
ABSTRACT

DESHPANDE, VIVEK RAJENDRA. Automatic Generation of Complete Communication
Skeletons from Traces. (Under the direction of Dr. Frank Mueller.)

Benchmarks are essential for evaluating HPC hardware and software for petascale machines

and beyond. Benchmark creation is a tedious manual process. Benchmarks tend to lag behind

the development of complex scientific codes.

Our work automates the creation of communication benchmarks. Given an MPI applica-

tion, we utilize ScalaTrace, a lossless and scalable framework to trace communication operations

and execution time while abstracting away the computations. The single trace file is subse-

quently expanded to C source code by a novel code generator. This resulting benchmark code

is compact, portable, human-readable, and accurately reflects the original applications com-

munication characteristics and performance. Experimental results demonstrate that generated

source code of benchmarks preserves both the communication patterns and the run-time be-

havior of the original application. Such automatically generated benchmarks not only shorten

the transition from application development to benchmark extraction but also facilitate code

obfuscation, which is essential for commercial and restricted applications.
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Chapter 1

Introduction

1.1 Background

The “Supercomputer” term was coined because of the high processing capacity in terms

of speed of calculations. In 1960s, commercial supercomputers were introduced. Those were

primarily designed by Seymour Cray. He is called as the father of supercomputing and created

a supercomputing industry.

Early supercomputers in 1960s were scalar machines 10 fold faster than contemporary com-

puters. Vector processors dominated in 1970s in supercomputers. The early and mid-1980s saw

machines with a modest number of vector processors working in parallel. Later in the 1980s and

1990s, the focus shifted to thousands of ordinary, off-the-shelf processors connected in parallel

to form massive parallel processing systems. Today, parallel systems are based on server class

microprocessors such as Opteron, Xeon and coprocessors such as GPUs (Nvidia Tesla), IBM

Cells and FPGAs. Most modern supercomputers are highly tuned computer clusters that use

commodity processors with custom interconnects [1].

Supercomputers are used for highly calculation-intensive tasks such as problems involving

quantum physics, weather forecasting, climate research, molecular modeling (computing the

structures and properties of chemical compounds, biological macromolecules, polymers, and

crystals), physical simulations (such as simulation of airplanes in wind tunnels, simulation of

the detonation of nuclear weapons, and research into nuclear fusion). Such experiments are

carried out at places like Oak Ridge National Laboratory, in Oak Ridge, TN, on facilities such

as their so called Jaguar and Kraken installations. According to www.top500.org, these two

machines are among the fastest 10 machines in the world as of June 2011. Such petascale

machines help in speeding up the process of computation by orders of magnitude. Thus, such

machines are essential to scientific research simulations.

These supercomputers at National Labs are expensive and typically cannot be used for
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Computer Science (CS) experimentations. The applications that run on such machines are

robust, well tested and execute under conservative permissions in a well controlled environment.

But there is need for systems that can be used for CS experimentations and innovations leading

to highly tuned applications in terms of performance and efficiency. This approach is taken

at NC State with the installation of A Root Cluster (ARC) [2]. ARC serves as a “crash-test

dummy” for potential new CS solutions to address the major obstacles faced by next generation

HPC systems.

Different programming models are available for parallel programming today, such as using

shared memory and message passing. For shared memory, the address space is shared /w

multiple threads running in parallel on different processors. For message passing multiple

processes run simultaneously on different processors and communicate using message passing

for data transfer or synchronization. In practice, these processes execute a single program on

different sets of data that is multiple data a.k.a. the SPMD model. The message passing

is used in high performance computing (HPC) because it can scale up to a large number of

processors connected by the high-speed of interconnect, which can be called as distributed

memory systems. For message passing, the Message Passing Interface (MPI) [21] is the de facto

industry standard and specifies the API that allows the processes to communicate.

1.2 Motivation

To assess the capability of HPC systems for parallel applications, software subsystems and

hardware are evaluated and analyzed for performance. This is done to the best by using actual

applications. But porting an HPC application to target machine is tedious and time consum-

ing, as such applications need compatible compilers and libraries for numerical operations and

domain specific tasks. Application tuning for better performance, such as data decomposition

or transformations for parallelism, are also difficult. Thus, using HPC application directly as

a benchmark is impractical because of large overheads. Furthermore, some HPC applications

are legacy codes that cannot be easily ported or may be considered intellectual property or

classified sometimes so that their sources are not public.

Benchmarks are important for parallel I/O and HPC storage, thus are widely used for

evaluating and analyzing storage systems and assessing migration costs of HPC applications to

new platforms with different I/O subsystems. They are easy to port, modify and run. They

provide an indication for characteristics as of HPC applications. Most existing benchmarks do

not capture the complexity and scale of realistic HEC applications as they do not feature the

intricate interplay of I/O operations, computation and communication.

To address those challenges, we propose a more viable solution to the requirement of evalu-

ation of HPC systems, incl. storage, network and CPU speed without actually migrating HPC
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applications to those platforms. In our approach, we only need to observe an application run

on given HPC platform and capture its dependencies to that platform.

1.3 Our Approach

HPC applications performance is largely dominated by large amount of numerical operations.

These operations are captured microbenchmarks in the order they appear. We propose to

generate communication benchmarks in an automated approach. These benchmarks are human

readable, compact, easy to generate and port. They closely resemble behavior in terms of

execution time and communication volume of the original application.

As an input, we take an HPC application with message passing communication using MPI

(Message Passing Interface). The applications communication patterns are captured in traces

using ScalaTrace [13]. The obtained trace is given as an input to the benchmark generator,

which is the central focus of this work. It outputs the communication benchmark in C incl. MPI

for communication and can be executed on target machine. This is illustrated in the following

Figure 1.1.

HPC application 

with MPI 

communication

ScalaTrace
Benchmark 

Generator

Application Trace

Communication 

Benchmark

 (C /w MPI calls)

Figure 1.1: Benchmark Generation System - Block Diagram

We utilize ScalaTrace [13] for communication trace collection. ScalaTrace is a unique ap-

proach to parallel application tracing as this scalable framework captures the communication

in lossless and near constant size in terms of trace representation independent of the number of

the nodes while keeping the structural information of the nodes and iterations. It also employs

a pattern based intra-node and inter-node compression techniques extracting the applications

communication structure.

For example, ScalaTrace can represent all processes performing the same operation (e.g.,

each MPI rank sending a message to rank+2) as a single event, regardless of the number of

ranks. Because the application trace is the basis for benchmark generation, this feature helps

to reduce the size of the generated code, making it more manageable for subsequent manual

modifications. In contrast, previous application tracing tools, such as Extrae/Paraver [16],

Tau [20], Open|SpeedShop [18], Vampir [12], and Kojak [25], are less suitable for benchmark

generation because their traces increase in size with both the number of communication events

and the number of MPI ranks traced. Second, ScalaTrace is aware of the structure of the
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original program. It utilizes the stack signature to distinguish different call sites. Its loop

compression techniques can detect the loop structure of the source code. For example, if an

iteration comprises a hundred iterations and each iteration sends five messages of one size and

ten of another, ScalaTrace represents that internally as a set of nested loops rather than as 1500

individual messaging events. These pattern-identification features help benchmark generation

maintain the program structure of the original application so that the generated code will be

not only be semantically correct but also human comprehensible and editable.

1.4 Hypothesis

We contend that it is feasible to automatically generate communication benchmarks in C with

MPI calls from a full-scale HPC application using the above mentioned scalable tracing meth-

ods. The generated code preserves the timing behavior and structural behavior of the original

application. We also argue that the generated code is human readable, portable can be used as

a communication benchmark.

1.5 Evaluation

We evaluate our generated communication benchmark using the NAS Parallel Benchmark

Suite [4] and Sweep3D [24]. We perform evaluations by experimenting and testing the cor-

rectness and timing accuracy of the generated benchmarks. The obtained results show that

auto-generated benchmarks preserve the applications semantics in terms of their communi-

cation pattern along with communication volume and the ordering of events relative to the

original HPC application. Furthermore, the overall execution time of benchmarks is close to

that of their original applications. Thus, communication benchmark generator is able to gener-

ate benchmarks that are similar to the original application in terms of communication behavior

and execution time.

1.6 Contribution

The contributions of this work are (1) a demonstration and evaluation of the feasibility of

automatically converting parallel applications into human-readable benchmark codes and (2)

an approach and algorithm for resembling the original performance by generating benchmarks

from communication traces.

Our work benefits application developers, communication researchers, and HPC system de-

signers. Application developers can benefit in multiple ways. First, they can quickly gauge the

application performance of a target machine before doing the effort to port their applications
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to that machine. Second, they can use the generated benchmarks for performance debugging

as the benchmarks can separate communication from computation to help isolate observed

performance anomalies. Third, application developers can examine the impact of alternative

application implementations such as different data decompositions (causing different communi-

cation patterns) or the use of computational accelerators (reducing computation time without

directly affecting communication time). Communication researchers can benefit by being able

to study the impact of novel messaging techniques without the need to build complex applica-

tions and without access to source code that is not freely distributed or even classified. Finally,

procurement of HPC systems can benefit by contracting vendors to deliver a specified perfor-

mance on a given auto-generated benchmark without having to provide those vendors with the

actual application.

1.7 Summary

In summary, we have developed a tool that automatically generates the communication bench-

mark C code with MPI calls from real HPC application such that the characteristics of the

original application are preserved in terms of time and structure, the generated code is human

readable, compact, easy to compute and portable.
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Chapter 2

Background

The work on communication benchmark generation builds on previous work on MPI tracing.

This scalable trace-compression framework is referred to as ScalaTrace. Previous work on

ScalaTrace showed online trace compression can result in trace file sizes orders of magnitude

smaller than previous approaches or, in some cases, even near constant size regardless of the

number of nodes or application run time.

ScalaTrace collects communication traces using the MPI Profiling layer (PMPI) [3] through

Umpire [23] to intercept MPI calls during application execution. On each node, profiling wrap-

pers trace all MPI functions, recording their call parameters, such as source and destination of

communications, but without recording the actual message content. ScalaTrace features aggres-

sive trace compression that generates a single, concise and lossless trace file from any large-scale

parallel application run. The resulting tracs preserve timing information, event ordering in the

compressed form along with the calling context of traced events. The way ScalaTrace works

and captures the traces is shown in the Figure 2.1.

Application

ScalaTrace Library

Input Output

Single Trace File

Executable

 

Figure 2.1: Working of ScalaTrace - Block Diagram
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2.1 Trace Compression

ScalaTrace performs two types of compression: intra − node and inter − node. For the intra

node compression, the repetitive nature of timestep simulation in parallel scientific applications

is used. Intra-node compression is performed on-the-fly within a node. Further, the inter-node

merge, exploits the homogeneity in behavior (SPMD) among different processes running the

application. Inter-node compression is performed across nodes by forming a radix tree structure

among all nodes and sending all intra-node compressed traces to respective parents in the radix

tree. This results in a single compressed trace file capturing the entire application execution

across all nodes. The compression algorithm is discussed in detail in other papers [14, 17].

ScalaTrace achieves near constant size traces by applying pattern based compression. It uses

extended regular section descriptors (RSD) to record the participating nodes and parameter

values of multiple calls to a single MPI routine in the source code across loop iterations and

nodes in compressed manner [8]. Power-RSDs (PRSD) recursively specify RSDs nested in a

loop [11].

For example, consider the code snippet shown below, which has ring-style communication

across N nodes.

for(i=0; i<100; i++){

MPI_Irecv(LEFT, ...);

MPI_Isend(RIGHT, ...);

MPI_Waitall(...);

}

We can see that three RSDs present in the code snippet are:

RSD1: {〈rank〉, MPI Irecv, Left}
RSD2: {〈rank〉, MPI Isend, Right}
RSD3: {〈rank〉, MPI Waitall}

These RSDs denote the non-blocking send and receive and waitall MPI operations in a single

loop iteration, where 〈rank〉 represents a value within 0 . . .N − 1 in each per-node trace.

ScalaTrace then detects the loop structure and ouputs the single PRSD

PRSD: {100, RSD1, RSD2, RSD3}
to denote a single loop of 100 iterations. This intra-node compression is performed on-the-fly

to reduce the time for trace generation and the memory overhead.

Further, during the inter-node compression, the local traces on each node are combined into

a single global trace when the application is terminated (i.e., within the PMPI interposition

wrapper for MPI Finalize). Inter-node compression detects similarities among the per-nodes

traces and merges the RSDs by combining their participant lists in a final participant list. For
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example, in the given code snippet, because each MPI routine is called on each node with same

parameters, these RSDs across the nodes are merged within the PRSD as:

RSD1: {0, 1, . . . , N − 1, MPI Irecv, Left}
RSD2: {0, 1, . . . , N − 1, MPI Isend, Right}
RSD3: {0, 1, . . . , N − 1, MPI Waitall}

The participant node information is encoded and represented in a tuple containing starting

rank, total number of participants and an offset value separating ranks. Even multi-dimensional

information is captured in this encoding format. This is explained more in later Section 3.8.

There are special cases in which events with matching calling context can have non-matching

function parameters. These non-matching function parameters are compressed using a vector

representation so that the particular event can be concisely represented in the trace.

2.2 Time Preservation

Another important feature of ScalaTrace is the time preservation of captured traces. Instead of

recording absolute timestamps, the tool records delta time of computation durations between

adjacent communication calls. During RSD formation, instead of accumulating exact delta

timestamps, statistical histogram bins are utilized to concisely represent timing details across

the loop. These bins are comprised of statistical timing data (minimum, maximum, average and

standard deviation). ScalaTrace compresses into a histogram of times taken by all instances of

a particular computation (identified by its unique call path). For example, consider the code

snippet shown below:

for(i=0; i<10; i++){
if (i==0)

(Long running computation)

else

(Short running computation)

MPI_Recv(...)

.

.

.

}

The time spent in computation in first iteration prior to first MPI instruction differs in the

later iterations. More details on collecting statistical timing information are provided elsewhere

[17].
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Chapter 3

Benchmark Generation

3.1 Overview

The process of automatic benchmark source code generation from communications traces is

accomplished by traversing through the trace of a parallel application obtained from ScalaTrace.

The trace traversal framework is designed to walk through all the RSDs and PRSDs. For each

RSD and PRSD, the code generator is invoked to generate the respective C code and MPI

calls. Code generator uses the predefined interfaces provided by traversal framework, making

code generator a pluggable module. Thus, the same platform can be used to generate the code

for different languages by writing code generators for those languages providing flexibility in

generating code beyond C.

The RSDs that represent point-to-point communication are converted to respective point-

to-point MPI calls in C code. E.g., blocking sends and receives are transformed to MPI Send

and MPI Recv and nonblocking ones are transformed to MPI Isend and MPI Irecv. Collective

calls are generated using MPI collective routines in C such as MPI Barrier, MPI Reduce, MPI -

Alltoall and so on. The communicator-based MPI events are converted to the respective routines

such as MPI Comm split and MPI Comm dup. PRSDs representing loops are converted to C-

style ‘for loops’. Behavioral constraints captured by traces are imposed in the generated code

using conditionals on loop index variables and on ranks of the processes participating in a

particular event.

Our goal is to generate benchmark code that is compact, portable, human-readable, and

accurately reflects the original application’s communication characteristics and performance.

It is human readable, so a human can easily examine, understand the communication in the

application and perform modifications. It is portable and compact to facilitate migration of

applications from one platform to another. Based on the performance on one platform, one

can assess performance on another platform at a high level with regard to communication and
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interconnect capabilities without actually porting the application code. The generated code

preserves the communication features and semantics of the original application in terms of

structure, making it available to new platforms as well. This assists in performance analysis of

software, hardware and also in easy migration of applications. There are different challenges

involved in this implementation of code generation because of readability and reproducibility

goals along with handling target language intricacies. Thus, these problems are a subject of

research and discussed in this section.

3.2 File Composition

The generator takes a single trace file as input and expands it to C files with MPI calls for

the communication benchmark. The files generated are skeleton code.c, skeleton type.c and

skeleton code.h. The skeleton code.c is the main file with all the MPI events representing the

communication pattern of the actual application. skeleton type.c is the supporting file and con-

tains supporting functions. skeleton code.h is the header file and has all the variables declared

to assist RSD/PRSD traversal. While generating the code, some variables are dynamically

created, e.g. index variables, as the PRSD representing the loop is traversed or new communi-

cators are created by communicator split or duplication events. These variables are added to

the header file.

Along with this, two text files, skel rank and skel alltoallv, are generated. skel alltoallv

file is an optional file and generated only if MPI Alltoallv is one of the events in the original

application and not converted to MPI Alltoall by averaging of count arrays. Thus, the skel -

alltoallv file contains all the information required by the MPI Alltoallv event such as send

count, receive count, displacements in receive and send buffers. The skel rank file contains all

the ranklists and MPI event numbers of participating tasks. Ranklist is an encoded list of the

MPI tasks taking part in a particular MPI event. Handling of this information is explained in

the later sections. Figure 3.1 depicts the composition of files in the generated code.

3.3 The Framework and Process

The framework is designed in such a way that it can be used to both replay the trace and

generate the code. While generating the code, the trace is traversed only once, including the

part of the trace which belongs to PRSDs (iterations). While traversing, the RSDs and PRSDs

are parsed. The detailed process of parsing each described in the following sections.
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Single Trace File 

of a parallel App. Code generator

skeleton_code.c skeleton_type.cskeleton_code.h

skel_rank Skel_alltoallv

(generated only 

if MPI_Alltoallv 

is present.)
(generated only 

if atleast one 

event has 

condition on 

rank of 

processes.)

Figure 3.1: The Composition of Files in a Generated Code

3.3.1 Parsing RSD

By parsing one RSD, we generate one MPI event such as synchronous MPI Send, MPI Recv

or asynchronous MPI Irecv, MPI Isend, collectives such as MPI Alltoall, MPI Alltoallv, MPI -

Reduce, MPI Barrier and communicator based events such as MPI Split and MPI Dup.

In each RSD, the parameters of each event are captured, such as relative source or relative

destination, datatype, amount of data (count), tag, communicator and so on. The MPI events

handled in this tool are enlisted in Table 3.1 below along with the parameters captured in the

trace.The information about the parameters captured in the trace is given Table 3.2.

Using these parameters for the RSDs, the MPI events are generated. Along with this

information, the delta times for the computation between the communication events is captured

in the RSDs. Each RSD has the delta time encoded, which represents the time between the

current MPI event and previous MPI event. Using this delta time, sleep calls are generated

before each MPI event.

Whenever an MPI event from a RSD is generated, the count and datatype of the data being

sent is used to find the maximum size of the buffer which can be used in the generated code as

the size of send and receive buffers.
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Table 3.1: MPI events

MPI event Type Parameters Captured in Trace

MPI Send Synchronous point to point count, datatype, dest, tag, comm
MPI Recv Synchronous point to point count, datatype, source, tag, comm
MPI Isend Asynchronous point to point count, datatype, dest, tag, comm
MPI Irecv Asynchronous point to point count, datatype, source, tag, comm
MPI Barrier Collective count, comm
MPI Bcast Collective count, datatype, root, comm
MPI Reduce Collective count, datatype, op, root, comm
MPI Allreduce Collective count, datatype, op, comm
MPI Alltoall Collective sendcount, sendtype, recvcount, recvtype, comm
MPI Alltoallv Collective sendcount, sdispls, sendtype, recvcount, rdispls

recvtype, comm
MPI Barrier Collective count, comm
MPI Comm split Communicator based comm, color, key
MPI Comm dup Communicator based comm

Table 3.2: MPI event parameters

MPI Parameter Information

count number of elements in send/receive buffer (nonnegative integer)
datatype datatype of each send/receive buffer element (handle)
dest rank of destination (integer)
source rank of source (integer)
tag message tag (integer)
comm communicator (handle)
root rank of broadcast root (integer)
op operation (handle)
sendcount/recvcount integer array equal to the group size specifying the number of elements to

send/receive to each processor
sendtype/recvtype type of send/receive buffer elements (handle)
sdispls/rdispls integer array (of length group size). Entry j specifies the displacement

relative to sendbuf/recvbuf from which to take the outgoing data destined
for process j

color control of subset assignment (nonnegative integer). Processes with the same
color are in the same new communicator

key control of rank assigment (integer)
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The details of handling parameters such as communicator, requests and corresponding waits

are discussed in later sections. Also because of inter node compression, the parameters such as

count, source and destination are merged forming complex data structures. Handling of those

data structures is also discussed in later sections.

3.3.2 Parsing PRSD

By parsing a single PRSD, we generate C-style “for loops”. In the trace, a PRSD can be

mapped to a loop in the original source. Thus, nested loops and sequences of loops can be

represented using Power RSDs.

For example, consider the RSD tuples as RSD1:〈1,MPI Recv〉, RSD2:〈1,MPI Send〉, which

capture MPI Recv and MPI Send calls in those RSDs respectively. The PRSD as

PRSD1:〈10,RSD1,RSD2〉 denotes a loop of 10 iterations each with RSD1 and RSD2. Further-

more, PRSD2:〈10,PRSD1,MPI Bcast〉 denotes a loop of PRSD1 followed by broadcast. (see

Figure 3.2 ).

for(i=0; i<10; i++)

{

   for(j=0; j<10; j++)

   {

      MPI_Recv();

      Computation();

      Communicate();

      MPI_Send();

   }

   MPI_Bcast();

   Communicate();

}

PRSD2:<10,PRSD1,MPI_Bcast>

PRSD1:<10,RSD1,RSD2>

RSD1:<1,MPI_Recv>

RSD2:<1,MPI_Send>

Trace Collection

(ScalaTrace)

Figure 3.2: The Trace Collection

This repetitive nature of PRSDs to capture the nesting of loops is exploited in the benchmark

code generation. The generated trace is then traversed using a recursive function. The depth

of nesting is captured by the recursive function.

The traces are stored as linked lists of RSDs/PRSDs. The queue in the form of linked lists

is traversed to generate the MPI events. The traversal function calls itself recursively whenever

a nested loop is found. The nesting depth is tracked and used in generating the index for the
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loop.

The algorithm for loop handling from MPI traces is given below:

function Trace_queue_and_generate(head,depth)

current =head;

if (current == PRSD)

Generate a for loop of nesting depth with a new index created using depth.

end if

while(current != null)

if(current == RSD)

Generate the MPI events in the RSD.

end if

if(current == PRSD)

Trace_queue_and_generate(head,depth+1)

end if

end while

end function

The benchmark code generated using trace from Figure 3.2 can be illustrated in Figure 3.3,

for(i1=0; i1<10; i1++)

{

  for(i2=0; i2<10; i2++)

   {

      MPI_Recv();

      sleep();

      MPI_Send();

   }

   MPI_Bcast();

}

PRSD2:<10,PRSD1,MPI_Bcast>

PRSD1:<10,RSD1,RSD2>

RSD1:<1,MPI_Recv>

RSD2:<1,MPI_Send>

Benchmark 

Source Code 

Generation 

Figure 3.3: The Code Generation

The index variable is generated using the depth of nesting of the loops. Thus, we can reuse

variables as the number of index variables is limited by the maximum depth of nesting. This

facilitates code generation for different control structures such as straight line code, multiple
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loops at different places inside a single loop and nesting of loops.

The sleeps are generated inside and at the beginning of the for loop and before the for loop

using the delta times between the events of the for loop and the event before the loop.

3.4 Variables and Derived Datatypes

Variables are generated as a part of the generated code during the process of code generation.

These variables are written to the skeleton code.h. For this, while traversing through the trace,

variables are added in a list and then emitted to this file at the end. These variables are non-

MPI primitive datatypes such as int, char, etc. These dynamically created variables during the

process of code generation are added to the list of variables in the structure as given below:

typedef struct var_dump {

char* var_detail[VAR_LIST_SIZE];

int is_global[VAR_LIST_SIZE];

int total_count;

} var_dump_t;

The examples of the variables added to this structure are as follows: myrank is a an integer

variable for each process containing the rank of the process in the communicator during MPI

communication; comm size is an integer variable has the size of communicator during MPI

communication and index variables such as int i1=0; and so on.

The derived datatypes are based upon sequences of MPI primitive datatypes. Derived data

types allow you to specify non-contiguous data in a convenient manner and to treat it as though

it was contiguous. The datatypes created using the MPI calls given for derived datatypes are

added to the list of derived datatypes in a data structure depicted below:

typedef struct derived_type_dump {

char* type_detail[TYPE_LIST_SIZE];

char* type_name[TYPE_LIST_SIZE];

int type_usage_count[TYPE_LIST_SIZE];

int is_derived_type[TYPE_LIST_SIZE];

int type_trace_index[TYPE_LIST_SIZE];

int total_count;

} derived_type_dump_t;
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3.5 Communicators

The MPI Comm split and MPI Comm dup events create new communicators. These commu-

nicator names are declared in the skeleton code.h similar to other variables with the datatype

MPI Comm. These communicators are dynamically created during the process of code genera-

tion. They are added in list and then emitted to this file at the end. During the process of code

generation these dynamically created communicators are added to the list of communicators in

the structure as given below:

typedef struct comm_dump {

char* comm_name[COMM_LIST_SIZE];

int comm_trace_index[COMM_LIST_SIZE];

int split_tracker_flag[COMM_LIST_SIZE];

int total_count;

}comm_dump_t;

The value of comm trace index from the trace is used to create a name for the new commu-

nicator by appending the postfix comm trace index to the prefix comm out. For example, the

name for the communicator with the comm trace index value 1000 would be comm out1000.

This would be added to skeleton code.h file as MPI Comm comm out1000;

The color and key in the trace of split communicators are used to generate the MPI Comm -

split. The color and key could be absolute or could be an offset. If an offset is encountered

then the offset is added to myrank.

3.6 Requests and Waits

MPI Isend and MPI Irecv generate request handles, MPI Wait and MPI Waitall use those

handles to block the processes till the sending or receiving is complete.

The code generated in the skeleton type.c and skeleton code.h is used to handle these re-

quests during the execution of the benchmark.The following per-process structure is used to

handle the dynamically created requests:

typedef struct req_handler{

MPI_Request *req_buf;

MPI_Status *statuses;

int req_bufsize;

int req_bufcur;

} * req_handler_t;
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A Small example for referencing requests handles and waiting on those handles is shown in

the code snippet below:

current = add_request(req);

MPI_Irecv(buffer2, recv_count, MPI_DOUBLE_PRECISION, MPI_ANY_SOURCE,

4, MPI_COMM_WORLD,&(req->req_buf[current]));

MPI_Send(buffer, send_count, MPI_DOUBLE_PRECISION,

(511+myrank)%comm_size, 4, MPI_COMM_WORLD);

MPI_Wait(&req->req_buf[0],&req->statuses[0]);

reset_req(req,9999,1);

In the code snippet above, during the execution of the benchmark, a request handle is added

to the structure using the pointer req to structure req handler and a position is returned in

the variable current. This is used as a reference within MPI Wait and MPI Waitall. After

the wait is executed, the request handle is reset to MPI REQUEST NULL using the handle

obtained from the trace of corresponding to the wait. Thus the same request handle can be

reused in future waits. Here in the example, 511 is a relative destination recorded in the trace

of MPI Send that is added to the myrank.

3.7 MPI Alltoallv

When using MPI Alltoallv, each process sends data to all other processes. Each process may

send a different amount of data and provide displacements for the input and output data.

The parameters send count, receive count, send displacement, receive displacement, send

and receive datatypes are recorded in the trace. These parameters are written to the file skel -

alltoallv for all the MPI Alltoallv events in the trace. This is a text file and generated only if

MPI Alltoallv is encountered. The code generated for the MPI Alltoallv event is emitted to the

file skeleton code.c. This consists code for selecting correct values of all the required parameters

from the file skel alltoallv and calling the MPI Alltoallv function. The generated code snippet

is shown below:

skel_alltoallv_fh=fopen("skel_alltoallv","r");

.

.

.

fscanf(skel_alltoallv_fh,"%d",&no_counts);

rdispls = (int*)realloc(rdispls,no_counts*sizeof(int));
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for(it=0;it<no_counts;it++)

fscanf(skel_alltoallv_fh,"%d",&rdispls[it]);

fclose(skel_alltoallv_fh);

skel_sleep(0, 25000);

MPI_Alltoallv(buffer, counts, displs, MPI_INT,buffer2, recvcounts,

rdispls, MPI_INT, MPI_COMM_WORLD);

In the above code snippet, the way parameters are read in to the variables is shown as an

example for one parameter that is a receive displacement in the variable rdispls.

Since reading parameters from file is inefficient in terms of time and increases the contention,

we implemented another approach to generate MPI Alltoallv. In this approach, we average the

count values in the counts array and generate MPI Alltoallv with that same send, receive count

values as the parameter. The basic idea behind this is the total amount of data transferred

over the interconnect remains constant resulting in an equivalent overhead and execution time

as the original. This works well for IS of NAS Parallel Benchmarks or other codes that use

algorithmic load balancing intrinsic to the application.

3.8 Multivalue Parameters and Ranklists

While obtaining the trace using ScalaTrace, the compression is performed also on non-

matching parameters. At the intra-node merge level, parameter queues are created for source

(for receives), destination (for sends), request (for waits), counts and datatypes. Thus, intra-

node merge constructs an array of parameters in case of a parameter mismatch while most

(other) events may match. This can be represented as a vector:

parameter value1 value2 value3 . . . valuen

This array of values could be a basic array such as (count or displacement arrays in MPI -

Alltoallv) or it could result from an intra-node merge discussed above and can be called as

intra-node arrays. In case of intra-node arrays, the value in the array corresponds to the

iteration step of the closest loop in which the RSD is being parsed.

For example, consider the code snippet given below:

for(i=1;i<=3;i++){
MPI_Send(..., i,...); //count = i

MPI_Recv(..., i,...);

}

In the above code snippet, the send and receive in each iteration has different value in

count parameter. While intra-node merge, the sends and receives have different count value
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generating a intra-node array and is recorded in the trace as: count 1 2 3. Each value in the

count parameter corresponds to the iteration step of the closest loop.

During the inter-node merge, the previous method is taken one step further. Even when

the parameters do not match across all nodes, they tend to be the same for groups of nodes.

This property is exploited during inter-node merge as 〈value, ranklist〉 tuples are created. The

parameter value can be an array or a scalar.

The ranklists are created for an MPI event, when only a subset of ranks or nodes is taking

part in an event. Then a participatant list is created for that event and is part of the RSD for

that event. Also, ranklists are constructed as a parameter as tuples 〈value, ranklist〉 because of

the inter-node merge as discussed above.

The generated skel rank file holds all ranklists where each ranklist has a unique identification

number. During the execution, this identification number is used to select a particular ranklist

for parsing and to identify whether the current rank is part of that ranklist.

The ranklist is encoded as sequence of integers using a recursive pattern during the process

of compression. The first element specifies the number of recursive lists. The subsequent

numbers specify those recursive lists. Within a list, the first number specifies the start rank.

The start rank is the lowest processs rank in that list. The next number is depth indicating the

number of iterations required to fully unwind the ranklist. At each depth, a stride and number

of iterations are specified. The illustration of ranklist is given in the Figure 3.4 below:

Number of 

lists

Starting 

rank Striden Iterationn
Stride1 Iteration1 Stride2 Iteration2

Single List

Depth

Figure 3.4: The Illustration of a Ranklist

We next discuss the process of the parsing the ranklist and the generation of the corre-

sponding code. During code generation, the function is member(identification number, current

rank) is constructed in skeleton type.c. This function parses the ranklist for each event/for

tuples 〈value, ranklist〉 during execution of the benchmark. For the ranklist of an event the

parsing decides whether the current rank is part of the process or not. For ranklist tuples

〈value, ranklist〉 the parser iterates through the tuple and extracts correct value for the current

rank.

The algorithm for the is member() function is as given below. Current rank is the rank

of the process calling this function with the identification number for the ranklist from the

skel rank file. This function returns true if the current rank is part of the participant list or
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rank list.

function is member(identification number, current rank)

for k = 1 to number of ranklists do

if (current rank == start rank)

return true

end if

if (current rank < start rank)

return false

end if

if(depth > 1) //depth indicates the number of iterations

for j = 1 to depth do

iters = iterationj

stride = stridej

for i=start to(start+((iters)*stride)) do

if (rank < i)

i = i - stride

break

end if

i = i+ stride

end for

start = i

end for

end if

iters = iterationn

stride = striden

if(stride > 1 && iters > 1) do

return_val = (((rank-start)%stride==0) &&

(rank <= (start+((iters-1)*stride)))) ? 1 : 0;

else if(stride == 1 && iters > 1)

return_val = (rank >= start && rank <=(start+((iters-1)*stride))) ? 1 : 0;

else if(stride == 0 && iters == 1)

return_val = (rank == start) ? 1 : 0;

end if

if( return_val == 1)

return 1

end if
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end for

return return_val

end function

Thus this algorithm can be explained using a recursive function in the Figure 3.5 as follows:

function is_member(depth, rank, start)

read stride and iterations.

if( depth > 1)

i = start

start = find_start(rank, i, iterations,stride)

f(depth -1, rank, start)

end if

if(depth == 1)

if(stride > 1 && iterations > 1 && (rank-start)%stride

&& rank<=start+(iterations-1)*stride)

return 1

else

return 0

if(stride == 1 && iterations > 1 && rank>=start

&& rank<=start+(iterations-1)*stride)

return 1

else

return 0

end if

end function is_member

//This returns start rank for the given depth.

fucntion find_start(rank, i, iterations,stride)

if( rank < i)

return (i-stride)

if(iterations = 0)

return i

return find_start(rank,i+stride,iterations -1, stride)

end function find_start

Figure 3.5: Recursive Function to Check Participation in Ranklist

Here, at each depth, the highest start rank is found using function find start, which is less

than the rank for which we need check its participation in the event. Then using this start rank

and the stride and iterations at that depth, the function returns 1 if the rank is participating

in the event, else 0.
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Consider a ranklist as 1 -2 0 4 2 1 3.

One ranklist indicated by first “1”. Then the depth of 2 indicated by “-2” and the start rank

is indicated by “0”. The unwinding of the ranklist for 8 nodes is shown in Table 3.3.

Table 3.3: Unwinding of Ranklist

Node number Depth = 2 Depth = 1 Return value
start stride iterations start stride iterations

0, 1, 2 0 4 2 0 1 3 1
3 0 4 2 0 1 3 0
4, 5, 6 0 4 2 4 1 3 1
7 0 4 2 4 1 3 0

3.9 Preservation of Behavior

Some applications use the MPI feature of MPI ANY SOURCE known as wild card receives

(e.g. in the LU benchmark of the NAS Parallel Benchmark Suite). Such features introduce

non determinism in the application. Such non determinism might be resolved by using TAGS

in sends and receives. But the MPI ANY SOURCE is recorded as an abstract(special value)

in the trace. This special value is used to generate the code with MPI ANY SOURCE. Thus,

it accurately preserves the behavior of the application. If the original application is non deter-

ministic in nature, then it is also captured in the benchmark. Thereby, reflecting the actual

communication in the benchmark as that of the original application.

If the original application shows diverging timing behavior over the course of execution be-

cause of non- determinism, then the generated benchmark will conserve the overall proportional

behavior. For example, consider the code snippet shown below:

MPI_Recv(..., MPI_ANY_SOURCE, ...,status)

if (status. MPI_SOURCE == 0)

(Long running computation)

else

(Short running computation)

Depending on the senders rank, the code shown above can take a long time or a short time

to run. Thereby, changing the time of execution of code from run to run. But after many

runs, the proportion between two patterns can be obtained. Since the generated code from this
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application will have same structure and semantics, it will conserve the proportion of the two

different execution times including the non-determinism of the original application.
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Chapter 4

Experimental Framework

To evaluate our communication benchmark-generation tool, we generated C code with MPI

calls for the NAS Parallel Benchmarks (NPB) suite (version 3.3 for MPI, comprising BT, CG,

EP, FT, IS, LU, MG, and SP) using the class C and D input sizes [4] and for the Sweep3D

neutron-transport kernel [24]. These benchmarks all have either a mesh-neighbor communi-

cation pattern or rely heavily on collective communication. Some of them (e.g., SP and BT)

require communicator handling (Section 3.5), others (e.g. IS) require averaging of parameters

in MPI Alltoallv (Section 3.7) and some (e.g., LU) require the recording of wildcard receives

(Section 3.9). Hence, the key features of our code-generation framework are fully tested in this

set of experiments.

Benchmark generation is based on traces obtained on (a) ARC, a cluster with 1728 cores on

108 compute nodes, 32 GB memory per node, and an Infiniband Interconnect and (b) Jaguar,

a cluster at Oak Ridge National Laboratory with 18,668 compute nodes where each compute

node contains dual hex-core processors, 16 GB memory, and a SeaStar2+ router. Benchmark

generation is performed on a standalone workstation.
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Chapter 5

Evaluation

We performed the following experiments for the evaluation of our benchmark generation tool.

5.1 Correctness

Our first set of experiments verifies the correctness of the generated benchmarks, i.e., the

benchmark generator’s ability to retain the original applications’ communication pattern. For

these experiments, we acquired traces of our test suite on ARC, generated communication

benchmarks, and executed these benchmarks also on ARC. To verify the correctness of the

generated benchmarks, we linked both the generated codes and the original applications with

mpiP [22], a lightweight MPI profiling library that gathers run-time statistics of MPI event

counts and the message volumes exchanged. Experimental results (not presented here) showed

that, for each type of MPI event, the event count and the message volume measured for each

generated benchmark matched perfectly with those measured for the original application.

We then conducted experiments to verify that the generated benchmarks not only resemble

the original applications in overall statistics but also that they preserve the original semantics

on a per-event basis. To this end, we instrumented each generated benchmark with ScalaTrace

and compared its communication trace with that of its respective original application. Due

to differences in the call-site stack signatures between the original application and the gener-

ated benchmark, these traces cannot be identical, they can only be semantically equivalent.

Therefore, we replayed both traces with the ScalaTrace-based ScalaReplay tool [26] to elim-

inate spurious structural differences and thus allow a fair comparison of traces. The results

(again, not presented here) show that the original applications and the generated benchmarks

generated equivalent traces. That is, the semantics of each of the original applications was

precisely reproduced by the corresponding generated benchmark. The experimental framework

is depicted in the Figure 5.1.
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Figure 5.1: Experimental Framework

5.2 Accuracy of Timing Results

After evaluating that the generated code preserves the communication of the original ap-

plication in terms of ordering of events and message volumes, we assessed ability of generated

benchmark to retain the performance in terms of wall-clock time relative the orginal application.

To measure the execucution times of the original applications, we extended the PMPI profiling

wrappers of MPI Init and MPI Finalize to obtain the start and end timestamps, respectively.

The corresponding timing calls were also added to the generated benchmarks. We executed

both the original application and the generated benchmark on the ARC system, measured and

compared the elapsed times. The results obtained are shown in the Figures 5.2 and 5.3.

We can observe from the graphs that the timings obtained for the generated benchmarks are

very close to that of the original applications indicating very high accuracy. Quantitatively, the

mean percentage error obtained by formula |Tgen−Tapp|/Tapp ∗100 across all the graphs is only

6.7% and only one deviation with less timing accuracy observed is: class D FT for 512 nodes

(110 seconds for benchmark and 145 seconds for original application) with a difference 24%.

The average delta time is used to resemble computation via busy wait. FT uses collectives

heavily, which may result in computational imbalance. Hence, computation is more closely

resembled by the maximum recorded time instead of the average for collectives.

The results for the class C IS benchmark varying from 16 to 512 processors are shown in

the Figure 5.4. We observe that the execution time reduces from 16 processors to 64 processors
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Figure 5.2: Graphs for Timing Accuracy of LU, MG, EP and CG.

and then increases as the number of processors increase from 256 and onwards. This can be

explained through strong scaling in which the solution time varies with the number of processors

for a fixed total problem size. The reason for the increase in execution time with the increase in

the number of processors beyond certain number is likely due to increase in the communication

and decrease in the per-processor computation.

5.3 Cross Platform Results

We obtained cross platform results by porting the generated benchmark of IS and MG on

ARC on Jaguar. The results are shown in the graphs from figures 5.5 and 5.6.

From Figure 5.5 we can observe that, in case of IS benchmark, the difference between the
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Figure 5.3: Continued Graphs for Timing Accuracy of IS, FT, BT, CG and Sweep3D.
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Figure 5.4: Timing Results for IS for class C on ARC
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Figure 5.5: Timing Results of Cross Platform Experiments of IS

execution times of benchmark from ARC and the original application on Jaguar reduces as

the number of processors increase. This is because the computation is splitt accross a larger

number of processors reducing the per-processor computation to communication ratio and thus

reducing the effect of higher processing capacity of Jaguar. Also, for the IS benchmark, the

lowest time is obtained for 64 processors up to 512 processors on the ARC cluster resembling the

actual application behavior. The same benchmark obtained on ARC indicated the lowest time

for 256 processors on Jaguar and this resembles the execution time of the original application

on Jaguar with the lowest time for 256 processors up to 512 processors.
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Figure 5.6: Timing Results of Cross Platform Experiments of MG

From Figure 5.6 we observe that the execution time of MG benchmark obtained on ARC

takes similar time as that of the original application on Jaguar, whereas the execution time

for the MG benchmark obtained on Jaguar itself very closely resembles it. The difference is

observed because of the difference in the CPU speeds of the both ARC and Jaguar. Jaguar

with a faster CPU than ARC, finishes the computation earlier than the sleeps indicated by the

benchmark obtained on ARC. We reduced the sleeps in the MG benchmark obtained on ARC

by 23% empirically and by observing the delta times in the traces from ARC and Jaguar, to

obtain the fabricated speedup. With this, we observed that the execution time of the fabricated

benchmark matches very closely to that of MG benchmark obtained from Jaguar and actual

MG application, when executed on Jaguar.

To verify the speedup of Jaguar over ARC, we executed a computational kernel that performs

matrix multiplication on a single processor for square matrices of size 100 with iterations ranging

from 3000 to 9000. Execution times are given in the Table 5.1. The CPU speedup of Jaguar

over ARC is very close to 23% which conforms our observations from traces.

Table 5.1: Execution Times for Matrix Multiplication on ARC and Jaguar

Number of Iterations Execution Time (ARC) Execution Time (Jaguar) Speedup(%)

3000 44.168 34.259 22.43479442
6000 88.314 68.565 22.36225287
9000 132.443 102.614 22.5221416
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Thus, such performance experiments could be performed with the benchmarks generated

by our tool and could help in gauging different performance aspects related to communication

for HPC systems with increasing complexities without actually porting the real applications to

those platforms.

5.4 Lines of Code

We also measured the number of lines of code(LOC) in the generated code to gauge the

conciseness of the generated code.

Table 5.2: Comparision of Number Lines of Code

App (LOC) Benchmark (LOC) Change(%)

LU 5937 2868 -51.69277413
MG 2580 11402 341.9379845
EP 325 306 -5.846153846
CG 1796 1658 -7.683741648
IS 1141 365 -68.01051709
FT 2165 320 -85.21939954
BT 9217 1547 -83.2157969
SP 4922 6657 35.24989842

Sweep3D 2096 14624 597.7099237

Table 5.2 shows that the number of lines in the generated code are lower than for the native

application except for MG, SP and Sweep3D. This makes the generated code more precise and

readable in just a single file. For MG, SP and Sweep3D, the number of lines increases due

to different compression techniques that result in conditionals in the auto-generated code. We

plan to address this issue by applying more aggressive compression techniques in ScalaTrace.
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Chapter 6

Related Work

The following characteristics of our benchmark-generation approach make it unique:

• The size of the benchmarks we generate increases sublinearly as the number of processes

and in the number of communication operations increase.

• The run-time information is exploited rather than limiting ourselves to information avail-

able at compile time.

• We preserve all communication events and their ordering performed by the original ap-

plication.

We utilize ScalaTrace to collect the communication trace of parallel applications. With a

set of sophisticated domain-specific trace-compression techniques, ScalaTrace is able to gener-

ate traces that preserve the original source-code structure while ensuring scalability in trace

size which is discussed in Chapter 2. Other tools for acquiring communication traces, such

as Vampir [5], Extrae/Paraver [16], and tools based on the Open Trace Format [9], do not

have structure-aware compression. This results in the size of a trace file that grows linearly

with the number of MPI calls and the number of MPI processes. This also increases size

of any benchmark generated from such a trace, making it inconvenient for processing long-

running applications executing on large-scale machines. This lack of scalability is addressed in

part by call-graph compression techniques [10] but still falls short of structural compression of

ScalaTrace, which extends to any event parameters. Casas et al. utilize techniques of signal

processing to detect internal structures of Paraver traces and extract meaningful parts of the

trace files [6]. This facilitates trace analysis in compressed manner but does not allow one to

capture full information and becomes lossy and thus not suitable for benchmark generation.

Xu et al.’s work on constructing coordinated performance skeletons to estimate application

execution time in new hardware environments [28, 29] exhibits many similarities with our work.
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However, a key aspect of performance skeletons is that they filter out “local”’ communication

(communication outside the dominant pattern). As a result, the generated code does not fully

reflect the original application, which may cause subtle but important performance charac-

teristics to be overlooked. Because our benchmark generation framework is based on lossless

application traces, it is able to generate benchmarks with identical communication behavior to

the original application.

Program slicing, statically reducing a program to a minimal form that preserves key proper-

ties of the original one, offers an alternative approach to generating benchmarks from application

traces. Ertvelde et al. utilize program slicing to generate benchmarks that preserve an applica-

tion’s performance characteristics while hiding its functional semantics [7]. This work focuses

on resembling the branch and memory access behaviors for sequential applications and may

therefore complement our benchmark generator for parallel applications. Shao et al. designed

a compiler framework to identify communication patterns for MPI-based parallel applications

through static analysis [19], and Zhai et al. built program slices that contain only the variables

and code sections related to MPI events and subsequently executed these program slices to

acquire communication traces [30]. Program slicing and static benchmark generation in gen-

eral have a number of shortcomings relative to our run-time, trace-based approach: (a) Their

reliance on inter-procedural analysis requires that all source code be available. This includes

application’s complete source code along with the source codes of all its dependencies includ-

ing libraries. (b) They lack run-time timing information. (c) They cannot accurately handle

loops with data-dependent trip counts (“while not converged do. . . ”). (d) They produce

benchmarks that are neither human-readable nor editable.

Wu et al.’s work of generating the Conceptual benchmark [27] closely resembles to our

work. ScalaTrace is used to collect the traces from the application in their work. A trace

traversal framework, which is similar to our traversal framework, is used to generate the source

code in Conceptual, a domain specific language [15]. This language focuses on generating

networking/communication benchmarks. This work does not generate all MPI calls but maps

the MPI events from the trace to the corresponding combination of communication routines.

The Conceptual language does not have the concept of “communicator”” as in MPI. Thus it

cannot form the subsets of ranks based on a communicator. Since our work generates C code

with MPI calls, it can translate all MPI events captured in the trace accurately. The Conceptual

language does not have provision like MPI ANY SOURCE, thus generated code needs to be

resolved for the source in the send and receive communication calls. This eliminates the non-

determinism present in the source code but changes runtime behavior relative to internal MPI

queues which are used to buffer the receives till the matching sends are encountered. In our

work, we reproduce the non-determinism present in the original application which is discussed

in Section 3.9, thus accurately preserving the behavior of the application. Our work, generates
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lossless, accurate and human readable MPI communication calls in C source code from single

trace file obtained from ScalaTrace, which is easily portable to any platform as opposed to

Conceptual with the need to interpret Conceptual code, which more closely resembles trace

replay.
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Chapter 7

Conclusion

Benchmarks are required for assessing the capabilites of HPC systems. They aid in evaluating

and analyzing software subsystems and hardware. Benchmarks are also used for application

tuning to improve performance, e.g., by variations in data decomposition and transformations

for parallelism. Using real HPC applications for such tuning is impractical because of large

overheads. Also, sometimes sources of such applications are not public. Benchmarks are easy

to port, modify, run and also provide an indication for characteristics of HPC applications.

But most of the existing benchmarks do not capture the complexity and scale of realistic HPC

applications.

In this work, we have presented a solution to the task of evaluating HPC systems and

application tuning. We have designed and implemented a novel communication benchmark

code generator, which generates benchmark code in C with MPI calls from communication

traces. These traces are generated by ScalaTrace, a lossless and scalable framework to extract

communication, I/O operations and execution time while abstracting away the computations.

These benchmarks are human readable, compact, easy to generate and port. They also preserve

the behavior of the original application in terms of execution time, communication volume and

ordering of events.

Experimental results demonstrate the ability of our code generator to generate the commu-

nication benchmarks from NAS Parallel Benchmark Suite and Sweep3D. The obtained results

show that the benchmarks accurately preserve the application semantics and overall execution

time.

Thus, we have achieved the goals we had set and have proven our hypothesis stated initially.

The developed tool can benefit application developers, communication researchers and HPC

system designers. This tool assists in perfomance analysis of software, hardware and also easy

migration of applcations across different platforms.
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