
ABSTRACT

NOETH, MICHAEL J. Scalable Compression and Replay of Communication Traces in

Massively Parallel Environments. (Under the direction of Associate Professor Dr. Frank

Mueller).

Characterizing the communication behavior of large-scale applications is a difficult

and costly task due to code and system complexity as well as the time to execute such

codes. An alternative to running actual codes is to gather their communication traces and

then replay them, which facilitates application tuning and future procurements. While past

approaches lacked lossless scalable trace collection, we contribute an approach that provides

near constant-size communication traces regardless of the number of nodes while preserving

structural information. We introduce intra- and inter-node compression techniques of MPI

events and present results of our implementation. Given this novel capability, we discuss

its impact on communication tuning and beyond.

Scalable Compression and Replay of Communication Traces in Massively
Parallel Environments

by

Michael J. Noeth

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Master of Science in

Computer Science

Raleigh

2006

Approved By:

Dr. Xiaosong Ma Dr. Tao Xie

Dr. Frank Mueller
Chair of Advisory Committee

ii

To my parents: Thank you for everything.

iii

Biography

Michael Noeth was born May 26, 1982 in Washington D.C. He received his Bachelor

of Science in Computer Science from the University of Virginia in May of 2004. With the

defense of this thesis, he will receive his Master’s of Science in Computer Science from North

Carolina State University in December of 2006.

iv

Acknowledgements

I would like to acknowledge the following people for their support in completing

my thesis: My adviser, Dr. Frank Mueller, the folks at Lawrence Livermore National Labs,

Bronis R. de Supinski, Martin W. J. Schulz, and Dong Ahn, my thesis committee, Dr. Tao

Xie, and Dr. Xiaosong Ma and all the graduate students in the systems lab. Their guidance

and support made this thesis possible.

v

Contents

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Message Passing Interface - An Overview 2

1.1.1 MPI Implementations . 2
1.1.2 Profiling MPI . 2
1.1.3 Stencil Codes in MPI . 2

1.2 Motivation . 3
1.3 Design Overview . 4

1.3.1 Recording Traces . 4
1.3.2 Replaying Traces . 5

1.4 Paper Layout . 5

2 Task-Level Compression Framework 6
2.1 Task-Level Overview . 6
2.2 Umpire’s Role . 7

2.2.1 Initialization Routines . 8
2.2.2 Recording Routines . 8
2.2.3 Cleanup Routines . 9

2.3 Compression Over MPI Calls . 9
2.3.1 Compression Algorithm Complexity 12

2.4 Compression Algorithm Examples . 12
2.4.1 Single Terminal Example . 12
2.4.2 Multiple Terminal Example . 13

2.5 Cross-Node Framework Interoperability . 17
2.5.1 Stack Trace Signatures . 17
2.5.2 Source and Destination Offsets . 19
2.5.3 Request Offsets . 21
2.5.4 MPI Waitsome Special Case . 23

vi

3 Cross-Node Compression Framework 26
3.1 Overview . 26
3.2 Tree Overlay . 27
3.3 Merging Algorithm . 29

3.3.1 Merge Algorithm Description . 29
3.3.2 Merge Algorithm Examples . 30
3.3.3 Operation Sequence Dependencies 32
3.3.4 Merge Algorithm Complexity . 33

3.4 Recursive Task Participant Lists . 33

4 Replay Mechanism 36
4.1 Scanning for Task-Level Operation Queues 36
4.2 Replay Algorithm . 38
4.3 Time Deltas - Simulating Computation . 39

5 Experimental Results 40
5.1 Experimental Environment . 40

5.1.1 Blue Gene/L Architecture . 40
5.1.2 Stencil Micro-Benchmarks . 42
5.1.3 Raptor Production-Scale Codes . 42

5.2 Design Decision Experiments . 43
5.3 Validation Procedures . 47
5.4 Performance Results . 47
5.5 Replay Results . 50

6 Related Work 53

7 Conclusion 55

Bibliography 57

vii

List of Figures

1.1 Interaction of recording components . 5

2.1 Compression algorithm . 10
2.2 Single terminal compression example . 14
2.3 Multiple terminal compression example . 15
2.4 Multiple terminal compression example continued 16
2.5 Stack signature example distinguishing call sites 18
2.6 Destination / source parameter compression algorithm 20
2.7 2D stencil . 21
2.8 Request offset example . 22
2.9 MPI Waitsome definition [14] . 24
2.10 General usage of MPI Waitsome . 25

3.1 Cross-node example . 27
3.2 Tree overlay algorithm controlling merger process 28
3.3 Bit operations used on processor rank within the binary tree 28
3.4 Binary tree overlay for 20 tasks . 29
3.5 Merge algorithm used to merge slave trace into master trace 30
3.6 Merge algorithm example . 31
3.7 Merge algorithm dependency issue . 32
3.8 Recursive task participant list . 34
3.9 Logical stencil - interior nodes circled . 34
3.10 Algorithm to unwind recursive task participant list 34

4.1 Comprehensive trace format . 37
4.2 Algorithm to replay a compressed operation queue 38

5.1 Hierarchical layout of BG/L . 41
5.2 2D stencil illustrating nine distinct communication groups 44
5.3 Task participant list - Range implementation (logarithmic scale) 45
5.4 Balanced binary tree . 45
5.5 Task participant list - RSD implementation (logarithmic scale) 46
5.6 Trace file size per node on BlueGene/L . 48
5.7 Memory usage per node on BlueGene/L . 51

viii

5.8 3D stencil trace file, varied time steps . 51

ix

List of Tables

2.1 Replay operation data structure . 9
2.2 Uncompressed call trace . 18
2.3 Naive (non structural) RSD . 19
2.4 Structural RSD . 19
2.5 Event sequence for request buffer example 23

1

Chapter 1

Introduction

An important aspect of performance analysis in any parallel environment is com-

munication efficiency. Evaluation of communication efficiency can be approached in many

ways, yet we focus on run-time analysis. Within the run-time analysis domain, one can

use statistical sampling to analyze communication with low computational overhead to the

application being profiled [20, 22]. On the other end of the spectrum, another approach to

run-time communication analysis is to collect a complete trace of all communication. Most

analysis techniques use variations on these approaches to achieve their goals trading off

between paying low instrumentation costs (statistical approach) or gathering more commu-

nication information (full trace approach). This thesis explores recording a complete trace

of all communication for post-run analysis as well as a distilled communication replay.

In massively parallel environments, such as IBM’s Blue Gene/L (BG/L), new tools

are required to digest and store the enormous amounts of data created by a full trace on a

system with thousands of nodes [1] . We propose a two-tier framework to collecting traces.

The first tier accumulates a queue of communication operations on a per task basis (i.e.at

the task-level). In order to minimize memory usage as well as communication bandwidth

for the second tier of the framework, the task-level framework compresses the operation

queue on-the-fly. The second tier takes advantage of the ”single program, multiple data”

(SPMD) paradigm [7] by merging all the task-level traces into a single comprehensive cross-

node trace. Our framework is able to collect traces of MPI applications on BG/L for real

world applications in a scalable manner. The framework also allows for replay of the traces

collected to distill communication from the rest of the application.

2

1.1 Message Passing Interface - An Overview

The Message Passing Interface (MPI) is a specification for a library of functions

that perform communication primitives based on the message passing paradigm [14]. MPI

was designed with high-performance computing (HPC), massively-parallel machines and

workstation clusters as the primary target. It provides the means for multiple threads of

execution working simultaneously and cooperatively using communication to solve a prob-

lem. Generally, the multiple threads of execution run on separate processors. Occasionally,

more than one thread may run per processor(s) [5]. Each thread of execution is referred to

as a task.

1.1.1 MPI Implementations

Since MPI is only a specification, there are multiple implementations of MPI avail-

able. Some of the most popular ones today are MPICH [11], LAM MPI [5], and vendor-

specific implementations (independently developed for specific architectures or based on

existing implementations to provide additional features). Slight variations between imple-

mentations can mean tools for one particular implementation may not work on another. An

additional goal of this project was to create a tracing and replaying tool that would work

on any MPI implementation.

1.1.2 Profiling MPI

In order to record MPI communication, a mechanism is necessary to determine

what function calls are being made to the MPI library. Most MPI implementations provide

a profiling layer that wraps each MPI call and allows a user to instrument additional code

directly before or after the MPI call. This simple wrapping technique exposes the necessary

information for lossless replay. Specifically, it exposes which function was called as well as

all of its parameters.

1.1.3 Stencil Codes in MPI

MPI’s basis on the message-passing paradigm makes it possible to implement sten-

cil codes fairly easily. Our recording framework is specifically tuned to capture stencil traces.

A stencil code usually begins in a certain state with each task representing a logical

3

portion. Each logical portion communicates its state with neighboring portions in a step-

wise fashion. After each step, logical portions update their state. Usually, this activity

occurs until the system has reached a steady state (i.e.the logical portions are no longer

changing beyond a certain threshold).

As an example, consider the Jacobi Relaxation problem. In this problem, there is

a floor divided up into a grid of tiles. Each tile represents a logical portion of the problem.

Each interior tile will have eight tiles surrounding it (also called nine-point stencil). Each

tile begins with a different initial state (i.e.temperature). At each step during the problem

(where a step represents the passage of time), the tiles communicate their current state

(temperature) to all neighboring tiles. Using this information, the tiles update their current

state (temperature) based on a convergence (heat diffusion) algorithm. Once the tiles are

no longer changing state (temperature) or diverge less than some epsilon, a steady state

has been reached and the Jacobi Relaxation algorithm terminates.

1.2 Motivation

Scalability is one of the main challenges to Peta-scale computing. One central

problem lies in a lack of scaling of communication. However, understanding the commu-

nication patterns of complex large-scale scientific applications is non-trivial. Instead of

source-code analysis, we promote a trace-driven approach to analyze MPI communication.

While past approaches fail to gather full traces for hundreds of nodes in a scalable man-

ner or only gather aggregate information, we have designed a framework that extracts full

communication traces of near constant size regardless of the number of nodes while preserv-

ing structural information of the program. In addition, compressed traces can be replayed

on-the-fly independent of the original application, which aids performance tuning of MPI

communication and facilitates projections on network requirements for future large-scale

procurements.

A complete trace of all MPI operations is advantageous to have. With a complete

trace, post-processing analysis of communication is possible. A rich set of automated tools

can be developed to take advantage of all the information kept in each trace. Although we

have not developed any automated post-processing tools, it is clear that with a comprehen-

sive list of all communication activity, one should be able to determine the communication

patterns of the profiled application. Since our work focuses on stencil codes, we found that

4

some of the compression algorithms we use can be helpful in identifying specific information

about the stencil. It is possible to extract the dimension of the stencil, the layout, and even

the number of steps executed.

Another advantage of a complete trace is the ability to replay the communication

distilled from the rest of the application. Used in combination with other profiling tools, we

can determine where communication bottlenecks may be occurring. In addition, the ability

to replay an application was of interest on BG/L to investigate task layout configurations

in Miranda [6]. Based on the task layout, performance results varied widely and the replay

tool would prove useful in identifying a model for improved task layout.

1.3 Design Overview

Our trace-driven approach to analyzing MPI communication is based on two tools

that record and replay traces. The recording tool is relinked into an application to replace

the MPI library. All of the MPI calls are still performed, but additional code has been

inserted to create a communication trace. The replay tool uses traces generated by the

recording tool to replay MPI communication.

1.3.1 Recording Traces

Recording traces is accomplished through a wrapper generator that allows us to

instrument an arbitrary MPI implementation with additional code. In the wrappers, we

trace which MPI function was called along with call parameters for each task. As each

call is traced, we perform on-the-fly compression. Upon application termination, inter-node

compression is triggered over all tasks resulting in a single trace that preserves structural

information suitable for the replay tool.

Figure 1.1 depicts the recording framework. Once an MPI application is re-linked

with our library, all MPI calls are intercepted by the MPI function wrapper. At this point,

the MPI function and associated parameters are recorded by the task-level framework and

compressed on-the-fly. The MPI function wrapper also makes a call to the actual MPI

library so the communication function is invoked. At the termination of the application,

each task has its own operation queue. These queues are compressed into a single trace file

by merging them together in the cross-node framework. The result is a single comprehensive

operation queue.

5

Cross−Node Framework

Comprehensive Operation Queue

MPI LibraryTask−Level Framework

Task X Operation Queue

MPI Application

MPI Function Call

MPI Function Wrappers

Figure 1.1: Interaction of recording components

1.3.2 Replaying Traces

The comprehensive operation queue generated by the recording tool is used to

replay and analyze an application’s distilled MPI communication. The entire trace file is

read into memory so disk reads do not affect performance analysis. The trace is replayed

by unwinding the compressed traces on-the-fly using a decompression algorithm.

1.4 Paper Layout

This thesis is structured as follows. Chapter 2 presents the task-level framework

design. This includes discussion of design, compression algorithms, and other special consid-

erations necessary for interoperability between the task-level framework and the cross-node

framework. Chapter 3 discusses the design details of the cross-node framework. Chapter

4 discusses how the replay mechanism works with traces created by the recording tool.

Chapter 5 discusses validation procedures, experiments to decrease storage and memory

requirements, and experiments with real applications. Chapter 6 cites related work and

differentiates our system from contemporary projects. Finally, Chapter 7 summarizes the

work.

6

Chapter 2

Task-Level Compression

Framework

The objective of this work is to capture an application’s communication patterns

for performance analysis and replay purposes. We perform two phases in order to capture a

compressed trace of an application’s MPI communication. The first phase is at the task-level

where MPI calls are intercepted and recorded. The second phase of compression merges

each task-level trace into a single comprehensive trace. This chapter describes the process

of tracing MPI calls at the task-level.

2.1 Task-Level Overview

Recording the MPI communication of an application at the task-level is trivial

if allotted unlimited storage and memory resources. It would simply consist of noting

what communication calls were made and the associated parameters for each task. For

c communication calls, each task would have c records. The number of communication

calls is closely associated with an application’s complexity, but it is suffice to say that this

methodology would result in potentially enormous trace files.

In order to mitigate the size of task-level traces, we perform compression over the

MPI communication operations performed by each task. Since there are usually very regular

patterns (mostly loops) in which MPI communication is performed, this method drastically

reduces the size of the individual trace. Better compression at the task-level is possible using

bzip compression [17] but the algorithm used does not maintain any structural information

7

about the trace. Without additional information about the trace, further compression is not

possible. Thus, the second phase of capturing MPI communication across nodes becomes

impossible using this type of algorithm. Further discussion of why the second phase is

necessary is discussed in the following chapter.

Each processor participating in the execution of an MPI parallel program performs

a series of communication functions to accomplish its goal. The task-level compression

framework captures these communication function calls using Umpire’s [21] MPI wrapper

generator and a specification that instructs Umpire how to instrument each call. The spec-

ification is expressly written to accumulate which call was made and what the parameters

were at the time of the call. Each task collects a trace in the task-level compression frame-

work. Initial traces were taken on a few MPI applications written for BG/L and the sizes

of the files generated ranged from fifty to one hundred gigabytes per task. The current

approach would be un-scalable on BG/L when attempting to use its full 64 thousand pro-

cessors (hundreds of terabytes of storage would be required). We use compression over MPI

calls to decrease the size of the trace files at the task-level and mitigate the communication

needs when merging the traces in the second phase of capturing a single comprehensive

trace.

2.2 Umpire’s Role

Umpire was originally designed to provide run time debugging information for MPI

applications in the form of deadlock detection, resource exhaustion, etc. In order to perform

these debugging features, Umpire generates wrapper functions for all MPI calls within an

MPI implementation (Umpire is portable and can be used on any MPI 1.2 implementations).

The wrappers are used to collect information about which calls are being made, increment

counters, and allows for many of the run-time debugging features to perform their task of

detecting specific programming errors.

In the task-level compression framework, Umpire is used to provide hooks into an

arbitrary MPI implementation’s function calls. This is a very useful feature which allows

the task-level compression framework to record all MPI communication. The task-level

compression framework doesn’t need any of the error detection capabilities that Umpire

provides but rather the portable wrapper generation feature. By using Umpire to generate

the function wrapper calls we are able to perform traces on any MPI implementation. All

8

the extraneous error detection code was stripped out of Umpire to simplify the task-level

compression framework as much as possible.

For extensibility purposes, Umpire uses a specification to instruct the wrapper

generator on what code to insert before and after an MPI call is made. All debugging

insertions were removed and replaced with simple trace recording code. There are three

classes of recording code: (1) initialization routines, (2) recording communication routines,

and (3) cleanup routines.

2.2.1 Initialization Routines

Since every MPI application calls MPI Init before any other MPI call, this call

was instrumented with additional initialization routines. During initialization, the following

tasks are performed by parsing an input file:

• Determine the output format (we currently support uncompressed ASCII, uncom-

pressed binary, and a compressed ASCII format).

• Setup and allocate memory for all data structures necessary for the output format

selected.

• Open a file for the trace to be written to.

• Record important global information such as the task MPI rank and the actual value of

MPI COMM WORLD (this is useful in the event that someone wishes to replay traces

on a different machine or MPI implementation than the recording was performed).

Other control information is also initialized.

2.2.2 Recording Routines

The routines that record call and parameter information of MPI calls perform

their tasks based on the output format determined by the initialization routine. In all

output formats, a single basic objective is accomplished: record what MPI call was made

and the parameters used for the call. In order to minimize the number of calls profiled, the

task-level compression framework only records MPI calls that perform non-informational

work. Thus, calls such as MPI Comm rank, MPI Comm size, and MPI Type size are not

recorded because they will not affect the replay if left out. These calls are informational,

and no communication or state changes to the MPI state machine are performed.

9

Table 2.1: Replay operation data structure
Call / meta info Parameter info

data type name data type name
int sync bytes int comm
int seq num int count

short int op int dest
int arrays int source

N/A ETC

In the uncompressed output formats, the call and parameter information is written

directly to file. In the compressed ASCII output format, the information is stored in the

data structure depicted in Table 2.2.2 to be later compressed into a single trace file. A

queue of these data structures is kept in memory, which the compression algorithm is run

on to compress any possibly repeated calls.

2.2.3 Cleanup Routines

The final class of routines are for cleanup purposes. The cleanup routine is inserted

into MPI Finalize since it should be the final MPI call made in an MPI application. This

routine serves to clean up by releasing memory allocated for data structures. It also serves

as the starting point for merging individual task-level traces into a single comprehensive

trace.

2.3 Compression Over MPI Calls

Compression takes advantage of patterns to represent a list of terminals using

regular section descriptors (RSDs) and power regular section descriptors (PRSDs) [13]. An

RSD can be used to describe a pattern recognized in a sequence of terminals. To further our

compression capabilities, PRSDs can represent patterns of RSDs and terminals in a similar

fashion. For the purposes of our task-level compression framework, we are most interested

in compressing operation terminals (a specific MPI operation and its associated parameter

list) into a series of terminals, RSDs and PRSDs.

The algorithm compresses the queue of operations recorded as each operation is

appended onto the tail of the queue. After an operation is appended onto the tail of the

queue, the algorithm in Figure 2.1 is run. It is a greedy algorithm that attempts to match

10

Compress Queue(Queue Op Queue)
Target Tail = Op Queue.tail
Match Tail = Search for match of Target Tail
if(Match Tail)

Target Head = Match Tail.next
Match Head = Search for match of Target Head
if(Match Head)

Sequence Matches = TRUE
Target Iter = Target Tail
Match Iter = Match Tail
while(Target Iter && Target Iter != Target Head)

if(Target Iter does not match Match Iter)
Sequence Matches = FALSE
break

Target Iter = Target Iter.prev
Match Iter = Match Iter.prev

if(Sequence Matches)
Increment iteration count on Match Head
Delete elements Target Head to Target Tail

Figure 2.1: Compression algorithm

the first sequence it finds based on a memory analysis compression algorithm called SIGMA

[15]. There are four distinct steps the algorithm goes through to attempt to compress a

newly appended operation terminal:

Step 1: Compression Target Identification

This step’s purpose is to identify a sequence of operation terminals, RSDs, or

PRSDs by designating the head (where the sequence begins in the queue) and the tail

(where the sequence ends in the queue). Identification of the tail is trivial; the end of the

queue is always the compression target’s tail. The head of the compression target is found

by searching backwards through the queue starting from the tail. The algorithm is trying

to identify a matching element for the compression target’s tail. Once a match has been

found, we set the head of the compression target to be the next element in the queue. If no

match is found, compression is not possible and the algorithm discontinues. Conversely, if

a match is found, the queue is then searched for a sequence that matches the compression

target.

11

In the event that a long sequence of events is in the queue, this step can become

quite costly. An example of this situation occurs when the algorithm continuously fails to

compress any of the operations. The queue continues to grow and becomes more and more

costly to search. To mitigate the effects of long uncompressed sequences, a window can be

specified in the input file. The window specifies how far back in the queue this step can go

before the algorithm decides that it cannot find a matching element. A warning is issued by

the task-level framework to indicate that additional compression may be possible whenever

the window is reached and the search is halted. Only a warning is issued since the resultant

trace is semantically the same for replay purposes although it may have the potential for

further compression.

Step 2: Merge Target Identification

This step’s purpose is to identify a sequence of operation terminals, RSDs, or

PRSDs that match the compression target. Identification of the tail is trivial; from the last

step, the algorithm already knows a potential matching tail (the element right before the

compression target’s head). A search is commenced from the merge target’s tail to identify

a head that matches the compression target’s head. On a match, the algorithm continues on

to the next step. If no match is found, compression of the compression target identified by

the previous step is not possible. The algorithm goes back to the previous step to identify

another potential sequence of operations as the compression target.

Step 3: Match Verification

This step’s purpose is to ensure that all elements of the compression target and

the merge target match. Two iterators begin at the tails of each sequence that ensure

each element between the head and the tail match. In addition to matching operations

and parameters, loop counters (referred to as looping information) are also embedded into

already existing sequences and must also be matched. The head of each sequence is a special

case in which looping information does not necessarily have to match. If the algorithm

attempts to merge a sequence into an existing RSD or PRSD, the heads of the two sequences

do not have to have perfectly matching loop information for a merge to take place. If any

elements of the sequences do not match (beside the heads), compression of the current

12

compression target is not possible and the algorithm goes back to the first step to try and

identify another compression target.

Step 4: Compression

This step’s purpose is to perform the actual compression now that a compression

target and merge target have been identified as valid. The head of the merge target has

the necessary loop information encoded (this information includes an iteration count and a

pointer to the end of the sequence). If the merge target’s head did not have loop information

encoded before, an identifier for the merge target’s tail is recorded and the number of loop

iterations is set to two. If the merge target’s head already had loop information encoded, the

algorithm finds the proper loop level and adds another iteration. The final step is to delete

all the elements from in the compression target’s sequence from the end of the operation

queue. Since they are encoded in the merge target’s head as an additional iteration, these

elements are no longer necessary.

2.3.1 Compression Algorithm Complexity

The algorithm’s complexity is based on the number MPI operations traced, T.

For T operations, the algorithm must traverse through the current operation queue, which

could be as long as T. To avoid a O(T 2) algorithmic complexity, a window of size W, can

be specified, which limits how far from the tail of the queue the algorithm will search back.

When the window is in use, the algorithmic complexity becomes O(TW).

2.4 Compression Algorithm Examples

To illustrate how compression works in the task-level framework, two simple ex-

amples will be presented. For simplicity’s sake, ’op#’ will represent a terminal. If the ’#’

matches, then the terminals match. The first scenario is merging a single terminal into an

RSD. The second scenario is merging multiple terminals into an RSD.

2.4.1 Single Terminal Example

For the first example, to illustrate the single terminal case, we examine the oper-

ation stream, op1 op2 op3 op3 op3. It is apparent that op3 is the single terminal we are

13

attempting to merge. The following description explores how the algorithm compresses the

single terminal stream step by step:

• Stage 1 - When op1, op2, and op3 are appended onto the end of the queue, there are

no matches, and no compression is performed (step 1 fails). Figure 2.2(a) depicts the

state of the queue after these operations have been processed.

• Stage 2 - When op3 is appended onto the end of the queue, a match is found and step

1 of the algorithm sets the head and tail of the target. A matching merge target is

identified in step 2 of the algorithm. Figure 2.2(b) depicts the state of the queue after

step 2 of the algorithm. Step 3 compares the merge target and compression target to

verify the single terminal being compressed matches.

• Stage 3 - The 1st and 2nd op3 have been compressed. Additional information regarding

the compression is attached to the former merge target’s head as depicted in Figure

2.2(c). A 3rd op3 is added and a match is found. The sequence of events in Stage 2

is repeated as depicted in Figure 2.2(c).

• Stage 4 - The final state at the end of the compression of the operation stream is

depicted in Figure 2.2(d). Note that when the 3rd op3 was compressed, the loop

information is simply adjusted rather than creating new loop information as in Stage

3.

2.4.2 Multiple Terminal Example

For the second example, to illustrate the multiple terminal case, we examine the

operation stream op1 op2 op3 op4 op5 op3 op4 op5. The following description explores how

the algorithm compresses the multiple terminal case stream step by step:

• Stage 1 - When op1, op2, op3, op4 and op5 are appended onto the tail of the queue,

there are no matches and no compression is performed (step 1 fails). See Figure 2.3(a)

for the state of the operation queue.

• Stage 2 - When op3 is appended to the tail of the queue, we find a match and the

target head is set to op4. The merge tail is trivially set but we cannot find a merge

head (step 2 fails). Figure 2.3(b) depicts where the three pointers (target tail, target

head, and merge tail) are set.

14

op1 op2 op3

queue
head

queue
tail

(a) Stage 1

op1 op2 op3 op3

merge head
merge tail

target head
target tail

(b) Stage 2

op1 op2 op3 op3

target head
target tail

merge head
merge tail

iters=x2
tail=op3

(c) Stage 3

op1 op2 op3

tail=op3
iters=x3

(d) Stage 4

Figure 2.2: Single terminal compression example

15

op1 op2 op3

queue
head

queue
tail

op4 op5

(a) Stage 1

op1 op2 op3 op4 op5 op3

merge tail

target head target head

(b) Stage 2

op1 op2 op3 op4 op5 op3 op4

merge tail

target head target head

(c) Stage 3

Figure 2.3: Multiple terminal compression example

16

op1 op2 op3 op4 op5 op3 op4 op5

target headtarget headmerge head merge tail

match 3

match 2

match 1

(a) Stage 4

op1 op2 op3 op4 op5

tail=op5
iters=x2

(b) Stage 5

Figure 2.4: Multiple terminal compression example continued

17

• Stage 3 - When op4 is appended to the queue, we find a match and a similar failure

to Stage 2 occurs (step 2 fails). See Figure 2.3(c) for the state of the operation queue.

• Stage 4 - When op5 is appended, we find a match and the target head is set. We are

also able to find a matching merge head. A scan over each element shows that all

match. Figure 2.4(a) depicts how the algorithm works from right to left scanning for

matches.

• Stage 5 - After compression occurs, we arrive at the final state of the operation queue.

Note that the repeated op3, op4, and op5 in 2.4(a) were deleted from the end of the

queue and are replaced with the RSD definition below op 3 in Figure 2.4(b).

2.5 Cross-Node Framework Interoperability

Additional features and components were necessary for the task-level framework

to provide traces amiable to the cross-node framework (which merges the traces into a

single trace). Structural information is necessary to take advantage of SPMD nature of

MPI programs [7] during the merging phase. To maintain structural information, a stack

trace signature was added to each operation to distinguish it from similar MPI operations

at a different location in the code. Source and destination offsets and request offsets were

also added to enable the cross-node framework to merge similar operation sequences with

differing parameters. Due to the nondeterministic nature of the function, MPI Waitsome,

a special method of tracing this call was also added.

2.5.1 Stack Trace Signatures

In the task-level framework, a naive approach to compression may simply attempt

to match each part of an operation terminal (i.e. what MPI call it was and the parameters).

On a match, the algorithm would attempt to compress the new operation terminal into an

RSD. In order to achieve a better chance of compression when merging across nodes, we

perform a more selective approach that reduces the amount we can compress at the task-

level but allows us to keep structural information necessary for the cross-node framework.

We use a stack trace to generate a unique signature for each MPI function called.

By adding this additional matching metric to the compression algorithm, we are able to

keep structural information in our compressed traces.

18

void bar()
call foo() // call site 1

void foo()
call MPI Call 1(param list 1) // call site 2

void main()
...
call MPI Call 1(param list 1) // call site 3
call foo() // call site 4
call bar() // call site 5
for(i = 0 to 5)

call MPI Call 1(param list 1) // call site 6
...

Figure 2.5: Stack signature example distinguishing call sites

Table 2.2: Uncompressed call trace
Sequence Num Operation Parameters Call site

0 MPI Call 1 param list 1 3
1 MPI Call 1 param list 1 4,2
2 MPI Call 1 param list 1 5,1,2
3 MPI Call 1 param list 1 6
4 MPI Call 1 param list 1 6
5 MPI Call 1 param list 1 6
6 MPI Call 1 param list 1 6
7 MPI Call 1 param list 1 6

Consider the example in Figure 2.5. In this example code, every MPI call made is

the same call with the same parameter list (i.e. they match naively). Table 2.2 illustrates

an uncompressed trace of the calls made when the code in Figure 2.5 is run. If we use naive

matching, we can compress all eight calls into a single RSD represented in Table 2.3 but we

lose structural information necessary for the cross-node compression framework. We find it

more useful for merging traces to maintain structure and distinguish between calls based on

their stack trace (equivalent to the ’call site #’ in Figure 2.5). The structural information

allows us to attempt to find regular expressions to represent the parameter lists better.

Table 2.4 shows the compressed trace with maintained structural information.

In order to implement the stack signature used to distinguish between similar MPI

calls, a stack walk is performed in the Umpire wrapper of each MPI call. The stack walk

19

Table 2.3: Naive (non structural) RSD
RSD 1

Op = MPI Call 1
Params = list 1
Iterations = 8

Table 2.4: Structural RSD
RSD 1 RSD 2 RSD 3 RSD 4

Op = MPI Call 1 Op = MPI Call 1 Op = MPI Call 1 Op = MPI Call 1
Params = list 1 Params = list 1 Params = list 1 Params = list 1
Stack trace = 3 Stack trace = 4,2 Stack trace = 5,1,2 Stack trace = 6
Iterations = 1 Iterations = 1 Iterations = 1 Iterations = 5

records the call location (rather than the return address) and concatenates each location in

a string to generate a unique identifier. The memory addresses recorded in the string are

separated by an underscore character. Using this methodology we are able to distinguish

sequence 1 and sequence 2 as separate calls in Table 2.2. Alternatively, a simple line number

and file name was considered as a unique signature but was rejected since it would not be

able to perform the aforementioned distinction: the final call site is 2 and, thus, they would

match.

Since a string compare is necessary to determine if two separate calls match, we

also keep track of an XOR signature. The XOR signature is an integer which XORs every

memory address encountered on the stack walk. Thus, a quick check to see if the XOR

signatures match can be made before calling the more costly string compare function. An

XOR signature match alone is not enough to accept a match, but it is enough to reject one.

This is because a single XOR signature can represent multiple full string signatures. Due

to proximity in memory addresses, this occurs with a far higher probability than one might

intuitively expect.

2.5.2 Source and Destination Offsets

As an additional measure to achieve a better chance of compression when merging

across nodes, we have implemented a method of tracking differences in parameters within the

same MPI call. Currently, this additional measure of compression is only performed across

MPI Send and MPI Recv calls on the destination and source parameters, respectively. If

only the destination or source parameter differ during the verify step of compression, a list

20

if only [destination, source] parameter do not match
CASE 1: merge iter & target iter do not have offset lists

offset1 = rank - merge iter->parameter
offset2 = rank - target iter->parameter
create an offset list encoded on merge iter containing offset1 & offset2

CASE 2: merge iter has an offset list and target iter does not
offset1 = rank - target iter->parameter
add offset1 to merge iter offset list

CASE 3: merge iter & target iter have offset lists
if both lists match: normal compression occurs
else discontinue compression

Figure 2.6: Destination / source parameter compression algorithm

of parameters is created and maintained. In order to achieve cross-node compression, we

track the offset of the destination or source parameter from the task’s MPI COMM WORLD

rank. The algorithm for parameter compression is shown in Figure 2.6. During the verify

step of compression (see step 3 of the compression description), when the parameters are

checked to see if they match, if only the destination or source do not match, than the

parameter offset algorithm is run.

Consider communication with neighbors following a stencil paradigm. Stencil com-

munication is usually performed many times over loops. Since the same stencil communi-

cation is used, ’CASE 3’ in Figure 2.6 will discontinue parameter compression if it detects

that the stencil has begun to repeat itself. This allows us to keep the offset lists relatively

short and justifies the simplistic approach to parameter compression.

Parameter compression targeting MPI Send and MPI Recv calls seeks to take

advantage of stencil codes. Generally, when point to point communication is used in an

MPI application, a pattern is present. This pattern usually has all tasks participating in

the SPMD paradigm communicating with neighboring processors. We have observed that

the communication with neighbors can be captured by the rank offset of the parameter.

Thus, multiple tasks can share a common sequence by comparing the parameter offsets.

Consider the two-dimensional stencil depicted in Figure 2.7 as an example of how

multiple tasks can share a common sequence of events. The left grid displays task 9’s view

of the logical 2D space while the right grid displays task 10’s view of the logical 2D space.

21

13 14 15

6 7

0 1 2 3

4 5

8 9 10 11

12 13 14 15

6 7

0 1 2 3

4 5

8 9 10 11

12

Figure 2.7: 2D stencil

Both tasks are performing a five-point stencil beginning at their left (task 9 communicates

with task 8 first and task 10 communicates with task 9 first). Communication is depicted by

an arrow and it iterates in a clockwise fashion. Based on this premise, task 9 communicates

with tasks 8, 5, 10, and 13 while task 10 communicates with tasks 9, 6, 11, and 14 (in

that order). If we replace the targets of communication with offsets, both tasks 9 and 10

communicate with tasks -1, -4, +1, and +4 relative to their rank. Thus, when we move into

the cross-node compression, both tasks 9 and 10 can use the same compressed sequence of

events which increases compression.

2.5.3 Request Offsets

Request parameters can have similar effects to the destination and source param-

eters during the cross-node framework’s merging process. Request handles are used during

asynchronous communication to indicate when certain events have completed or to wait on

those events. Thus, a request handle is generally used twice: once to associate it with an

asynchronous event, and once to determine if that event has occurred (although the second

usage is not necessary). When a request is associated with an asynchronous event, it is

assigned an integer handle that the MPI implementation uses to identify the event.

The problem is that request handles are non-deterministically assigned integers.

For example, if task 0 and task 1 both execute the code listed in Figure 2.8, the cross-

22

MPI Request sreq list[NUM REQS]
MPI Request rreq list[NUM REQS]
for i = 0 to NUM REQS

MPI Irecv(..., rreq list[i])
MPI Isend(..., sreq list[i])
// perform computation
MPI Wait(rreq list[i])
MPI Wait(sreq list[i])

Figure 2.8: Request offset example

node framework should be able to merge the sequence of events as the same. This is not

always the case since the request parameter for the MPI Isend and MPI Irecv may generate

different integers as handles. Thus, the cross-node framework would not be able to merge

the sequences.

This problem is handled with a circular request buffer. Each task allocates an

array of request handles (the size is specified in an input file and is loaded during the

initialization stage). A size variable (representing the size of the request buffer) and a current

variable (representing the current position in the request buffer) are tracked throughout the

execution of the task-level framework. When a request is associated with an asynchronous

event, such as MPI Isend, the request handle is stored in the request buffer at the current

position and the current variable is incremented. It is not necessary to track the request

handle further (i.e. with the operation’s parameter data) since a similar mechanism will be

used in the replay framework to reconstruct the communication (described in detail later).

When a request handle is used for a second time (i.e. MPI Wait, MPI Test, etc),

rather than recording the actual handle with the operation, we record its offset from the

current variable in the request buffer. This allows for the MPI implementation to assign

arbitrary request handles across tasks but still allows the cross-node frame work the ability

to merge similar event sequences.

As an example, assume that we are observing the behavior of task 0 and task 1

executing the code in Figure 2.8. Table 2.5 depicts the resultant sequence of events for task

0 and task 1. If we assume that m does not equal n, then if we were to simply record the

request handles, the cross-node frame work would be unable to merge these two sequences.

When using the request buffer, on the first iteration, the send and receive wrappers, which

capture parameters, ignore the request handles (they are recorded in the request buffer

23

Table 2.5: Event sequence for request buffer example
t0 Operation t0 Request Handle t1 Operation t1 Request Handle

MPI Isend m MPI Isend n
MPI Irecv m + 1 MPI Irecv n + 1
MPI Wait m MPI Wait n
MPI Wait m + 1 MPI Wait n + 1
MPI Isend m + 2 MPI Isend n + 2
MPI Irecv m + 3 MPI Irecv n + 3
MPI Wait m + 2 MPI Wait n + 2
MPI Wait m + 3 MPI Wait n + 3
...
MPI Isend m + (NUM REQS - 1) MPI Isend n + (NUM REQS - 1)
MPI Irecv m + NUM REQS MPI Irecv n + NUM REQS
MPI Wait m + (NUM REQS - 1) MPI Wait n + (NUM REQS - 1)
MPI Wait m + NUM REQS MPI Wait n + NUM REQS

instead), and the wait wrapper record offsets -2 and -1 for both tasks. Each subsequent

iteration would also result in offsets -2 and -1 for both tasks. This allows the cross-node

framework the ability to merge the similar sequences.

The reason the buffer is circular is that a wrap around occurs when the end of

the buffer is reached. The idea behind this is that the buffer need only be as large as the

number of active requests. Once a request has been looked up, it is no longer going to be

referred to by that handle as per the MPI specification. Thus, we can overwrite the value

without a problem. If the number of active requests does exceed the buffer space allocated,

when the second usage of a request handle occurs and the task-level framework attempts

to look up its offset, it will fail. An error message is shown to the user indicating they must

allocate additional request buffer space to rectify the problem.

2.5.4 MPI Waitsome Special Case

The function call MPI Waitsome fails to compress well in the cross-node framework

akin to the point-to-point and the asynchronous calls previously described. The failure

to achieve good compression stems from the common problem of mismatched parameters

across tasks. An output parameter for the MPI Waitsome call, which depends on how many

asynchronous operations completed, is the mismatched parameter in this case. Due to the

nondeterministic nature of asynchronous operations, a call to MPI Waitsome by one task

can result in a different output parameter than another task attempting to perform the

24

same functionality. As a result, a special method of tracing MPI Waitsome was necessary

for improved cross-node merging.

MPI WAITSOME(
incount, array of requests, outcount,
array of indices, array of statuses
)

[IN incount] length of array of requests (integer)
[INOUT array of requests] array of requests (array of handles)
[OUT outcount] number of completed requests (integer)
[OUT array of indices] array of indices of operations that completed (array of integers)
[OUT array of statuses] array of status objects for operations that completed (array

of Status)

Waits until at least one of the operations associated with active handles in the
list have completed. Returns in outcount the number of requests from the list ar-
ray of requests that have completed. Returns in the first outcount locations of the array
array of indices the indices of these operations (index within the array array of requests;
the array is indexed from zero in C and from one in Fortran). Returns in the first
outcount locations of the array array of status the status for these completed operations.
If a request that completed was allocated by a nonblocking communication call, then it is
deallocated, and the associated handle is set to MPI REQUEST NULL.

Figure 2.9: MPI Waitsome definition [14]

To understand the problem, we must consider the definition of MPI Waitsome

in Figure 2.9. MPI Waitsome takes an array ”array of requests” of length ”incount” and

blocks until any of the asynchronous requests in ”array of requests” are completed. By

definition, asynchronous communication is nondeterministic. Since the output parameter

”outcount” is dependent on nondeterministic communication, it is also nondeterministic.

Thus, the parameter can vary across tasks depending on how many of the asynchronous

requests have been satisfied.

int total count = 0
math(while(total count < N))

int outcount
MPI Waitsome(... outcount ...)
total count += outcount
Process data on completed requests...

Figure 2.10: General usage of MPI Waitsome

25

To counter the nondeterministic nature of MPI Waitsome, we take advantage of

the function’s semantics. MPI Waitsome is a synchronization primitive that allows overlap-

ping communication and computation for better performance. When multiple asynchronous

point-to-point calls have been issued, it is possible to begin processing data when any of the

requests have been satisfied. Figure 2.10 depicts MPI Waitsome’s general usage. Because

most applications adhering to the SPMD programming paradigm will have a common loop

bound ”N”, it is possible to exploit this fact for better compression.

Based on the general usage of MPI Waitsome, a special handler in the compres-

sion algorithm at the task-level is used. Upon encountering a call to MPI Waitsome, the

compression algorithm delays the on-the-fly compression of the operation queue. Any sub-

sequent MPI Waitsome calls are coalesced by summing the ”outcount” parameter. While

additional MPI Waitsome calls are combined, the compression algorithm continues to delay

the on-the-fly compression. The coalescing process terminates when an MPI call other than

MPI Waitsome occurs. Before the new call is added onto the tail of the operation queue,

the compression algorithm is run to compress the MPI Waitsome call. After this completes,

the compression algorithm continues as originally described by attempting to compress the

MPI call into the operation queue.

26

Chapter 3

Cross-Node Compression

Framework

As noted in the previous chapter, our approach encompasses two phases in order

to capture a compressed trace of an application’s MPI communication. The first phase

captures the communication at the task-level, while the second phase merges each task-

level trace into a single comprehensive trace. This is important when scaling to larger jobs

with many tasks (i.e. BG/L can support up to 64 thousand tasks). Due to the SPMD

nature of MPI programs, many of the tasks perform the same operations. The cross-node

compression framework takes advantage of this by compressing all the individual traces

obtained by the task-level compression into a single, condensed trace.

3.1 Overview

After an application being profiled has reached its last MPI call (MPI Finalize), a

queue containing all MPI operations executed exists in each tasks’ memory. If traces were

written to file at this point, we would be left with an un-scalable solution. As job sizes were

increased, the amount of space necessary for the resultant trace files would grow linearly

with the number of nodes (i.e. a 1 MB trace file with 64 thousand tasks would result in 64

GBs of data).

In order to create a task-scalable trace, we merge individual traces generated by the

task-level framework. Since many of the operation sequences overlap across tasks, there is

no need to replicate them in the final trace. Rather than write out the duplicated sequences,

27

op1

op2

op3

task 0

op4

op5

op6

task 1

op4

op5

op6

task 3

op1

op2

task 2

op3

(a) Unmerged operation queues

op1

op2

op3

op4

op5

op6

task 0 task 1
task 2 task 3

(b) Merged operation queues

Figure 3.1: Cross-node example

task participant lists are appended to one sequence (while the duplicates are discarded).

For example, consider four tasks with operation queues depicted in Figure 3.1(a). We see

that tasks 0 and 2 perform the same sequence of operations and tasks 1 and 3 also have

the same sequence. It is possible to represent the operation sequences in Figure 3.1(a) in

half the space using task participant lists. After merging the operation queues, we would

have only two sequences, as depicted in Figure 3.1(b). This is the premise of the cross-node

compression framework.

3.2 Tree Overlay

The merging algorithm that the cross-node framework uses combines two operation

queues into a single queue. Generally, MPI applications have more than two tasks, so a

control mechanism must guide the merging process. A balanced binary tree [12] overlay

acts as that controller. Upon termination of an MPI application, each task has its own local

operation queue which is passed up the binary tree towards the root.

The algorithm in Figure 3.2 is used to control the merging process. The algorithm

creates three distinct levels within the binary tree: (1) leaf nodes, (2) interior nodes, and

(3) the root node. Leaf nodes do not perform any merging since they have no children to

receive operation queues from; they immediately send their local queue to their parents (the

checks for a left or right child fail in Figure 3.2). Interior nodes (all nodes that are not leaf

nodes nor the root node) begin receiving queues from their children and merge those with

28

if left child exists
recv left child’s queue
merge left child’s queue into local queue

if right child exists
recv right child’s queue
merge right child’s queue into local queue

if rank == root
write local queue to file

else
send local queue to parent

Figure 3.2: Tree overlay algorithm controlling merger process

their own local queue. Once an interior node has merged both its children’s queues into

its local queue, the resultant queue is sent to its parent. This process is repeated until all

queues are merged at the root node. After the merge at the root node is complete, there

are no more queues that have to be merged and the complete trace is written to file.

A balanced binary tree works best for this process because it provides load balanc-

ing implicitly. The merging and sending are the most costly part of cross-node compression.

Since the tree is balanced, each level in the tree performs approximately the same amount

of work in parallel. If the tree were unbalanced, the side with more nodes would become a

bottleneck.

Left Child
given RANK
set MSB + 1 = 1
set MSB = 0

Right Child
given RANK
set MSB + 1 = 1
set MSB = 1

Parent
given RANK
set MSB - 1 = 1
set MSB = 0

Figure 3.3: Bit operations used on processor rank within the binary tree

The tree overlay itself is generated based on processor rank as shown in Figure

3.3. MSB stands for most significant bit. To determine the rank of a task’s child, the MSB

29

0

1 2

3 45 6

7 89 1011 1213 14

15 1617 1819

Figure 3.4: Binary tree overlay for 20 tasks

of its local MPI rank is incremented. From there, the left child is determined by cleaning

the MSB while the right child is determined by setting the MSB. To determine the parent,

the inverse operation is performed. The MSB is unset, while the MSB - 1 is set. The tree

overlay is always the same except that it continues to grow depending on how many tasks

are participating within a job. A tree overlay for 20 tasks is depicted in Figure 3.4.

3.3 Merging Algorithm

The tree overlay controls the merger of operation queues. The actual merger of

two queues is described in this section. The process specifies one of the queues as a master

and the other as slave. The slave queue is merged into the master queue after which the

slave queue is discarded.

3.3.1 Merge Algorithm Description

The algorithm used to accomplish merging is shown in Figure 3.5. Two operation

queues are provided to the algorithm as parameters: a master queue and a slave queue.

The slave queue is merged into the master queue by identifying matching sequences of

operations. To identify a match, three iterators are used: (1) a master iterator, (2) a slave

head, and (3) a slave iterator. The master iterator is used as a place holder for the current

operation sequence in the master queue. The slave head is used as a place holder for the

last matched operation sequence in the slave queue. Lastly, the slave iterator is used to

identify matching sequences between the master queue and the slave queue.

The algorithm starts all iterators at the beginning of their respective queues. The

slave iterator works its way down the slave queue attempting to find an operation se-

30

merge algorithm(master queue, slave queue)
master iter = master queue.head
slave head = slave queue.head
while(master iter && slave head)

slave iter = slave head
while(slave iter)

if(slave iter == master iter)
insert operations between slave head to slave iter before master iter
add slave iter task participant list to master iter task participant list
slave head = slave iter.next
break

slave iter = slave iter.next
master iter = master iter.next

Figure 3.5: Merge algorithm used to merge slave trace into master trace

quence matching the current master iterator. If a match is found, all unmatched operation

sequences are first copied into the master queue preceding the master iterator. The un-

matched operation sequences are those between the slave head (the last matching operation

sequence in the slave queue) and the slave iterator (the current matching operation se-

quence in the slave queue). This ensures that the order of operations from the slave queue

is maintained. The slave iterator’s task participant list is then appended to its twin’s task

participant list (demarcated by the master iterator).

3.3.2 Merge Algorithm Examples

To clarify how the merge algorithm works, Figure 3.6(a) shows tasks 0 and 1

merging their operation queues. Task 1’s operation queue is the slave that will be merged

into task 0’s operation queue, the master. The circles represent iterators with MI = master

iterator, SH = slave head, and SI = slave iterator.

The algorithm begins with all iterators initially pointed to the beginning of their

respective queues, as shown in Figure 3.6(a). Immediately, the algorithm detects that the

slave iterator and the master iterator match. Figure 3.6(b) shows the state after the first

merge has taken place. Note that because the slave iterator was also the slave head, there

were no unmatched operations that had to be inserted before the master iterator. Figure

3.6(c) depicts the next match found. This time, there are unmatched operation sequences

that must be inserted into the master queue. These operations are copied into the master

31

Tasks 1

Sequence 1

Tasks 1

Sequence 2

Tasks 1

Sequence 3

Tasks 1

Sequence 4

Slave
Queue

SH SI

Tasks 0

Sequence 1

Tasks 0

Sequence 4

Master
Queue

MI

(a) Initial state

Master
Queue

MI

Sequence 1

Tasks 0

Tasks 1
Tasks 0

Sequence 4

Slave
Queue

SH SI

Tasks 1

Sequence 3

Tasks 1

Sequence 4

Tasks 1

Sequence 1

Tasks 1

Sequence 2

(b) State after first merge

Master
Queue

MI

Sequence 1

Tasks 0

Tasks 1

Sequence 4

Tasks 0

Slave
Queue

SH SI

Tasks 1

Sequence 3

Tasks 1

Sequence 4

Tasks 1

Sequence 1

Tasks 1

Sequence 2

(c) State after second match found

Slave
Queue

SH SI

Tasks 1

Sequence 3

Tasks 1

Sequence 2

Tasks 1

Sequence 1

Tasks 1

Sequence 4

Master
Queue

MI

Tasks 1

Sequence 3

Tasks 1

Sequence 2Sequence 1

Tasks 0

Tasks 1

Sequence 4

Tasks 1

Tasks 0

(d) State after second merge

Figure 3.6: Merge algorithm example

32

Master
Queue Tasks 0

Sequence 1 Sequence 2

Tasks 0

Slave
Queue Tasks 1

Sequence 2

Tasks 3

Sequence 1

(a)

Master
Queue

Sequence 2

Tasks 0Tasks 1

Sequence 2 Sequence 1

Tasks 3

Tasks 0

Slave
Queue Tasks 1

Sequence 2

Tasks 3

Sequence 1

(b)

Figure 3.7: Merge algorithm dependency issue

queue and the task participant list in the master queue is updated. The final state of the

master queue is depicted in Figure 3.6(d). The master queue now represents task 0 and 1’s

operation queues, and the slave queue can be discarded.

3.3.3 Operation Sequence Dependencies

The merging algorithm merges queues well between the leaf node level and interior

node level of the tree, but there is a problem when merging between interior node levels

and above. Figure 3.7 shows a situation in which four tasks participate in a job. Assume

that task 0 performs sequence 1 and sequence 2, task 1 performs only sequence 2, task 2

performs only sequence 1, and task 3 performs only sequence 2. After tasks 1 and 3 have

merged their queues, the resultant operation queue is depicted as the slave queue in Figure

3.7(a). On the first pass when attempting to find a match for sequence 1, the algorithm

identifies the second operation sequence in the slave queue as a match. As a result, an

additional copy of sequence two is inserted before sequence 1 in the master queue seen in

Figure 3.7(b).

It is actually possible to avoid this situation since the ordering of operation se-

quences does not matter in the slave queue depicted in Figure 3.7(a). The reason that order

does not matter is because different tasks participate in the operation sequences. This de-

pendency can be determined by intersecting the task participant list of all unmatched op-

eration sequences with the task participant lists of the matched operation sequence. If the

33

intersection is empty, there is no dependency. If there is no dependency, it is not necessary

to copy the operation sequence into the master queue. Only those operation sequences that

do have a dependency must precede the master iterator while the rest can stay in the slave

queue. This allows for independent operation sequences remaining in the slave queue to be

matched with an operation sequence from the master queue at a later time.

3.3.4 Merge Algorithm Complexity

The algorithm traverses the slave queue starting at the last matching operation

sequence for each operation sequence in the master queue. This results in an algorithmic

complexity of O(n2). In practice, due to the SPMD nature of MPI applications, many of

the operation sequences match and the worst case scenario is seldom encountered.

3.4 Recursive Task Participant Lists

After the merging process is complete, each operation has a task participant list

associated with it. Each list contains at least one task’s rank and as many as the total

number of tasks participating in the job. Since many MPI operations are performed across

the MPI COMM WORLD communicator, it is important to represent the task participant

lists concisely.

A recursive definition is most suitable for representing the task participant list.

Originally, a simple list was used but with many MPI operations being performed over the

MPI COMM WORLD communicator, another method had to be found. More information

about the selection process is provided in the Results chapter where the recursive definition

is compared to a regular list and task ID ranges).

The recursive definition is similar in nature to a list of RSDs. An array of integers

is used to represent the recursive task participant list. The reasoning behind this is that

originally a list (an array of integers) was used to represent which tasks participated in an

operation. In order to fit into the cross-node framework smoothly, it was easier to utilize

an integer array than a new data-structure. The array structure is shown in Figure 3.8.

The first element specifies how many recursive lists there are. All subsequent elements are

the recursive lists themselves. Within a recursive list, a starting element is specified and

a depth. The starting element is the lowest task’s rank. The depth indicates how many

34

Number
of
lists

rank
Starting

1

Depth
1

Stride
1

Stride
2

Iterations
1

Iterations
2

Stride
n

Iterations
2
Iterations
n

...

Figure 3.8: Recursive task participant list

1 2 30 4

5 6 7 8 9

1110 12 13 14

15 16 17 18 19

2120 22 23 24

Figure 3.9: Logical stencil - interior nodes circled

recursions (iterations) must occur to fully unwind the list (in Figure 3.8, the depth is n).

At each depth, a stride and number of iterations is specified.

Unwind(int ∗ list, int start, int depth)
stride = list[0]
iters = list[1]
for(rank = start; rank ¡= iters; rank += stride)

if(depth == 0) print rank
else Unwind(list + 2, rank, depth - 1)

Figure 3.10: Algorithm to unwind recursive task participant list

Although the recursive task participant lists seem to work well in most cases, they

were specifically designed with stencil problems in mind. To depict how they work, we will

use a 25 node example logically laid out in a 2D space as shown in Figure 3.9. In this

example, let us assume that all nodes are communicating on a nine-point stencil (i.e. all

35

their immediate neighbors). The interior nodes (highlighted with circles in Figure 3.9) are

able to communicate with all their neighbors while all other nodes cannot (i.e. node 2 does

not have a ”northern” neighbor, node 23 does not have a ”southern” neighbor, etc.). Thus,

when merging is complete, the highlighted nodes will have overlapping operation sequences

and must be represented together in a task participant list. The task participant list for

the interior nodes in Figure 3.9 is: 1 6 2 5 3 1 3. The first element 1 specifies that there

is only a single list. The next two elements specify that the starting rank is 6 and this list

has a depth of 2.

To find which tasks participate in an operation, we unwind the list using the

algorithm in Figure 3.10. Although unwinding a recursive task participant list is generally

done in the replay tool (to determine if a task should replay an operation or not), it provides

insight into the recursive definition.

36

Chapter 4

Replay Mechanism

Compressed traces produced by the recording tool described in the previous two

chapters can be replayed on-the-fly independent of the original application. This opens

tremendous opportunities for rapid prototyping of communication tuning, as well as for

facilitating projections of network requirements and assessing communication needs for

future large-scale procurements.

Replay is essentially accomplished by performing the inverse of the algorithms

describing trace compression. First, the comprehensive trace is converted into a task-level

operation queues for each task involved in the job. This step is the inverse operation of the

cross-node framework merge and results in each task having a compressed operation queue

(comprised of operation terminals, RSDs, and PRSDs). The compressed operation queues

are replayed on-the-fly using an algorithm that is analogous to the inverse of the task-

level framework compression. In addition to replaying MPI communication, computation

simulation can also be turned on. This feature inserts time deltas between MPI operations

based on timing averages embedded in each operation terminal.

The output of the replay tool is an overall execution time. This time reflects the

average time it took each task to complete all of its communication.

4.1 Scanning for Task-Level Operation Queues

The first step to un-compressing the comprehensive trace is to determine which

tasks perform which operations. It is unnecessary for each task in a job to be aware of the

MPI communication performed by other job participants. Thus, in order to save memory

37

Operation 1

...

Comprehensive Trace

Task participant list

Operation data

Optional Parameter data

Optional PRSD data

Optional RSD data

Operation 2

Operation N

Figure 4.1: Comprehensive trace format

resources, each task scans the comprehensive trace for operations that it must perform.

The replay tool does not begin timing communication until each task has its own individual

operation queue.

To understand the scanning process, it is necessary to know how the comprehen-

sive trace is laid out. The structure of the comprehensive trace is depicted in Figure 4.1.

Operation entries are listed in the order they were executed. Each entry consists of a manda-

tory and optional section. The mandatory section is composed of a task participant list

(described in section 3.4) and operational data (including which MPI function was called

and its parameters). Every operation must contain this information for replay to be possi-

ble. The optional section of an entry is comprised of any combination of parameter data,

RSD data, or PRSD data. Parameter data contains any special parameter compression as

described in section 2.5.2. The RSD and PRSD data provide looping information such as

iteration counts and how many operations the loop spans.

Each task generates an operation queue by scanning the comprehensive trace. The

task participant list of each operation is initially parsed to determine if a task must perform

that operation. If the task’s MPI rank is among those in the task participant list, then it

parses the rest of the mandatory section of the operation and any optional sections as well.

The parsed data is packaged into an operation structure similar to those in the task-level

framework and appended to the tail of the local operation queue. If the task’s MPI rank

is not among those in the task participant list, all subsequent data is ignored until another

task participant list is encountered. The scanning process has an algorithmic complexity

linear to the number of operation entries in the comprehensive trace.

38

4.2 Replay Algorithm

Once each task has its individual operation queue in memory, replay becomes pos-

sible. At this point, the replay tool starts a timer that will reflect how long communication

takes. Replay of the operational queue is performed on-the-fly to conserve memory since

the queue remains in compressed format. Only the cross-node compression has been undone

up to this point.

replay queue(node head, PRSD info)
if(info == NULL)

iters = 0
else

iters = into.iters
Set tail to end of sequence
for i = 0 to iters

op = head
while(op != tail)

if(op has PRSD info)
replay queue(op, info.next)

else
replay op(op)

op = op.next

Figure 4.2: Algorithm to replay a compressed operation queue

The replay tool uses the recursive algorithm in Figure 4.2 to replay its operation

queue. The initial call to replay queue is made with the head of the operation queue and

NULL as arguments. Since no PRSD data was passed, the iteration count is set to zero,

and the tail variable is set to the tail of the operation queue. An iterator, denoted as op in

Figure 4.2, is used to traverse the operation queue. If op does not have any PRSD (looping)

data, it is immediately replayed. The call to replay op uses a switch statement to lookup

and perform the requested MPI communication operation.

In the event that the operation iterator has PRSD data, a recursive call to re-

play queue is made. PRSD data represents looping and is a linked list of two-tupple data

structures. The two-tupples consist of an iteration count and information to determine

which of the proceeding elements in the queue belong in the loop. Each element in the

linked list of two-tupples represents a deeper loop depth. Upon re-entering replay queue,

the iteration count is noted and the tail is set to the MPI operation at the end of the loop

39

based on the current PRSD data. The for loop ensures that the loop is replayed the correct

number of times. The while loop ensures that all loop members are replayed. If another

operation with PRSD information is encountered, the algorithm will make another recursive

call. Control is relinquished once the sequence of operations in the queue between the head

and the tail have been replayed as many times as the PRSD iteration count specifies.

4.3 Time Deltas - Simulating Computation

In order to model an application more accurately, the notion of a time delta can be

enabled in the replay tool. Time deltas are the amount of time spent between MPI opera-

tions. They reflect run-time (excluding MPI operations), which we refer to as computational

time.

Computational time is implemented in the function replay op from Figure 4.2.

Before the operation is replayed, the time delta embedded in the operation’s data-structure

is looked up. We use a busy loop that polls a timer until the amount of time specified by

the time delta has elapsed before continuing.

40

Chapter 5

Experimental Results

The implementation of the record and replay tools required extensive experimenta-

tion to design, validate, and test the performance of the system as a whole. All experiments

took place on a BG/L architecture at Lawrence Livermore National Laboratory using a core

set of benchmarks and production-scale code. Design decisions driven by experimentation

helped determine the best implementation methodology and are presented in this chapter.

The techniques we used to validate the system are also presented. Lastly, the performance

of the entire system is evaluated.

5.1 Experimental Environment

This section details the experimental environment. It begins with a brief overview

of the BG/L architecture (the system used for all testing). A description of each benchmark

and production-scale code used in the experiments follows.

5.1.1 Blue Gene/L Architecture

Blue Gene/L (BG/L) is a collaborated effort between International Business Ma-

chines (IBM) and Lawrence Livermore National Laboratory (LLNL) to create a massively

parallel environment [4, 8]. The BG/L at LLNL is comprised of 65,536 compute nodes

(although we were restricted to a maximum of 1,024 nodes) with each node based on

system-on-a-chip integration [2]. Each compute node contains two embedded PowerPC

440 cores each with an individual L1 cache, an individual L2 cache, a shared L3 cache and

41

Figure 5.1: Hierarchical layout of BG/L

512 Megabytes of RAM. The nodes are organized in a hierarchical fashion as depicted in

Figure 5.1.

Inter-node communication is accomplished over five distinct networks: torus, tree,

Ethernet, JTAG, and global interrupts. The torus network performs point-to-point com-

munication over a 3D torus (each node has 6 bi-directional links connected to its 6 nearest

neighbors) while the tree network performs scalable global communication. These networks

are where a majority of MPI communication takes place.

Each compute node runs atop a light, UNIX-like proprietary kernel called the

compute node kernel (CNK). The compute nodes are controlled by a set of I/O nodes that

run a standard distribution of Linux. The I/O nodes are in turn controlled by a set of login

nodes also running Linux. A slightly modified version of MPICH is the implementation of

MPI used on BG/L (with a few plug-in modules for additional functionality) [3].

The communication trace components can be integrated transparently into arbi-

trary MPI applications, either by using dynamic linking (as in most environments) or by

explicitly linking with our components (i.e.in BG/L environments where static linking is

required).

42

5.1.2 Stencil Micro-Benchmarks

Our recording tool specifically targets stencil-like communication. A majority of

our initial design decisions derive from three stencil micro-benchmarks in a 1D, 2D, and

3D logical space. We wrote each micro-benchmark so that we could manipulate multiple

aspects of the stencil to investigate scalability from a number of perspectives. The number

of tasks in a job is configurable, as is the workload (by controlling how many steps the

stencil takes before it converges).

The 1D stencil has a one-dimensional logical space based on a task’s MPI rank.

For each time step in the 1D stencil, a task will communicate to its two left neighbors and

two right neighbors. The communication step consists of sending and receiving from these

neighbors. A task will only proceed to its next step after both the sends and receives for

the current step are complete.

The 2D stencil has a two-dimensional logical space where a logical address is

calculated as

x = rank/dimension,

y = rank mod dimension.

Communication occurs with all eight neighbors (including diagonal neighbors). See 1D

stencil for other details.

The 3D stencil has a three-dimensional logical space where a logical address is

calculated as

x = rank mod dimension,

y = rank/dimension,

z mod = rank/dimension2.

Communication occurs with all 26 neighbors (including diagonal neighbors). See 1D stencil

for other details.

5.1.3 Raptor Production-Scale Codes

Raptor is a framework implementing a modern Godunov method for shock-flow

simulations in a C++/Fortran hybrid with optional adaptive mesh refinement (ARM) sup-

port [9]. It supports MPI and Pthreads parallelization and communicates on a twenty-

seven-point stencil using asynchronous communication. We utilize the MPI capabilities in

a hydro-dynamics simulation using the same input while varying the number of processors.

43

5.2 Design Decision Experiments

Experimentation helped determine the implementation methodology. Early in the

implementation phase, we began running our stencil micro-benchmarks instrumented with

the recording tool and noticed a task scalability issue. As job-size increased, the resultant

trace file also began to increase in size linearly with the number of tasks. Analysis of the

trace files identified the task participant lists (introduced in chapter 3) as linearly dependent

on the job-size.

Each operation in a trace must have a task participant list so the replay tool can

distinguish which MPI operations are performed by which tasks. Due to the SPMD nature

of our stencil micro-benchmarks (and many other scientific codes), most of the operations in

the trace were performed by large sets of tasks. In our original design of the recording tool,

task participant lists were implemented as an array of integers where each member of the

array represented a separate task. Since many of the operations performed were equivalent

across nodes, task participant lists grew linearly with the number of tasks in a job.

To address the scalability issue, we proposed two new methods of storing task

participant lists. The first method was an array of integers in which consecutive pairs

represented a range of tasks. Consider the array of integers: 1, 5, 7, 10, 11, 11. The array

contains three pairs of integers representing three separate ranges. Thus, tasks 1 to 5, 7

to 10, and 11 would be members of that task participant list. The second method was an

RSD representation (described in section 3.4).

Separate prototypes for the range and RSD’s task participant list were imple-

mented. The prototypes simulated merging an MPI operation guided by a balanced binary

tree overlay (described in section 3.2). For the prototypes, an MPI operation consisted of

a task participant list and operation ID. An input file was used to associate distinct sets

of tasks to an operation ID. As children passed their operation queues up the binary tree,

parents would consult the input file to find if merging were possible (a merge would take

place if the operation IDs matched; otherwise, two separate operations would persist and

be passed towards the root).

The results gathered for the two task participant list implementations included

statistics for the list size at task 0, the average list size over all tasks, and the maximum

list size during the binary tree traversal. Since trace file size was the original indicator of a

scalability issue, the list size at task 0 (where the operation queue is completely merged and

44

1 2 3 4

7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

0

5 6

Figure 5.2: 2D stencil illustrating nine distinct communication groups

the trace written to file) is an important metric. It gives insight into how a task participant

list will affect the trace file size as the job size increases. In addition to the size of the

trace file, we also examined the effects of list size on memory usage at each task. Memory

usage at each task is affected by task participant lists in the same manner as the final trace

size (the same linear dependence exists). By examining the list size at each task, we can

determine the maximum and average list size for all tasks. These metrics give insight into

task scalability with respect to memory usage as job size is varied.

Results are reported by the number of list elements in a node’s task participant

list. Because our original analysis indicated the scalability issue occurred in the stencil

micro-benchmarks, we generated prototype inputs based on a 2D stencil. Figure 5.2 illus-

trates how a nine-point stencil in a 2D grid has nine different operation sets delineated by

different shapes (the four corners each constitute a unique set). Each operation set has

a different communication pattern based on which of its surrounding neighbors have valid

MPI ranks. For example, the interior nodes marked with circles can communicate with all

eight surrounding neighbors whereas the nodes marked with squares do not communicate

in the ”southern” direction and, thus, only communicate with five neighbors.

Figure 5.3 shows the performance of the range implementation of a task participant

list. All three metrics continue to exhibit a linear dependence on job-size. The dependence

on job-size exists because of the stencil’s layout. The diamond, circle, and triangle groups

from Figure 5.2 are the stem of the problem. The range implementation of a task participant

list cannot represent these groups concisely because the tasks do not have contiguous MPI

45

Figure 5.3: Task participant list - Range implementation (logarithmic scale)

0

1 2

3 45 6

7 89 1011 1213 14

15 1617 1819

Figure 5.4: Balanced binary tree

ranks. As job-size increases (thus increasing the 2D grid), each of the problem groups

increases in size. Consider an increase from the 5x5 grid in Figure 5.2 to a 6x6 grid. The

interior node group marked by circles gains an additional row resulting in an additional range

that must be represented in the task participant list. Thus, trace file size and memory usage

remain linearly dependent on job-size with the range implementation of a task participant

list.

Figure 5.3 also shows a growing disparity between task 0’s list size and the maxi-

mum list size. In memory-constrained environments, this becomes a major problem. After

examining the range implementation more closely, we determined the problem was an arti-

fact of the balanced binary tree we were using to control the merging process. By following

the merging process from leaf node to root, we saw that operations performed by all tasks

could not be represented concisely near the root of the tree. Consider the binary tree in

46

Figure 5.5: Task participant list - RSD implementation (logarithmic scale)

Figure 5.4 at nodes 1 and 2. Node 1 accumulates all of the odd numbered operations during

its merging phase because all of its descendants (children, grandchildren, etc.) have odd

MPI ranks. The same is true for node 2 and the even numbered MPI ranks. The range

implementation of task participation lists cannot represent a list of even or odd tasks con-

cisely because it relies on contiguous integers. As a result, memory usage balloons out near

the root of the tree to as much as N / 2 (for operations in which all tasks participate) list

elements where N is the number of processors.

Figure 5.5 shows the performance of the RSD implementation of a task partici-

pant list. All metrics exhibit nearly a constant size list for varying job-sizes. The RSD

implementation uses a stride to concisely represent the groups which the range implemen-

tation could not. Thus, the diamond, circle, and triangle groups from Figure 5.2 can be

represented in a single list-element. Additionally, the regularity of the binary tree’s layout

is taken advantage of by the RSD implementation. Regardless of location in the tree, all

descendants exhibit a very regular pattern that the RSD implementation concisely repre-

sents. As a result, the RSD implementation of a task participant list does not suffer from

memory usage ballooning at any point in the binary tree (in contrast to the range imple-

mentation). With evidence that the RSD implementation performed better for both file

size and memory usage scalability, we implemented task participation lists as RSDs rather

than ranges in the final system.

47

5.3 Validation Procedures

Additional experiments were conducted to verify the correctness of our approach.

We replayed compressed traces to assess if MPI semantics are preserved, to verify that the

aggregate number of MPI events per MPI call matches that of the original code and that

temporal ordering of MPI events within a node are observed. The results of communication

replays confirmed the correctness of our approach to this respect.

We also modified the record and replay tools to generate a list of uncompressed

calls. In the recording tool, this amounted to instrumenting the MPI function wrappers with

additional code to write out all operations to file for each task. The replay tool was simi-

larly modified by instrumenting the function, replay op (see section 4.2 for replay algorithm

details), with code to write all operations to file in the same manner. In both tools, instru-

mentation occurred right before the actual MPI call was performed. Each micro-benchmark

and production scale code presented in the Results chapter was recorded and replayed using

the modified tools. Running the tools resulted in two sets of uncompressed operation lists

for each task. A text comparison of the uncompressed traces for all applications yielded no

differences and satisfied us that we were performing a lossless replay.

The final validation procedure we employed was instrumenting the record and

replay tools with mpiP. This tool collects statistical information about MPI functions (time

spent in functions, number of function calls, etc.) and generates a report at the application’s

termination. Each micro-benchmark and production scale code presented in the Results

chapter was recorded and replayed using the tools instrumented with mpiP. Data pertaining

to the which function calls were made in the reports was compared, and we found no

differences.

5.4 Performance Results

Results are obtained for a stencil benchmark and a production-scale code, Raptor.

The metrics explored are the size of trace files and memory requirements on a per-node

basis on BG/L.

Figure 5.6 depicts the trace file sizes of the 1D 2D and 3D stencil code for varying

stencil sizes (number of nodes) as well as Raptor for varying job sizes. Trace sizes are

reported on a logarithmic scale for the nodes (1) without compression, (2) only with task-

48

(a) 1D stencil trace file, varied number of nodes (b) 2D stencil trace file, varied number of nodes

(c) 3D stencil trace file, varied number of nodes

(d) Raptor trace file, varied time steps

Figure 5.6: Trace file size per node on BlueGene/L

49

level (intra-node) compression and (3) with the additional step of inter-node compression.

We observe a significant increase of two orders of magnitude in storage space

without compression in the tested node range for the stencil micro-benchmarks (Figures

5.6(a) to 5.6(c)). Task-level compression reduces this overhead by two orders of a magnitude,

but the increasing trend in size over the number of nodes is retained (increase of two orders

of magnitude again). Hence, neither approach is scalable with the number of nodes. The

fully compressed trace sizes, in contrast, are constant in size independent of the number

of nodes, which illustrates that our combined intra- and inter-node compression technique

scales well. The resulting trace sizes, 2KB, 4KB and 12KB, for 1D, 2D and 3D stencils,

concisely represent MPI events. This is in contrast to 0.3-19MB, 0.3-29MB and 2MB-61MB

for the respective stencil sizes in the absence of compression (ranges for the smallest and

largest stencil sizes). Increases between stencil sizes reflect the number of distinct patterns

required to represent corner nodes, boundary nodes and interior nodes as RSDs.

Figure 5.6(d) depicts the trace file size for Raptor confirming most of the prior

benchmark observations for a complex application code. In addition to the previous obser-

vations, an increase in the file size from 23MB to 45MB for 128 and 512 nodes, respectively,

can be seen. This increase is due to minor inefficiencies of cross-node compression currently

being addressed. We believe the problem is due to array parameters of MPI calls. In Rap-

tor, a time-step consists of stencil communication followed by processing synchronized by

MPI Waitsome. The arrays passed to MPI Waitsome are equal in length to the number of

tasks participating in the job.

As BG/L is a memory-constrained architecture with only 512 MB RAM per node,

not only the resulting trace sizes matter. Keeping the memory pressure low during on-the-

fly compression is equally important. Figure 5.7 depict the memory usage reflecting the

intra- and inter-node compression components for the 1D, 2D and 3D stencil benchmarks,

and Raptor over varying stencil sizes. Minimum, average, maximum and task-0 (root node)

memory usage is reported over all nodes. Within each of these categories, memory usage is

constant over different node sizes, which reinforces the claim of scalability of the approach.

The average usage decreases as the number of nodes grows, which is a result of increasing

height in the reduction tree where more nodes are at lower levels performing less inter-node

compression work and, hence, requiring less memory. Besides the average, all other numbers

remain constant when the number of nodes grows. The memory requirements at task-0, the

root node, are generally close to the high watermark of memory usage, though, occasionally,

50

a node at level 1 (child of the root) may require insignificantly more memory.

We measured a minimum (maximum) memory usage of 1.6KB (6.4KB), 1.6KB

(11.4KB) and 1.4KB (26KB) for the 1D, 2D and 3D stencil problems, respectively (Figures

5.7(a) to 5.7(c)). Notice that this metric includes the merge queues for intra- and inter-node

compression but excludes storage of the actual trace, which is reported as trace file sizes,

as discussed before.

Figure 5.7(d) depicts the memory usage for Raptor confirming most of the prior

benchmark observations for a complex application code. In addition to the previous obser-

vations, a slight increase in the maximum memory usage of 38MB to 55MB for 128 and 1024

nodes, respectively, can be seen. This increase is due to minor inefficiencies of cross-node

compression currently being addressed, as is the total amount of memory required due to

the severely memory-constrained nature of BG/L nodes.

Figure 5.8 depicts the trace file size as the number of time steps is varied, i.e., as

the iteration bound of the outer-most convergence loop is varied while the number of nodes

remains constant at 125 processors. While the uncompressed trace does not scale, both

task-level (intra-node) and full compression provide constant-size, scalable results. This

confirms that the number of loop iterations has no effect on compression after RSDs and

PRSDs are formed, irrespective of inter-node compression. Results for the other benchmarks

are equivalent and, therefore, omitted here.

5.5 Replay Results

During replay, all MPI calls are triggered over the same number of nodes with

original payload sizes, yet with a “random” message payload (content). This inflicts com-

parable bandwidth requirements on communication interconnects, albeit with potentially

different contention characteristics. Communication replay also provides an abstraction

from compute-bound application performance, which is neither captured nor replayed. This

makes the replay mechanism extremely portable, even across platforms, which can benefit

rapid prototyping and tuning.

The replay mechanism opens up tremendous opportunities beyond the verification

of correctness. As mentioned before, it may be utilized for rapid prototyping of communica-

tion tuning as well as for assessing communication needs of future platforms for large-scale

procurements. We are currently pursuing these directions, among others to improve commu-

51

(a) 1D stencil memory usage, varied number of

nodes

(b) 2D stencil memory usage, varied number of

nodes

(c) 3D stencil memory usage, varied number of

nodes

128 256 512 1024

10000

100000

1000000

10000000

100000000
Max memusage

Min memusage

Avg memusage

Task 0

Processors

S
iz

e
 (

b
y
te

s
)

(d) Raptor memory usage, varied number of nodes

Figure 5.7: Memory usage per node on BlueGene/L

Figure 5.8: 3D stencil trace file, varied time steps

52

nication performance in a systematic, yet experimental manner on BG/L and to support

procurement of large-scale machines, possibly in the context of current NSF large-scale

computing infrastructure calls.

53

Chapter 6

Related Work

RSDs have been used to describe data references in a loop [10]. The idea of PRSDs

originates from memory trace compression performed on-the-fly [13]. While their work

introduced the general concepts and an algorithm for compressing regular data references,

our work uses an entirely different algorithm. This is due to the considerably more complex

task of compressing events composed of MPI call signatures and their parameters. We also

utilize semantically-specific encodings, such as for MPI Waitsome, which are unique to the

trace domain. Furthermore, our work is the first one to utilize the structural information

retained during compression, i.e., our replay mechanism relies on this unique compression

property.

The mpiP tool consists of a lightweight profiling library for MPI applications that

collects statistical information about MPI functions, i.e., aggregate metrics are reported

[19]. Hence, structural information and event ordering are not preserved. There are many

other tools that report aggregate information, often based of the profiling layer MPI, as is

the case with mpiP. None of these tools are suitable for lossless tracing and later replay.

Vampir is a commercial tool set including a trace generator and a display engine to

visualize MPI communication. However, traces are generated in local files such that trace

file sizes increase linearly with the number of MPI calls made. This limits the applicability

as scalability is compromised.

MRNet is a software overlay network that provides efficient multicast and reduction

communications for parallel and distributed tools and systems [16]. MRNet uses a tree of

processes between the tool’s front-end and back-ends to improve group communication

performance. We experimented with MRNet to support inter-node compression. Yet, due

54

to the advantages of the radix tree representation for compression and the simplistic nature

of the reduction tree, we decided to maintain our own reduction infrastructure.

A characterization of MPI communication patterns for the NAS parallel bench-

marks has determined that communication end-points are, if not static, almost exclusively

persistent and hardly even dynamic [18]. Here, persistent denotes a set of end-points that,

once determined dynamically, does not change anymore. This is consistent with our find-

ings and explains why our compression techniques are scalable within the domain of SPMD

programs.

55

Chapter 7

Conclusion

One of the central problems in Peta-scale computing is posed by the requirement

for communication to scale to hundreds, if not thousands of nodes. However, communication

patterns of large-scale scientific applications are often too complex to analyze at the source-

code level. While tools exist to statistically analyze aggregate metrics in a scalable manner,

temporal ordering and structural information are generally lost in such an approach. Other

tools employ traces, which grow significantly in size as the problem size (number of iterations

to convergence) increases and become harder to commit to global file systems as the number

of nodes increases.

In contrast to prior work, we promote a trace-driven approach to analyze MPI

communication that scales by extracting full communication traces of near constant size

regardless of the number of nodes while preserving structural and temporal-order informa-

tion of events. We employ representations of regular section descriptor, power-sets of them

and a multitude of relative encoding techniques to enable compact representations of MPI

event sequences. A first intra-node compression is followed by inter-node compression over

a reduction tree to result in a single trace file that fits into a fraction of the core memory

of a node. Experimental results on BlueGene/L confirm our claim of near constant size

compression for microbenchmarks and a full-sized application. We assessed the correctness

of our approach by verifying temporal orderings and aggregate counts of MPI events us-

ing our unique replay mechanism. This replay mechanism may aid performance tuning of

MPI communication and facilitate projections of network requirements for future large-scale

procurements.

To the best of our knowledge, our contributions of near constant-size representation

56

of MPI traces in a scalable manner combined with deterministic MPI call replay are without

any precedence.

57

Bibliography

[1] Dong H. Ahn and Jeffrey S. Vetter. Scalable analysis techniques for microprocessor

performance counter metrics. pages 1–16.

[2] George Almási, George S. Almasi, Daniel K. Beece, Ralph Bellofatto, Gyan Bhanot,

Randy Bickford, Matthias A. Blumrich, Arthur A. Bright, Jose Brunheroto, Calin Cas-

caval, José G. Castaños, Luis Ceze, Paul Coteus, Siddhartha Chatterjee, Dong Chen,

G. Chiu, T. M. Cipolla, Paul Crumley, Alina Deutsch, M. B. Dombrowa, Wilm E.

Donath, Maria Eleftheriou, Blake G. Fitch, Joseph Gagliano, Alan Gara, Robert S.

Germain, Mark Giampapa, Manish Gupta, Fred G. Gustavson, Shawn Hall, Ruud A.

Haring, Dave Heidel, Philip Heidelberger, Lorraine Herger, Dirk Hoenicke, T. Jamal-

Eddine, Gerard V. Kopcsay, A. P. Lanzetta, Derek Lieber, M. Lu, Mark P. Mendell,

L. Mok, José E. Moreira, Ben J. Nathanson, Matthew Newton, Martin Ohmacht,

Rick A. Rand, Richard D. Regan, Ramendra K. Sahoo, Alda Sanomiya, Eugen Schen-

feld, Sarabjeet Singh, Peilin Song, Burkhard D. Steinmacher-Burow, Karin Strauss,

Richard A. Swetz, Todd Takken, R. Brett Tremaine, Mickey Tsao, Pavlos Vranas,

T. J. Christopher Ward, Michael E. Wazlowski, J. Brown, T. Liebsch, A. Schram, and

G. Ulsh. Blue gene/L, a system-on-A-chip. In CLUSTER, page 349. IEEE Computer

Society, 2002.

[3] George Almási, Charles Archer, José G. Castaños, Manish Gupta, Xavier Martorell,

José E. Moreira, William Gropp, Silvius Rus, and Brian R. Toonen. MPI on blue-

gene/L: Designing an efficient general purpose messaging solution for a large cellular

system. In Jack Dongarra, Domenico Laforenza, and Salvatore Orlando, editors, Recent

Advances in Parallel Virtual Machine and Message Passing Interface,10th European

PVM/MPI Users’ Group Meeting, Venice, Italy, September 29 - October 2, 2003, Pro-

58

ceedings, volume 2840 of Lecture Notes in Computer Science, pages 352–361. Springer,

2003.

[4] George Almási, Ralph Bellofatto, Jose Brunheroto, Calin Cascaval, José G. Castaños,

Luis Ceze, Paul Crumley, C. Christopher Erway, Joseph Gagliano, Derek Lieber, Xavier

Martorell, José E. Moreira, Alda Sanomiya, and Karin Strauss. An overview of the

blue gene/L system software organization. In Harald Kosch, László Böszörményi, and

Hermann Hellwagner, editors, Euro-Par 2003. Parallel Processing, 9th International

Euro-Par Conference, Klagenfurt, Austria, August 26-29, 2003. Proceedings, volume

2790 of Lecture Notes in Computer Science, pages 543–555. Springer, 2003.

[5] Greg Burns, Raja Daoud, and James Vaigl. LAM: An open cluster environment for

MPI, 1994.

[6] Andrew W. Cook, William H. Cabot, Peter L. Williams, Brian J. Miller, Bronis R.

de Supinski, Robert K. Yates, and Michael L. Welcome. Tera-scalable algorithms for

variable-density elliptic hydrodynamics with spectral accuracy. In SC, page 60. IEEE

Computer Society, 2005.

[7] Frederica Darema-Rogers, V. A. Norton, and G. F. Pfister. Using a single-program-

multiple-data computational model for parallel execution of scientific applications. Re-

search Report RC 11552, IBM T.J. Watson Research Center, Yorktown Heights, New

York, November 1985.

[8] A. Gara, M. A. Blumrich, D. Chen, G. L.-T. Chiu, P. Coteus, M. E. Giampapa, R. A.

Haring, P. Heidelberger, D. Hoenicke, G. V. Kopcsay, T. A. Liebsch, M. Ohmacht,

B. D. Steinmacher-Burow, T. Takken, and P. Vranas. Overview of the Blue Gene/L

system architecture. IBM Journal of Research and Development, 49(2/3):195–212, ????

2005.

[9] Jeff Greenough, Allen Kuhl, Louis Howell, Alek Shestakov, Ulrike Creach, Al Miller,

Ellen Tarwater, Andrew Cook, and Bill Cabot. Raptor – software and applications

on bluegene/l. BG/L workshop paper 22, Lawrence Livermore National Lab, October

2003.

[10] Paul Havlak and Ken Kennedy. An implementation of interprocedural bounded regular

59

section analysis. IEEE Transactions on Parallel and Distributed Systems, 2(3):350–360,

July 1991.

[11] Ewing Lusk. Installation guide to mpich, a portable implementation of MPI, Febru-

ary 09 1996.

[12] Makinen. A survey on binary tree codings. COMPJ: The Computer Journal, 34, 1991.

[13] Jaydeep Marathe, Frank Mueller, Tushar Mohan, Bronis R. de Supinski, Sally A.

McKee, and Andy Yoo. METRIC: Tracking down inefficiencies in the memory hierarchy

via binary rewriting. In CGO, pages 289–300. IEEE Computer Society, 2003.

[14] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard. Uni-

versity of Tennessee, Knoxville, TN, June 1995.

[15] Luiz De Rose, Kattamuri Ekanadham, Jeffrey K. Hollingsworth, and Simone Sbaraglia.

SIGMA: a simulator infrastructure to guide memory analysis. pages 1–13.

[16] Philip C. Roth, Dorian C. Arnold, and Barton P. Miller. Mrnet: A software-based

multicast/reduction network for scalable tools. In SC, pages 21–36, Washington, DC,

USA, 2003. IEEE Computer Society.

[17] Julian Seward. bzip2 and libbzip2 - a program and library for data compression.

http://www.bzip.org/1.0.3/bzip2-manual-1.0.3.pdf, 1996.

[18] Shuyi Shao, Alex Jones, and Rami Melhem. A compiler-based communication analysis

approach for multiprocessor systems. In IPDPS, 2006.

[19] J. Vetter and M. McCracken. Statistical scalability analysis of communication opera-

tions in distributed applications. In PPoPP, 2001.

[20] Jeffrey S. Vetter. Dynamic statistical profiling of communication activity in distributed

applications. In SIGMETRICS, pages 240–250. ACM, 2002.

[21] Jeffrey S. Vetter and Bronis R. de Supinski. Dynamic software testing of MPI appli-

cations with umpire. In SC, 2000.

[22] Jeffrey S. Vetter and Michael O. McCracken. Statistical scalability analysis of commu-

nication operations in distributed applications. In PPOPP, pages 123–132, 2001.

