on Supercomputing, June 2007.

[28] Nathan Froyd, John Mellor-Crummey, and Rob Fowler. Low-overhead call path profiling
of unmodified, optimized code. In Proceedings of the 19th annual international conference
on Supercomputing, ICS ’05, pages 81–90, New York, NY, USA, 2005. ACM.

103

[29] Todd Gamblin, Bronis R. de Supinski, Martin Schulz, Rob Fowler, and Daniel A. Reed.
Scalable load-balance measurement for spmd codes. In Supercomputing, pages 1–12, 2008.

[30] Todd Gamblin, Bronis R. de Supinski, Martin Schulz, Rob Fowler, and Daniel A. Reed.
Clustering performance data efficiently at massive scales. In Proceedings of the 24th ACM
International Conference on Supercomputing, ICS ’10, pages 243–252, New York, NY,
USA, 2010. ACM.

[31] Todd Gamblin, Robert J. Fowler, and Daniel A. Reed. Scalable methods for monitoring
and detecting behavioral equivalence classes in scientific codes. In IPDPS, pages 1–12,
2008.

[32] M. Geimer, F. Wolf, B. J. N. Wylie, E. Abraham, D. Becker, and B. Mohr. The scalasca
performance toolset architecture. In International Workshop on Scalable Tools for High-
End Computing, June 2008.

[33] S. L. Graham, P. B. Kessler, and M. K. McKusick. gprof: A call graph execution profiler.
In Symposium on Compiler Construction, pages 276–283, June 1982.

[34] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable implemen-
tation of the MPI message passing interface standard. Parallel Computing, 22(6):789–828,
September 1996.

[35] B. Gruber, G. Haring, D. Kranzlmueller, and J. Volkert. Parallel programming with capse
– a case study. Parallel, Distributed, and Network-Based Processing, Euromicro Conference
on, 0:0130, 1996.

[36] John L. Gustafson. Reevaluating Amdahl’s law. Communications of the ACM, 31(5):532–
533, May 1988.

[37] Paul Havlak and Ken Kennedy. An implementation of interprocedural bounded regular
section analysis. IEEE Transactions on Parallel and Distributed Systems, 2(3):350–360,
July 1991.

[38] Engin Ïpek, Sally A. McKee, Rich Caruana, Bronis R. de Supinski, and Martin Schulz.
Efficiently exploring architectural design spaces via predictive modeling. In ASPLOS-XII:
Proceedings of the 12th international conference on Architectural support for programming
languages and operating systems, pages 195–206, 2006.

[39] D. Kerbyson, H. Alme, A. Hoisie, F. Petrini, H. Wasserman, and M. Gittings. Predictive
performance and scalability modeling of a large-scale application. In Supercomputing,
November 2001.

[40] A. Knüpfer, R. Brendel, H. Brunst, H. Mix, and W. E. Nagel. Introducing the Open Trace
Format (OTF). In Int’l Conf. on Computational Science, pages 526–533, May 2006.

[41] Andreas Knupfer. Construction and compression of complete call graphs for post-mortem
program trace analysis. In International Conference on Parallel Processing, pages 165–172,
2005.

104

[42] K. R. Koch, R. S. Baker, and R. E. Alcouffe. Solution of the first-order form of the 3-D
discrete ordinates equation on a massively parallel processor. Transactions of the American
Nuclear Society, 65(108):198–199, 1992.

[43] Sriram Krishnamoorthy and Khushbu Agarwal. Scalable communication trace compres-
sion. In Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing, CCGRID ’10, pages 408–417, Washington, DC, USA, 2010.
IEEE Computer Society.

[44] Jesús Labarta, Sergi Girona, and Toni Cortes. Analyzing scheduling policies using
dimemas. Parallel Computing, 23(1-2):23–34, 1997.

[45] James R. Larus. Whole program paths. SIGPLAN Not., 34(5):259–269, May 1999.

[46] Kathleen A. Lindlan, Janice Cuny, Allen D. Malony, Sameer Shende, Bernd Mohr, Reid
Rivenburgh, and Craig Rasmussen. A tool framework for static and dynamic analysis of
object-oriented software with templates. In Supercomputing, pages 68–68, 2000.

[47] Jeremy Logan, Scott Klasky, Jay F. Lofstead, Hasan Abbasi, Stéphane Ethier, Ray W.
Grout, Seung-Hoe Ku, Qing Liu, Xiaosong Ma, Manish Parashar, Norbert Podhorszki,
Karsten Schwan, and Matthew Wolf. Skel: Generative software for producing skeletal i/o
applications. In e-Science Workshops, pages 191–198, 2011.

[48] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. Reddi,
and K. Hazelwood. Pin: Building customized program analysis tools with dynamic in-
strumentation. In ACM SIGPLAN Conference on Programming Language Design and
Implementation, June 2005.

[49] J. Marathe, F. Mueller, and B. R. de Supinski. A hybrid hardware/software approach to
efficiently determine cache coherence bottlenecks. In Int’l Conf. on Supercomputing, pages
21–30, June 2005.

[50] J. Marathe, F. Mueller, T. Mohan, B. R. de Supinski, S. A. McKee, and A. Yoo. METRIC:
Tracking down inefficiencies in the memory hierarchy via binary rewriting. In International
Symposium on Code Generation and Optimization, pages 289–300, March 2003.

[51] J. Marathe, F. Mueller, T. Mohan, S. A. McKee, B. R. de Supinski, and A. Yoo. Met-
ric: Memory tracing via dynamic binary rewriting to identify cache inefficiencies. ACM
Transactions on Programming Languages and Systems, 29(2):1–36, April 2007.

[52] W. E. Nagel, A. Arnold, M. Weber, H. C. Hoppe, and K. Solchenbach. VAMPIR: Visual-
ization and analysis of MPI resources. Supercomputer, 12(1):69–80, 1996.

[53] C. G. Nevill-Manning and I. H. Witten. Compression and explanation using hierarchical
grammars. The Computer Journal, 40(2/3), 1997.

[54] Craig G. Nevill-Manning and Ian H. Witten. Linear-time, incremental hierarchy inference
for compression. In Proceedings of the Conference on Data Compression, DCC ’97, pages
3–, Washington, DC, USA, 1997. IEEE Computer Society.

105

[55] M. Noeth, F. Mueller, M. Schulz, and B. R. de Supinski. Scalable compression and replay
of communication traces in massively parallel environments. In International Parallel and
Distributed Processing Symposium, April 2007.

[56] M. Noeth, F. Mueller, M. Schulz, and B. R. de Supinski. Scalatrace: Scalable compression
and replay of communication traces in high performance computing. Journal of Parallel
Distributed Computing, 69(8):969–710, August 2009.

[57] Scott Pakin. Reproducible network benchmarks with coNCePTuaL. In Marco Danelutto,
Domenico Laforenza, and Marco Vanneschi, editors, Proceedings of the 10th International
Euro-Par Conference, volume 3149 of Lecture Notes in Computer Science, pages 64–71,
August 31–September 3, 2004.

[58] Scott Pakin. The design and implementation of a domain-specific language for network
performance testing. IEEE Transactions on Parallel and Distributed Systems, 18(10):1436–
1449, October 2007.

[59] Vincent Pillet, Vincent Pillet, Jesus Labarta, Toni Cortes, and Sergi Girona. PARAVER:
A tool to visualize and analyze parallel code. In Proceedings of the 18th Technical Meeting
of WoTUG-18: Transputer and Occam Developments, pages 17–31, 1995.

[60] Vincent Pillet, Vincent Pillet, Jess Labarta, Toni Cortes, Toni Cortes, Sergi Girona, Sergi
Girona, and Departament D’arquitectura De Computadors. Paraver: A tool to visualize
and analyze parallel code. Technical report, In WoTUG-18, 1995.

[61] The parallel ocean program (POP), 1996. http://climate.lanl.gov/Models/POP/.

[62] Robert Preissl, Thomas Köckerbauer, Martin Schulz, Dieter Kranzlmüller, Bronis R. de
Supinski, and Daniel J. Quinlan. Detecting patterns in mpi communication traces. In
ICPP ’08: Proceedings of the 2008 37th International Conference on Parallel Processing,
pages 230–237, Washington, DC, USA, 2008. IEEE Computer Society.

[63] Robert Preissl, Martin Schulz, Dieter Kranzlmüller, Bronis R. Supinski, and Daniel J.
Quinlan. Using mpi communication patterns to guide source code transformations. In
ICCS ’08: Proceedings of the 8th international conference on Computational Science, Part
III, pages 253–260, Berlin, Heidelberg, 2008. Springer-Verlag.

[64] P. Ratn, F. Mueller, Bronis R. de Supinski, and M. Schulz. Preserving time in large-scale
communication traces. In Int’l Conf. on Supercomputing, pages 46–55, June 2008.

[65] Arun F Rodrigues, Richard C Murphy, Peter Kogge, and Keith D Underwood. The struc-
tural simulation toolkit: exploring novel architectures. In Poster at the 2006 ACM/IEEE
Conference on Supercomputing, page 157, 2006.

[66] M.A. Ronsse and D.A. Kranzlmueller. Roltmp-replay of lamport timestamps for message
passing systems. Parallel, Distributed, and Network-Based Processing, Euromicro Confer-
ence on, 0:0087, 1998.

106

[67] Subhash Saini, Dale Talcott, Dennis Jespersen, Jahed Djomehri, Haoqiang Jin, and Ru-
pak Biswas. Scientific application-based performance comparison of sgi altix 4700, ibm
power5+, and sgi ice 8200 supercomputers. In Proceedings of the 2008 ACM/IEEE con-
ference on Supercomputing, SC ’08, pages 7:1–7:12, Piscataway, NJ, USA, 2008. IEEE
Press.

[68] Martin Schulz, Jim Galarowicz, Don Maghrak, William Hachfeld, David Montoya, and
Scott Cranford. Open|SpeedShop: An open source infrastructure for parallel performance
analysis. Scientific Programming, 16(2–3):105–121, 2008.

[69] Shuyi Shao, Alexk. Jones, and Rami Melhem. A compiler-based communication analysis
approach for multiprocessor systems. In In International Parallel and Distributed Process-
ing Symposium, 2006.

[70] Sameer S. Shende and Allen D. Malony. The Tau parallel performance system. Int’l Journal
of High Performance Computing Applications, 20(2):287–311, 2006.

[71] Sameer S. Shende and Allen D. Malony. The tau parallel performance system. Int. J. High
Perform. Comput. Appl., 20(2):287–311, May 2006.

[72] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. Automatically char-
acterizing large scale program behavior. In ASPLOS-X: Proceedings of the 10th interna-
tional conference on Architectural support for programming languages and operating sys-
tems, pages 45–57, 2002.

[73] A. Snavely, L. Carrington, N. Wolter, J. Labarta, R. Badia, and A. Purkayastha. A
framework for performance modeling and prediction. In Supercomputing, November 2002.

[74] K. Sreenivasan and A. J. Kleinman. On the construction of a representative synthetic
workload. Commun. ACM, 17(3):127–133, March 1974.

[75] J. Vetter and M. McCracken. Statistical scalability analysis of communication operations
in distributed applications. In ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, 2001.

[76] Jeffrey S. Vetter and Michael O. McCracken. Statistical scalability analysis of communi-
cation operations in distributed applications. In Proceedings of the eighth ACM SIGPLAN
symposium on Principles and practices of parallel programming, PPoPP ’01, pages 123–132,
New York, NY, USA, 2001. ACM.

[77] Karthik Vijayakumar, Frank Mueller, Xiaosong Ma, and Philip C. Roth. Scalable i/o
tracing and analysis. In Workshop on Petascale Data Storage, pages 26–31, 2009.

[78] Anh Vo, Sriram Aananthakrishnan, Ganesh Gopalakrishnan, Bronis R. de Supinski, Mar-
tin Schulz, and Greg Bronevetsky. A scalable and distributed dynamic formal verifier
for MPI programs. In Proceedings of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis (SC’10), New Orleans,
Louisiana, November 13–19, 2010.

107

[79] Harvey Wasserman, Adolfy Hoisie, and Olaf Lubeck. Performance and scalability analysis
of teraflop-scale parallel architectures using multidimensional wavefront applications. The
International Journal of High Performance Computing Applications, 14:330–346, 2000.

[80] F. Wolf and B. Mohr. KOJAK—a tool set for automatic performance analysis of parallel
applications. In Proc. of the European Conference on Parallel Computing (Euro-Par),
volume 2790 of Lecture Notes in Computer Science, pages 1301–1304, Klagenfurt, Austria,
August 2003. Springer. Demonstrations of Parallel and Distributed Computing.

[81] W.S. Wong and R.J.T. Morris. Benchmark synthesis using the lru cache hit function.
Computers, IEEE Transactions on, 37(6):637 –645, jun 1988.

[82] Xing Wu, Vivek Deshpande, and Frank Mueller. ScalaBenchGen: Auto-generation of
communication benchmarks traces. In IPDPS, pages 1250–1260, 2012.

[83] Xing Wu and Frank Mueller. ScalaExtrap: Trace-based communication extrapolation for
SPMD programs. In ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2011.

[84] Xing Wu, Frank Mueller, and Scott Pakin. Automatic generation of executable communica-
tion specifications from parallel applications. In Proceedings of the international conference
on Supercomputing, ICS ’11, pages 12–21, New York, NY, USA, 2011. ACM.

[85] Xing Wu, Karthik Vijayakumar, Frank Mueller, Xiaosong Ma, and Philip C. Roth. Prob-
abilistic communication and i/o tracing with deterministic replay at scale. In ICPP, pages
196–205, 2011.

[86] Qiang Xu, Ravi Prithivathi, Jaspal Subhlok, and Rong Zheng. Logicalization of MPI com-
munication traces. Technical Report UH-CS-08-07, Dept. of Computer Science, University
of Houston, 2008.

[87] Qiang Xu and Jaspal Subhlok. Construction and evaluation of coordinated performance
skeletons. In International Conference on High Performance Computing, pages 73–86,
2008.

[88] Ruini Xue, Xuezheng Liu, Ming Wu, Zhenyu Guo, Wenguang Chen, Weimin Zheng, Zheng
Zhang, and Geoffrey Voelker. Mpiwiz: subgroup reproducible replay of mpi applications. In
Proceedings of the 14th ACM SIGPLAN symposium on Principles and practice of parallel
programming, PPoPP ’09, pages 251–260, New York, NY, USA, 2009. ACM.

[89] J. Zhai, W. Chen, and W. Zheng. Phantom: predicting performance of parallel applications
on large-scale parallel machines using a single node. In ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages 305–314, 2010.

[90] J. Zhai, T. Sheng, J. He, W. Chen, and W. Zheng. FACT: Fast communication trace
collection for parallel applications through program slicing. In Proceedings of SC’09, pages
1–12, 2009.

108

	List of Tables
	List of Figures
	Introduction
	Background
	The Recent History of Supercomputers
	Application Trace for Performance Analysis and Prediction
	ScalaTrace

	Hypothesis
	Contributions
	Contributions
	Assumptions and Scope

	Organization

	An Overview of ScalaTrace
	Intra-node and Inter-node Compression
	ScalaTrace Encoding Schemes
	Preserving Time in Communication Traces
	ScalaReplay

	ScalaExtrap: Trace Extrapolation for SPMD Programs
	Introduction
	Communication Extrapolation
	Topology Identification
	Matching MPI Events for Extrapolation
	Extrapolation of MPI Events
	Lossy Extrapolation
	Extrapolation of Timing Information

	Experimental Framework
	Experimental Results
	Correctness of Communication Trace Extrapolation
	Accuracy of Extrapolated Timings: Timed Replay
	Lossy Extrapolation

	Application of the Extrapolated Trace
	Extrapolated Trace for Code Generation
	Extrapolated Trace for Performance Experiments

	Related Work
	Summary

	Automatic Generation of Parallel Benchmarks from Applications
	Introduction
	Related Work
	coNCePTuaL
	Benchmark Generation
	Overview
	Engineering Details
	Combining Per-Node Collectives
	Eliminating Nondeterminism
	The Generation of Scalable Benchmarks
	Sources of Performance Inaccuracy

	Evaluation
	Experimental Framework
	Communication Correctness
	Accuracy of Generated Timings
	Correctness and Timing Accuracy of Generated Scalable Benchmarks
	Applications of the Benchmark Generator

	Summary

	ScalaTrace 2
	Introduction
	Communication Trace Compression and Replay
	Elastic Data Element Representation
	Compressing Partially Matching Loops
	Approximate Stack Signature Matching
	Loop Agnostic Inter-node Compression
	Customizable Instrumentation
	Replaying Non-deterministic Trace

	Evaluation
	Trace File Size
	Probabilistic Replay Time Accuracy

	Related Work
	Summary

	Future Work
	Customizable Instrumentation
	A Versatile Tracing Framework with Tunable Precision
	Scalable Numerical Data Analysis Techniques

	Conclusion
	References

