
ABSTRACT

BEHERA, SUBHENDU SEKHAR. Adaptive Multi-level Checkpointing On Modern High Performance
Computing Systems. (Under the direction of Dr. Frank Mueller.)

Failures are imminent and diverse on today’s High-Performance Computing (HPC) systems

given the complexity of system design, scale, and heterogeneity of its components. These failures

greatly reduce application efficiency. To mitigate these issues, Checkpoint/Restart (C/R) is widely

used to provide fault tolerance on HPC systems. However, C/R adds significant overhead due to

high latency to store a checkpoint on a Parallel File System (PFS).

This work develops an adaptive multi-level C/R model that incorporates multiple techniques:

failure prediction and an analysis model, live migration, Burst Buffers (BBs), and safeguard check-

points. The failure prediction and analysis model focuses on reducing the application overhead by

predicting failure earlier and decides on when and where to write safeguard checkpoints, restart

computation after failure, and migrate computation using live migration technique. The model

also utilizes BBs to effectively reduce PFS contention during checkpoints and failure recovery. To

optimize our model that incorporates asynchronous checkpoints from BBs to the PFS, we derive a

first-order approximation of the optimal checkpoint interval for systems with BBs. We also derive a

failure analysis model based on a rigorous log-based analysis of system logs collected from three

real-world HPC systems. We incorporate this analysis in the derivation of the optimal checkpoint

interval, which effectively reduces the frequency of checkpoints.

To evaluate our model, we simulate six real-world applications on an HPC system modeled

after Summit, which is the fastest supercomputer as of November 2019. Results show a ≈53%-

95% reduction in application overhead due to BBs, orchestrated failure prediction, migration, and

checkpoint handling. We also observe a ≈29% decrease in the amount of checkpoint data written

to BBs, which can reduce the wear-out and thus increase the longevity of the BB storage devices.

Finally, we demonstrate the robustness of our C/R model against multiple failure distributions.
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CHAPTER

1

INTRODUCTION

Failure rates in HPC are bound to increase in the era of exa-scale computing due to scale, het-

erogeneity, component count, and complexity of devices for compute, memory, networking, and

storage [Gei03; Sat12; Sch07]. A DARPA report [Eln08] pointed out that large-scale systems waste

20% of its resources on failures and their recovery. Further, future exa-scale computing systems will

have a mean time between failures (MTBF) in the order of hours or less. Table 1.1 [Gup17] represents

some of the large-scale HPC systems and their MTBF.

Table 1.1 Failure Rate

HPC System No. of Nodes MTBF (hrs)
Jaguar XT4 7,832 36.91
Jaguar XT5 18,688 22.67
Jaguar XK6 18,688 8.93

Eos 736 189.04
Titan 18,688 14.51

C/R [Moo10] is the most common solution employed to provide fault tolerance where the

application state is saved at regular intervals on permanent storage devices of a PFS on HPC systems.

After failure, the application can continue execution from the point of failure with the help of a

recovered application state.

However, with the rapid growth in computing power, the latency gap between computing and
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the I/O subsystem has ever been on the rise. Further, the high contention for access to the PFS,

which is amplified on exascale HPC systems, severely limits application performance [Luc14; Liu12].

A single checkpoint can take up to the order of minutes [Isk08].

In short, failures and high I/O contention add significant overhead to application execution and

become the key challenge for C/R efficiency. This work aims to address these challenges in a novel

manner exploiting recent technological advances.
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1.1 Motivation

In past years, there have been significant contributions in failure prediction on large-scale sys-

tems [Das18a; Das18b]. Desh’s model [Das18a] uses deep learning to identify sequences of system

logs or phrases that may lead to failure. Based on the occurrence of such failure chains a prediction

can be made in advance along with a lead time to avoid failure of a specific node.

The PFS has long been identified as a bottleneck for highly parallel applications [Khe19; Wan14;

Liu12; Wan17]. Modern HPC systems address this problem by integrating BBs into the I/O subsystem

as intermediate storage devices, which provide faster I/O performance via buffering. Also, there

have been significant contributions in fault tolerance techniques such as live migration [Wan08;

Wan09], and prediction-based checkpointing [Bou13; Tiw14].

We propose a multi-level C/R model that integrates Desh [Das18a] with its ability to predict

failures. Based on the predicted lead time to failure, it chooses an appropriate action to avoid or at

least reduce re-computation upon failure. It further incorporates BB devices into the model to reduce

the latency for storing checkpoints, but also to consider additional latency before a checkpoint

becomes globally available within the PFS, and to trade off C/R with live migration based on the

predicted lead time to failure.
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1.2 Hypothesis

We put forward the following hypothesis:

A multi-level C/R model for modern HPC systems can benefit in performance from failure predic-

tion and an analysis model for effective use and orchestration of multiple fault resilience techniques

such as safeguard checkpoints, live migration, and burst buffers.

We improve the efficiency of writing checkpoints by taking advantage of BBs. BBs can be used to

store the checkpoint data faster than writes to PFS can. Once the data is in BBs, it is asynchronously

bled off to PFS, i.e., computation within the application continues while a checkpoint previously

committed to a BB is slowly written to the PFS in the background so that it can later be restored on a

different node should the current node fail. These fast, node-local writes to the BB reduce the time

required to store checkpoints on the critical path of application execution.

We leverage failure prediction models to reduce the overhead caused by re-computation due

to failures. Our checkpoint model integrates Desh’s model [Das18a] to predict failures with known

lead times. We utilize the Desh’s log-based failure chain characterization technique to perform

rigorous failure analysis and prediction on system logs collected from real-world HPC systems to

identify instances of different failures and distributions of lead times of such failures. We also derive

a first-order approximation of the optimal checkpoint interval for the multi-level C/R model and

further optimize it by incorporating a rigorous failure analysis model, which effectively reduces

the frequency of checkpoints. The novelty is that it considers choices in actions such as adaptive

safeguard checkpoints to different I/O layers and live migration to reduce the cost of re-computation

upon immanent failures, and it studies the impact of such a trade-off.

Our study shows that the utilization of BBs results in a significant reduction of checkpoint over-

head for both small and large-sized application checkpoints. The comparative study also shows that

our failure analysis with its prediction model allows for orchestration of C/R with live migration re-

sulting in a more significant reduction in application overhead than adaptive safeguard checkpoints

without migration. An evaluation shows that our C/R model is robust and maintains its efficiency

for different failure distributions.

The remainder of this document is organized as follows: Chapter 2 provides an overview of the

background followed by related work in Chapter 3. Chapter 4 introduces the system design, develops

our checkpoint model and explains how BBs and proactive live migration are utilized. Chapter 5

provides the failure analysis and derivation of the optimal checkpoint interval. Chapter 6 discusses

the I/O performance model and its instantiation for ORNL’s Summit system. Chapter 7 discusses

results from experiments followed by limitations and future work in Chapter 8 and a summary of

the contributions in Chapter 9.
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CHAPTER

2

BACKGROUND

As failures are more and more common in large-scale systems, resiliency is considered a key feature

of such systems. Fault tolerance solutions can recover the system from failures and reduce com-

putational waste. There are three prominent categories of fault tolerance solutions: redundancy,

algorithm-based fault tolerance, and checkpoint restart. There are many variants of theses solutions

that have been implemented and their impact on system efficiency is significant. In this chapter,

we discuss in brief existing solutions and the technologies that are being adopted in modern HPC

systems.
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2.1 Solutions

In this section, we discuss the three categories of resilience methods.

2.1.1 Redundancy

In this method, multiple redundant jobs are executed to perform the same task [Fer09; Ell12].

At the end of the computation, the final results are evaluated to check if the results match. This

resiliency method mainly focuses on soft and silent errors, e.g., silent data corruption [Fia11].

However, redundancy requires more resources.

2.1.2 Algorithm Based Fault Tolerance

This class of resilience methods exploits the mathematical properties of applications and relies on

additional data to provide fault tolerance [Gei03]. This requires applications to be modified and

redesigned in such a manner that they can recover automatically after failures. There are two classes

of ABFT techniques. The first one is checksum-based ABFT [Kua84] and relies on extra data that is

checked at run time to detect soft errors. The second one is checksum-less ABFT, which exploits the

mathematical properties of applications to recover from failures [Che13].

2.1.3 Checkpoint/Restart

C/R is a fault tolerance mechanism in which the application state is stored periodically on the

permanent storage disk. Upon failure, the application can continue to run from the point of failure

by recovering the stored data. Figure 2.1 depicts an execution with C/R. Since this work focuses on a

C/R-based solution, we discuss it in further detail.

Figure 2.1 Checkpoint/Restart

C/R can be broadly classified into two categories. System-level: It allows the application state

to be saved without changing any application code. Application-level: It requires application code

to include the checkpoint APIs to be called. In general, a system-level C/R solution has a larger

memory footprint than an application-level C/R solution.
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C/R solutions can be further classified based on the below characteristics.

• Coordinated vs. Uncoordinated: Coordinated checkpointing mandates all the processes of a

job to be synchronized during the checkpoint process [Har06]. In contrast, uncoordinated

checkpointing relies on message logging to let each process store checkpoint data at their

convenience with minimal or no synchronization [Cot06].

• Incremental Checkpointing: This version of checkpointing allows systems to reduce the

checkpoint data size by allowing dirty or modified pages to be saved as checkpoint data after

one initial full checkpoint [Wan09]. Many variants also allow incremental checkpointing along

with less frequent full checkpoints.

• Diskless Checkpointing: This method requires applications to procure a certain amount of

RAM to store checkpoint data. This allows for faster checkpointing [Pla93]. However, this is a

disadvantage for applications with larger checkpoint data.

• Multilevel Checkpointing: Modern HPC systems have heterogeneous storage devices with

different capacities and latencies. Multi-level checkpointing models [Moo10] take advantage

of this hierarchical storage setting to store checkpoint data faster. Such systems determine

checkpoint locations on different storage devices based on the failure rate, which results in a

checkpoint interval for each storage level.
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2.2 Modern Technology

Significant progress has been made in HPC ecosystems and resilience methods in recent time. We

discuss them briefly below.

2.2.1 Burst Buffers

Access to the PFS has always been subject to high contention [Wan14; Liu12]. BBs act as an inter-

mediate device to serve I/O requests faster, to reduce I/O blocking, and to improve I/O latency.

Burst Buffers are typically NVMe SSD storage devices with low read and write latency. Some of the

large-scale HPC systems equipped with BBs are Cori [Bhi16] and Summit [Vaz18].

Figure 2.2 Global Burst Buffers

There are three different architectures based on which Burst Buffers are implemented. They are

described briefly below.

• Global Burst Buffers: Global Burst Buffers are formed as a cluster of NVMe SSD devices. These

devices are shared by all the compute nodes. In other words, they act together as a pseudo-PFS

that has lower latency than the global PFS. NERSC’s Cori [Bhi16] employs this Burst Buffer

architecture. Figure 2.2 depicts the global Burst Buffers architecture.

• Grouped Burst Buffers: This is another architecture of Burst Buffers where compute nodes

are grouped and allocated a specific portion of the Burst Buffers. This model takes advantage

of local links to reduce network congestion and enhance latency. It also makes it easier to

provide data sharing capabilities. Figure 2.3 depicts grouped Burst Buffers.

8



Figure 2.3 Grouped Burst Buffers

Figure 2.4 Local Burst Buffers
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• Local Burst Buffers: In this category, the NVMe SSD devices are attached to individual com-

pute nodes just like local hard disks. This provides zero contention among compute nodes.

However, data sharing becomes a challenge in this scenario. Summit [Vaz18] has employed

this Burst Buffer architecture. Figure 2.4 depicts the architecture of local Burst Buffers.

2.2.2 Live Migration

Live Migration [Wan08; Wan09] is the process in which a failing node can migrate its running

processes to a new and healthy node. When a failure alert is received by the scheduler on the failing

node, the process migration process starts. In general, there are three stages of the migration process.

First, all the pages owned by the process are copied to the new node. Then the process execution is

paused for a few seconds and all the dirty pages are copied. In the end, the process is terminated

and the new process continues its execution.

2.2.3 Safeguard Checkpoint

Safeguard checkpointing [Bou13] is the just-in-time checkpoint that is performed in the presence of

failure prediction. Figure 2.5 depicts the concept of safeguard checkpointing.

Figure 2.5 Safeguard Checkpoint

2.2.4 Failure Prediction

With significant progress made in the field of ML, there has been tremendous improvement in

Failure Prediction(FP). Apart from the fault tolerance techniques mentioned previously, FP can

provide more efficient fault tolerance. DeepLog [Du17], Cloudseer [Yu16], and ELSA [Gai12] are

some of the contribution in this direction. Further, Desh [Das18c] contributed to predicting node

failures with lead times. We use the Desh model in our C/R solution to orchestrate multiple fault

tolerance techniques in combination with advanced storage technology.
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CHAPTER

3

RELATED WORK

Table 3.1 C/R Models Comparison

C/R
Model

Failure
Awareness

Safeguard
Checkpoint

Live
Migration

BB to PFS
bleed off

Failure
Prediction

Our Work Lead Time 3 3 3 3

Wang et al. Health Monitoring 7 3 7 7

Bouguerra et al. Lead Time 3 7 7 3

Tiwari et al. Failure Locality 7 3 7 7

George et al. Failure Locality 7 7 7 7

Garg et al. Failure Locality 7 7 7 7
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3.1 Multilevel Checkpointing and Optimal Checkpoint Interval

A number of extensive and significant contributions have been made to address fault resilience

with C/R techniques over the past years. C/R solutions [Moo10; Di17; Di14; Ben17; Sat12] focus

on reducing checkpoint overhead by using multiple storage devices with varying latency to store

checkpoints. Moody et al. [Moo10] distribute checkpoints to RAM, flash devices, hard disks, and

the PFS depending on the commonality of failures. Di et al. [Di14; Di17] optimize the selection of

the location of checkpoints based on a failure distribution and compute the optimal checkpoint

interval for each level. Benoit et al. [Ben17] assess the cost of a multilevel checkpoints, characterize

the pattern of checkpoints, and further, provide a dynamic programming solution to find the

optimal subset of levels for checkpointing. Sato et al. [Sat12] implement a non-blocking checkpoint

mechanism in which checkpoints are stored in node-local storage devices and later bled off to the

PFS. These works provide a foundation for our work but lack the integration of failure prediction

into C/R models.

Further, our derivation of the first-order optimal checkpoint interval is novel for a C/R solution

where checkpoints are cached and then asynchronously stored on to a secondary storage. Previous

work by Di et al. [Di14; Di17] and Benoit et al. [Ben17] focused on the optimal checkpoint interval

for multiple types of checkpoints, each of them stored on a separate storage medium.
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3.2 Using Burst Buffers

Other studies [Liu12; Wan14; Sat14; Fan15; Wan17] have investigated the use of BBs to reduce

the checkpoint and the I/O overhead in large-scale HPC systems. Liu et al. [Liu12] and Wang et

al. [Wan14] use the BBs to absorb I/O bursts temporarily and analyze their impact on application

efficiency. Sato et al. [Sat14] developed a checkpoint strategy to use BBs for large-scale systems.

Fang et al. [Fan15] study BBs capacity requirement, and Wan et al. [Wan17] utilize both the PFS and

BBs with guaranteed BB endurance. Our solution, a two-level C/R model that stores its checkpoints

efficiently, goes beyond these earlier approaches in its efficient recovery strategy upon failures to

mandate only the replacement node to recover checkpoint from the PFS in orchestration with failure

prediction, which reduces restart time considerably.
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3.3 Failure-Aware C/R Solutions

Several failure-aware C/R mechanisms [Bou13; Tiw14; Geo15; Gar18; Wan08; Liu08] have been

devised. Wang et al. [Wan08]monitor healthy nodes and migrate processes if the node’s health

deteriorates. Bouguerra et al. [Bou13] use proactive checkpoints upon failure prediction along with

preventive checkpoints to reduce computational waste. However, as per our evaluation, proactive

checkpoints fail when checkpoint data size grows. Tiwari et al. [Tiw14] increase the checkpoint

interval until failure and skip selected checkpoints post-failure using a temporal distribution of

failures. Our C/R model also takes a similar approach to update the optimal checkpoint rate at a fixed

point during C/R handling. However, our C/R model differs significantly from the lazy checkpointing

solution based on the prediction techniques underlying our model, which are unique.

George et al. [Geo15] deploy partial replication of a set of processes and use failure predic-

tion to change the replicated process group. Garg et al. [Gar18] exploit failure locality to schedule

applications with higher checkpoint overhead during lower failure rates and applications with

lower checkpoint overhead during higher failure rates. In contrast, our model relies on dynamically

predicted failures. Table 3.1 compares our C/R model with other C/R models and illustrates the

uniqueness and comprehensiveness of our approach in contrast to prior work.
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CHAPTER

4

SYSTEM DESIGN

Figure 4.1 HPC System Architecture

Our C/R model is devised for a Summit-like HPC system shown in Figure 4.1. On this HPC system,

the BB devices are locally attached to compute nodes. As our model uses proactive live migration, a

small set of nodes is reserved but yet not allocated to any application. Workload managers such as

Slurm [Yoo03] and Flux [Ahn18] support the allocation of spare nodes. We assume that spare nodes

15



are always available, which is given as long as rate of failure is slower than the rate at which failed

nodes can be recovered. Upon a failure, a node can be taken from this reserved set to replace the

failed one. Our failure predictor analyzes system logs on a per-node basis and predicts failures with

their estimated lead times, i.e., the predictor daemon is placed on each compute node (e.g., in a

spare core, which could be shared with other services). Since only system logs are used for analysis,

predictors are independent of the application running on the compute nodes. Our model also

features a multi-level adaptive checkpoint capability that comprises multiple techniques, including

BB bleed-off, failure analysis and prediction, proactive live migration, and adaptive safeguard

checkpoints, which are discussed in the following.
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4.1 Checkpoint Model

Figure 4.2 Decision Tree of the Checkpoint Model

Our base checkpoint model derives the optimal checkpoint interval from a failure analysis model

without considering failure prediction. With the addition of failure prediction, the model is extended

to select effective and informed actions based on the decision tree of Figure 4.2. The criteria based

on which decisions are made are as follows:

• Has a failure happened? At the top of the decision tree, it is assessed if any failure has occurred.

Upon a failure, the application state needs to be recovered from the last checkpoint in a BB or

the PFS upon availability of an existing node or addition of a new node from the reserved set,

respectively. The recovery strategy is to restart from the last checkpoint. In the absence of a

failure, we move to the node where the failure prediction status is checked.

• Was a new node added? Upon a failure, all the ranks of an application traditionally recover

the checkpoint data from the PFS. This introduces significant contention that increases with

checkpoint data size and the number of processes in the application. Since Summit’s BBs are

local, our checkpoint model mandates only a newly added node, drawn from the reserved

set to replace the failed one, to recover the checkpoint data from the PFS. The remaining

nodes recover the checkpoint data from local BBs. This considerably reduces failure recovery

overhead.
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• Is a failure predicted? In the absence of a predicted failure, the checkpoint model falls back

to the optimal checkpoint interval to save the application state periodically. This provides

tolerance against the failures that are neither predictable nor can be handled with proactive

actions such as live migration and adaptive safeguard checkpoints. If a failure can be predicted,

then the next action is indicated further down in the decision tree.

• Is proactive live migration feasible? If a failure is predicted, then we select an action based

on the lead time to failure. With enough lead time to proactively migrate the application, the

failure can be avoided by live migration. The application can continue with its computation

while being migrated to a new and healthy node selected from the set of reserved nodes. The

failed node is recovered and added to the set of reserved nodes for future use. If lead time is

insufficient for migration, then the next action is indicated further down in the decision tree.

• Is safeguard checkpointing feasible? Without enough lead time for live migration, the applica-

tion state is saved with a safeguard checkpoint to the BB, which is a just-in-time checkpoint

on top of the periodic checkpoints of the base model. Upon failure, application execution

restarts from the safeguard checkpoint if it completed. The total time needed to commit a safe-

guard checkpoint is the combination of time required to store the checkpoint to BB and then

PFS, one after another. Applications with longer checkpoint intervals can benefit from these

just-in-time safeguard checkpoints in that less recompute is required after restarting from a

checkpoint. One may argue that the checkpoint can be directly written to the PFS bypassing

the BB, but this may increase PFS contention during application restart as all processes need

to recover the checkpoint from PFS. Hence, the safeguard checkpoint is stored in the BBs

of all nodes and then bled off to PFS. The replacement node recovers the checkpoint from

PFS while other nodes recover theirs from BBs. This allows applications to recover faster. If

the predicted lead time is insufficient for both checkpointing and live migration, no action is

taken as failure is unavoidable. Upon failure, application execution restarts from the previous

regular checkpoint.

One point of discussion is the accuracy of prediction. It is assumed here that the accuracy is high

(see [Das18a]) and lead times are reliable except for a few outliers [Das18b]. Should lead times vary

significantly, then safeguard checkpoints should be committed even if their write times exceed the

lead time. Clearly, if prediction accuracy itself was low, only periodic checkpoints of the base model

should be taken, which is not the focus of this work. In our model, live migration takes precedence

over safeguard checkpoint. The reason for doing this is the ability to perform computation during

live migration, which is explained in Section 4.4.

The following assumptions underlie the model:

1. Any checkpoint made to save the application state is performed by all the processes of an

application.

2. Failures happen on a single compute node and do not propagate to other nodes.
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3. No distinction is made between soft failures and hard/node failures, i.e., both are handled

uniformly.

4. The data is transferred from BBs to the PFS asynchronously, e.g. via the Spectral library on

Summit [ORN].
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4.2 BB Utilization

Concurrent access to PFS by all the compute nodes would introduce high overhead during check-

points. Instead, BBs are utilized to provide faster access and lower contention depending on the BB

architecture. On Summit, a BB device is attached to each compute node locally. In contrast, the BB

system on NERSC’s Cori [Bhi16] hosts a set of dedicated nodes, which form a cluster of BB hosting

devices but require communication over the interconnect (Cray Dragonfly) to commit data to BBs.

On Summit, each BB device has 1.6 TB capacity with up to 2.1 GB/sec write and 5.5 GB/sec read I/O

bandwidth on a compute node [Vaz18].

There are two scenarios in which concurrent access to PFS leads to performance degradation.

First, for every checkpoint, all the processes need to write checkpoint data concurrently to PFS.

We resolve this issue by storing the checkpoint data in BBs and later bleeding it off to the PFS

asynchronously, i.e., by limiting the number of nodes with BB to PFS transfer at any time. Second,

for post-failure recovery of the application state, all processes need to access PFS concurrently.

However, each checkpoint is stored to the local BB first. Hence, only the new node replacing the

failed one needs to recover the checkpoint data from PFS. All other nodes recover from their local

BB device.

Such a model leads to four possible flows of checkpoint data indicated in Figure 4.3: Regular

checkpoints are written to local BB devices (1) and further bled off to the PFS (2); application state

is recovered for non-failed nodes from BBs (3) and for the new node (replacing the failed one) from

PFS (4).

Figure 4.3 Checkpoint Dataflow

20



4.3 Adaptability

The schedule of checkpoints is variable in our model. It depends on factors such as the time of failure

prediction, the location of the predicted failure, and the proactive action chosen. In Figure 4.4(A),

the schedule of a subsequent checkpoint does not change when the predicted failure occurs after

the checkpoint data is bled off to PFS. However, in Figure 4.4(B), the scheduled checkpoint is

shifted as it would be incomplete due to a predicted failure that forced live migration. Similarly,

in Figure 4.4(C), the scheduled checkpoint changes due to a safeguard checkpoint triggered by

and completed before a predicted failure. Upon a failure that was not predicted, the schedule of

checkpoints always changes, which is shown in Figure 4.4(D). Table 4.1 summarizes all scenarios

handled by our checkpoint model.

Figure 4.4 Adaptability under Different Scenarios

21



Table 4.1 Handling of Failure Prediction

Failure Location

During
checkpoint to

BB

During
checkpoint bleed

off to Parallel
File System

During
Computation

Lead Time
Driven Action

Change in
checkpoint schedule

3 7 7 Live Migration 3

7 3 7 Live Migration 3

7 7 3 Live Migration 7

3 7 7 Checkpoint 7

7 3 7 Checkpoint 7

7 7 3 Checkpoint 3

3 7 7 Imminent Failure 3

7 3 7 Imminent Failure 3

7 7 3 Imminent Failure 3
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4.4 Proactive Live Migration

Proactive live migration allows us to relocate the processes on a compute node that may fail based

on our failure prediction to a new and healthy node. We make several assumptions regarding our

proactive live migration technique. First, during most live migration interval, the process continues

to execute (until a final frozen state is transferred) [Wan08; Wan12]. Second, we assume that the costs

associated with the process of live migration, e.g., loading the application on one of the reserved

nodes and making the changes required in the MPI runtime environment, are minimal and can thus

be ignored. Finally, the total amount of data that needs to be transferred to complete live migration

is upper bounded by the DRAM size on a compute node. On summit, DRAM memory is 512 GB

per node [Vaz18]. We also experimentally determined that the inter-node bandwidth on Summit is

≈12.5 GB/sec. Hence, the maximum amount of time needed to migrate an application is 41 seconds.
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CHAPTER

5

FAILURE ANALYSIS AND OPTIMAL

CHECKPOINT INTERVAL

Table 5.1 Symbol Notations

Symbol Description
Tw Wall clock run time for job i

Tc mp t Total computation time for job i
Tf a i l u r e Total loss of time due to failure of job i

t
Single iteration of computation

and checkpoint to the BBs for job i
tc mp t Checkpoint interval for job i

t b b
c k p t

Time required to write one checkpoint
to the BBs by job i

t p f s
c k p t

Time required to write one checkpoint
to the PFS by job i

λ Failure rate per node

θ
Time required to perform proactive

live migration of an application

σ
Percentage of failures that can be predicted

with lead time larger than θ
c Number of compute nodes job i is running on

In this section, we derive a first order approximation of the optimal checkpoint interval for our
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multi-level checkpoint model. Further, we integrate the rigorous analysis of failure logs into the

optimal checkpoint interval formula. Table 5.1 provides a legend of the symbols used for deriving

the optimal checkpoint interval with short descriptions.

The wall clock run time of a job supported by our C/R model is the aggregate of time spent

in computation, checkpointing, node losses, and recovery due to the imminent and unpredicted

failures as shown in Eq. (5.1).

Tw = Tc mp t +

�

Tc mp t

tc mp t
−1

�

t b b
c k p t +Tf a i l u r e . (5.1)

Figure 5.1 Computation loss scenarios when a failure occurs during (A) asynchronous checkpointing to
PFS (B) computation post checkpointing to PFS (C) synchronous checkpointing to BB

In our multi-level model, the losses due to the failures can occur in three plausible phases during

an iteration of computation and checkpointing as shown in Figure 5.1. A failure during the asyn-

chronous checkpointing to the PFS (Figure 5.1(A)) requires recovery with the checkpoint data two

iterations back. The failures during computation post completion of asynchronous checkpointing to

the PFS (Figure 5.1(B)) and during checkpointing to the local BB (Figure 5.1(C)) need the checkpoint

data from the last iteration. We also make the following assumptions while deriving the optimal

checkpoint interval.

• Recovery time post failure is minimal and thus ignored.

• Failures happen only on one compute node.
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• Failures arrive independent of each other following a Poisson distribution and t � 1
λ . So the

average number of failures is given by
�Tc mp t tλc

tc mp t

�

.

The total amount of loss due to failure is expressed in Eq. (5.2).

Tf a i l u r e =

�

 

tc mp t − t
p f s
c k p t

t

! 

tc mp t + t
p f s
c k p t

2

!

+

 

t
p f s
c k p t

t

! 

t +
t

p f s
c k p t

2

!

+

�

t b b
c k p t

t

��

t − t b b
c k p t +

t b b
c k p t

2

�

��

Tc mp t tλc

tc mp t

�

.

(5.2)

The term

�

tc mp t−t
p f s
c k p t

t

�

is the fraction of one iteration post asynchronous checkpointing to the

PFS during computation and

�

tc mp t+t
p f s
c k p t

2

�

is the average loss of computation during this window.
�

t
p f s
c k p t

t

�

is the fraction of one iteration when checkpointing to the PFS is in progress and

�

t +
t

p f s
c k p t

2

�

is the average loss during this period. Eq. (5.2) similarly captures the proportional loss during

checkpointing to the local BBs.

Simplifying Eq. (5.2), we obtain

Tf a i l u r e =

�

t 2
c mp t − t

p f s
c k p t

2
+

2
�

tc mp t + t b b
c k p t

�

t
p f s
c k p t + t

p f s
c k p t

2
+

2
�

tc mp t + t b b
c k p t

�

t b b
c k p t − t b b

c k p t
2
��

Tc mp tλc

2tc mp t

�

,

(5.3)

rewritten as

Tf a i l u r e =

�

tc mp t +2t
p f s
c k p t +

2t b b
c k p t t

p f s
c k p t

tc mp t

+2t b b
c k p t +

t b b
c k p t

2

tc mp t

��

Tc mp tλc

2

�

.

(5.4)

Replacing Tf a i l u r e in Eq. (5.1), the wall clock run time of a job is given by Eq. (5.5).
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Tw =Tc mp t +

�

Tc mp t

tc mp t
−1

�

t b b
c k p t +

�

tc mp t +2t
p f s
c k p t +

2t b b
c k p t t

p f s
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tc mp t

+2t b b
c k p t +

t b b
c k p t

2

tc mp t

��

Tc mp tλc

2

�

.

(5.5)

Taking first derivative with respect to tc mp t to minimize the wall clock time, we get

−
t b b

c k p t Tc mp t

t
o p t
c mp t

2 +
Tc mp tλc

2

�

1−
2t

p f s
c k p t t b b

c k p t

t
o p t
c mp t

2 −
t b b

c k p t
2

t
o p t
c mp t

2

�

= 0 (5.6)

further simplified to

t
o p t
c k p t

2
=

2t b b
c k p t

λc
+ t b b

c k p t
2
+2t

p f s
c k p t t b b

c k p t . (5.7)

Ignoring the term t b b
c k p t

2
as it is very small, we get

t
o p t
c k p t

2
=

2t b b
c k p t

λc
+2t

p f s
c k p t t b b

c k p t . (5.8)

This implies

t
o p t
c k p t =

√

√

√2t b b
c k p t

λc
+2t

p f s
c k p t t b b

c k p t . (5.9)

The optimal checkpoint interval in our checkpoint model further includes a rigorous analysis

of failures logs. The study analyzes the system logs collected from three real-world HPC systems

from Desh [Das18a] over a period of six months. Using the Desh approach, the most common

sequences of phrases in logs that may lead to failure are considered. Our assumption in this work is

that any sequence of phrases, so-called failure chains, results in an actual failure. The time difference

between the first phrase and the last phrase in a chain is considered as the lead time. Figure 5.2

shows the distribution of lead times as box plots for different failure instances (sequence 1-10), each

of which occurs repeatedly in these logs. Failure sequence ID and number of occurrences in the

logs are on the x-axis. The y-axis represents the lead time in seconds. Mean lead time, which is used

as failure prediction lead time, is on the left side of each boxplot. We observe that most failures are

bounded by the whiskers, only few outliers exist, with the exception of failures sequences 2 and 3. In

the following experiments, we consider the mean lead time during simulation for simplicity. Notice
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that this is quite conservative as we only cover 50% of the correctly predicted failures, as opposed to

more aggressive assumptions with migration in 70% of the predicted failure cases [Wan08].

Figure 5.2 Failure Prediction Lead Time Distribution

Our study suggests that approximately 44 percent of the failures can be predicted with lead

times in excess of the time required to live migrate a process from a faulty node to a new and healthy

node. By considering a 44 percent decrease in the rate of failures, we further improve the optimal

checkpoint interval.

From the failure analysis of logs, we obtain that σ percent of failures can be predicted with a

lead time in excess of θ seconds (we use a threshold of 41 seconds for Summit) and thus can be

avoided with proactive live migration. Hence, the failure rate is further reduced byσ percent and

Eq. (5.9) can be re-written as Eq. (5.10).

t
o p t
c k p t =

√

√

√
2t b b

c k p t

λc (1−σ)
+2t

p f s
c k p t t b b

c k p t (5.10)
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CHAPTER

6

I/O PERFORMANCE MODEL

As our checkpoint model is developed for large HPC systems like Summit, an I/O performance

model for the PFS is built based on Summit. PFS I/O performance plays an important part in

checkpoint solutions. With higher I/O performance (latency and bandwidth), checkpoints can be

stored faster. There are two reasons for the need for a PFS I/O performance model. First, the optimal

checkpoint interval calculation depends on the latency to store a checkpoint to the PFS. Second,

I/O performance is known to be variable due to I/O contention between different jobs. Even on

modern HPC systems, I/O bandwidth for an application is severely impacted by concurrent I/O

operations performed by other applications. This causes significant variability in I/O performance.

On Summit, IBM’s SpectrumScale G P F S T M PFS handles application I/O using IBM’s G L4T M

Elastic Storage Servers as I/O nodes. The I/O subsystem evaluation in [Vaz18] shows an aggregate

bandwidth of 2.5 TB/sec can be realized. However, the evaluation measures the performance of

the I/O node server. It does not measure the I/O performance realized within an application. The

objective here is to characterize the actual I/O performance seen by an application.

To characterize the I/O performance of the G P F S T M , two experiments are conducted. The first

experiment is performed to find the optimal number of MPI processes that can achieve maximum

aggregate I/O bandwidth on a single compute node. A compute node on Summit has 42 physical

cores, which can be scaled to 168 cores with hardware multithreading (SMT) technology. Further, the

physical cores are evenly distributed over two sockets along with DRAM. This experiment measures

the I/O bandwidth for different aggregate data transfer sizes over multiple MPI tasks from 1 to 42.

These MPI tasks are evenly distributed over the two sockets on the compute node and use POSIX

writes to transfer data. I/O buffers are flushed via the fsync() call to ensure that the data is not cached
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but rather committed to the devices. Figure 6.1 depicts aggregate I/O bandwidth (y-axis) for different

transfer sizes (x-axis) on curves ranging from 1 to 32 processes. These results indicate that 8 MPI

tasks on a single compute node result in the maximum I/O bandwidth. Hence, 8 MPI tasks are used

to store checkpoints in the PFS model.

Figure 6.1 I/O Performance on a Single Compute Node

The second experiment assesses the effect of weak scaling on aggregate I/O bandwidth for

different sizes of aggregate data transfer per node. 8 MPI tasks are used to perform I/O. Effectively,

the I/O performance of the G P F S T M parallel file system is modeled. Figure 6.2 shows the effect of

scaling (nodes on y-axis, transfer size on x-axis) on aggregate I/O bandwidth (indicated by the heat

map). For strong scaling, a fixed data size (column) is exposed to increasing number of nodes. For

weak scaling (diagonal from origin to top right corner), data size and number of nodes are increased

at a constant rate. In our simulation, this performance matrix is used to calculate the time required

to store checkpoint data in the PFS. Our simulation is based on the assumption that the aggregate

bandwidth of a job is not affected by the I/O traffic generated by other running applications for now.

For evaluation purposes, we assume the same performance matrix for the I/O read operations.
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Figure 6.2 Impact of Scaling on I/O bandwidth
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CHAPTER

7

EVALUATION

7.1 Simulation Framework

Our simulation framework developed using SimPy [Tea] emulates the system-level characteristics of

Summit and the execution based on traces of the real-world scientific applications in Table 7.1. The

aim is to evaluate our C/R model while simulating the run-time environment closely resembling

the corresponding real-world HPC system. The applications used for our evaluation cover a wide

range of job size, checkpoint data size, and total computation time.

Table 7.1 HPC Workload Characteristics

Application
Number of

Nodes
Checkpoint

Size (GB)
Computation
Time (hour)

CHIMERA 2272 163840 360
XGC 1515 37926 240
S3D 505 5120 240

GYRO 126 50 120
POP 126 26 480

VULCAN 64 0.83 720

Previous studies [Tiw14; Sch10] have found that the mean time between failure (MTBF) distribu-

tions follow a Weibull distribution. In experiments, three sets of Weibull distribution parameters
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from Wan et al. [Wan17] are considered (see Table 7.2) to generate failures during the simulation.

The shape parameter with value less than one suggests that the failure rate decreases over time and

that after a failure another failure is likely to happen within a short period of time. Since the actual

failure statistics of Summit are unavailable, it is assumed that the failure distribution of OLCF’s

Titan also applies to Summit. LANL systems 8 and 18 are used to test our C/R model under different

failure distributions. In experiments, failures are simulated following a given Weibull distribution.

Upon a simulated node failure, a node is selected randomly from the set of all nodes, and the failure

is simulated on that node. The number of failures for a job depends on the number of nodes an

application run uses, i.e., given the MTBF rate, larger jobs (with more nodes) are subject to a high

total number of failures. Simulation are repeated 1000 times, and the measurements are averaged

over those 1000 runs.

Table 7.2 Weibull Distributions for Failure Generation

HPC System Shape Scale
LANL System 8 (164 nodes) 0.7111 67.375

LANL System 18 (1024 nodes) 0.8170 6.6293
OLCF Titan (18868 nodes) 0.6885 5.4527
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7.2 C/R Model Evaluation

The evaluation compares four models to study the impact of the BBs and our failure prediction and

analysis model assisted by adaptive safeguard checkpoints and proactive live migration:

• Model A: The base model does not incorporate any of these techniques. It also does not use

BBs. We use the Young’s standard formula [You74] as a basis to derive the optimal checkpoint

interval.

• Model B: This model utilizes only BBs without any of the other techniques.

• Model C: This model utilizes the BBs, and failure analysis and prediction to decide on adaptive

safeguard checkpoints.

• Model D: This model utilizes the BBs, and both adaptive safeguard checkpoints and live

migration based on failure analysis and prediction.

Figure 7.1 depicts the overhead of fault tolerance in percent (y-axis) normalized to the base

model A (first bar) for each application (x-axis) compared to models B, C and D.

Figure 7.1 Reduction in Overhead with Failure Distribution from OLCF’s Titan

Observation 1: Application overhead is reduced by ≈53%-95% due to (1) the reduction in check-

point time with the assistance of BBs (model B), (2) reduction in failure rate given failure analysis

34



and prediction (3) combined with adaptive safeguard checkpoints (model C) and, in addition, (4)

live migration (model D).

The overhead consists of three components depicted as stacked bars. Recovery time is required

to restart an application after a node failure. Since only the new node requires to access the PFS to

recover the checkpoint without contention while others recover from their local BB, the recovery

time is insignificant and hardly visible in the graphs for all the models except A. We observe a

≈60%-99% decrease in recovery time for models B, C, and D.

Observation 2: Checkpoint overhead is reduced by the use of BBs and asynchronous checkpoints

in ≈30%-82% of the cases for all the applications except for S3D. It is reduced further by ≈5%-30%

due to the reduced failure rate with our failure analysis model.

The checkpoint time is the duration during which application execution is suspended while

storing the checkpoints on permanent storage. In model A, the PFS is the permanent storage. BBs

are used for the other models. We observe that due to higher latency to checkpoint the PFS in

model A, all applications except for S3D spend more time in storing the checkpoints without BBs.

For S3D and its checkpoint size, the PFS I/O bandwidth is almost equal to the I/O bandwidth of

BBs. The checkpoint size for S3D is ≈10 GB per node. Following our I/O performance model (see

Section 6), the aggregate bandwidth per node starts to saturate when the transfer size per node is

around ≈10-12 GB. For smaller applications such as GYRO, POP, and VULCAN, the latency to write

checkpoints to PFS is higher and results in more checkpoint overhead. Also, for larger applications

such as CHIMERA and XGC, the higher latency for PFS writes is due to larger PFS contention.

Observation 3: While re-computation time dominates the base model, it can be reduced by

≈50%-55% for applications with large checkpoint sizes and up to ≈ 98% for those with smaller

checkpoints, both for models B and C. BBs do not help in reducing re-computation overhead in the

presence of failures for smaller applications.

The re-computation time is the duration spent by an application to re-compute the portion of

execution to reach the point where execution was interrupted when the node failed. It contributes

the largest fraction of overhead for all the applications in the base model. We observe that lack of BBs

in the base model A results in a larger checkpoint interval (see Table 7.3) causing more losses due to

failures. With BBs, the shorter checkpoint interval provides better tolerance from non-predicted

failures. This reduces the re-computation overhead by ≈29%-83% for all applications except for

S3D as its checkpoint interval is unaffected by BBs. In fact, it takes almost twice the time to store

a checkpoint for S3D in model B compared to model A without the additional benefit of BBs. So

the small increase in re-computation overhead for S3D in model B is because of the increased

computation loss when a failure occurs during asynchronous bleed-off time.

We also observe that as the aggregate checkpoint size decreases the re-computation time also de-

creases. For CHIMERA and XGC, with larger checkpoints, the additional reduction in re-computation

time is ≈12%. For the remaining applications except for S3D, the additional decrease is significantly

higher, namely between 16% and 69%. This is an indirect effect of reduced latency to store check-

points. The reduced time to store checkpoints just to the BB on the critical path and then bleeding
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them off asynchronously helps our C/R model to handle more failures with proactive actions, i.e.,

adaptive safeguard checkpoints and live migration. For S3D, the reduction is ≈98% because of live

migration or adaptive checkpoints, depending on the model. This suggests that smaller applications

can achieve significant reductions in re-computation time without BBs.

Observation 4: Models C and D yield a similar reduction in re-computation time for applications

with smaller checkpoint size, i.e., the added benefit of live migration is insignificant for these smaller

checkpoints while live migration was relevant for larger checkpoints.

For applications such as S3D, GYRO, POP, and VULCAN, the difference in reductions between

the adaptive safeguard checkpointing (model C) and adding live migration on top (model D) is less

than 2%. Adaptive safeguard checkpoints result in less than 1% reduction in re-computation time

for CHIMERA and XGC, respectively, which is due to higher latency to store the larger checkpoints.

There is a negligible change of less than 0.002% in time spent in storing checkpoints with adaptive

safeguard checkpoints (model C) compared to the model B. What is more significant is the reduced

failure rate resulting from the failure analysis model, which yields a ≈29% decrease in checkpoint

time in adaptive safeguard checkpoints plus live migration (model D). The low variation in reduced

checkpoint time across applications is due to the adaptive checkpoints that shift the schedule of

periodic (base) checkpoints (see Figure 4.4C).

Observation 5: The reduction in checkpoint time further reduces the amount of checkpoint data

written to BBs in an application by ≈ 29%, which increases the lifetime of BBs as they are subject to

wear-out.

Figure7.2 depicts the aggregate amount of daily write traffic to the BB (y-axis) normalized to

model B across all applications (x-axis) for the three models. Since model A excludes BBs, it is not

under consideration. It indicated a ≈29% reduction in writes for model D. On Summit, each BB

device has a daily write limit of 8 TB given its designation to last for 5 years. Model D effectively

increases the longevity of the BBs by ≈41% assuming uniform daily writes across all the devices and

assuming that BBs are used for checkpointing, only. Notice that model C is not subject to BB write

reduction as safeguard checkpoints are committed to the BB. Once committed, the next periodic

checkpoint is offset relative to the last safeguard checkpoint, which explains why model C only

results in an insignificant change in writes of less than 0.5% over model D.

Observation 5: Adaptive safeguard checkpointing plus live migration (model D) results in a

larger average checkpoint interval than other models.

This is evident from Table 7.3, which lists run-time application characteristics such as average

checkpoint interval, and the average number of failures observed in 1000 simulation runs. The

larger checkpoint interval of models A and B increases the risk of longer re-computation upon

failure. However, failure prediction reduces that risk in models C and D via adaptive safe guard

checkpointing and, additionally, live migration. The average number of failures for an application

depends on its execution length. Longer jobs and jobs with larger checkpoints increase the risk of

suffering from more failures for a given MTBF rate. For model D (adaptive safeguard checkpointing

plus live migration), the average number of failures is lower as failures are avoided proactively
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Figure 7.2 Reduction in Daily Writes to Burst Buffers

circumvented by live migration.

Table 7.3 Simulation Statistics

Application
Average Checkpoint

Interval (hour)
Average No. of

Failures
Model A Model B/C Model D Model A Model B Model C Model D

CHIMERA 1.43 0.79 1.13 15.81 14.83 15.15 8.49
XGC 0.87 0.55 0.78 7.03 6.82 6.98 3.87
S3D 0.60 0.61 0.83 2.24 2.35 2.26 1.30

GYRO 0.33 0.23 0.33 0.28 0.29 0.26 0.17
POP 0.42 0.19 0.27 1.08 1.11 1.15 0.59

VULCAN 0.45 0.07 0.10 0.89 0.87 0.83 0.48

37



7.3 Impact of Failure Locality

To study impact of locality of failures, our C/R model was exposed to two other failure distributions

derived from data from LANL systems 8 and 18 [Sch06]. Here, we only compare the base model A

and the adaptive safeguard checkpoint plus live migration model D.

Observation 6: Reductions in overheads for model D is robust across different Weibull failure

distributions.

Figures 7.3 and 7.4 depict the reduction in overhead on the same x- and y-axes as before (Fig. 7.1

for Titan), yet for Systems 8 and 18, respectively. The reduction in overhead follows a similar pattern

for all the three failure distributions. For LANL System 8 with its failure distribution, the decrease

in overhead is ≈54%-95% while System 18 results in ≈52%-94% reduced overhead. Furthermore,

the same pattern of increasing gains with decreasing checkpoint sizes is observed. This result is

significant as it demonstrates that our model generalizes to other failure distributions. In principle,

our C/R model can be deployed on any HPC system that supports BBs, live migration, and failure

analysis plus prediction. It also shows that orchestrating failure prediction within a C/R model to

drive decisions about when to checkpoint and when to live migrate (see Fig. 4.2) reduces the impact

of of failures, shortens application execution over simpler failure models, and prolongs BB lifetime.

Figure 7.3 Reduction in Overhead with Failure Distribution of LANL System 8
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Figure 7.4 Reduction in Overhead with Failure Distribution of LANL System 18
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CHAPTER

8

LIMITATIONS AND FUTURE WORK

Our work unifies several advanced methods to tackle the challenges of failures and PFS I/O conges-

tion in HPC systems. However, it currently lacks some of the sensitivity studies such as assessing the

impact of failure prediction lead time variability and I/O performance variability.

Further, our model still lacks the ability to handle failures with very low lead time prediction.

For smaller sized applications, it is possible to handle failures with low lead time with safeguard

checkpoints. However, for larger size applications, this becomes an issue as both live migration and

safeguard checkpoint are not enough.

As part of our future work, we plan to improve our model with granular coordination and

prioritization to handle the issue of very low lead time prediction. In short, in coordination with the

job scheduler, a node with a failure prediction should be prioritized high when storing its checkpoint

data on the Parallel File System. Only After that, other nodes can be allowed to store their checkpoint

data. Further, we would like to evaluate our current model and the improved model with lead time

and I/O performance variability.
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CHAPTER

9

CONCLUSION

This work contributes a multi-level C/R model instantiated to resemble a Summit-like large-scale

HPC system. (1) It integrates failure analysis (by analyzing system logs from three real-world HPC

systems) and a prediction model, which predicts failure types and lead time that are subsequently

used in optimal checkpoint interval derivation. (2) It issues adaptive safeguard checkpoints or live

migration of an application from a faulty to node to a healthy, reserved node in face of failures. (3) It

utilizes BBs to reduce PFS contention during application execution through asynchronous bleed off

and for failure recovery by mandating only the replacement node to recover from a failure. (4) It

derives a first-order approximation of the optimal checkpoint interval for our multi-level model.

(5) It includes a PFS I/O performance model to characterize I/O bandwidth within applications

on Summit, which is also used in optimal checkpoint derivation. The failure analysis model indi-

cates that ≈ 44% of failures can be avoided using live migration and yields a ≈ 29% reduction in

checkpoint time, which increases the lifetime of BBs. Adaptive safeguard checkpoints and proactive

live migration effect the schedule of checkpoints and with multilevel asynchronous checkpoints

supported by BBs result in ≈53%-95% reduced application overhead. Our C/R model is shown to be

robust across multiple failure distributions.

Past work has studied failure/reliability-awareness to improve application efficiency. However,

our C/R model’s suitability for contemporary and future large-scale HPC systems, its applicability

to wide range of applications, and its fault tolerance using advanced failure analysis and prediction

model along with live migration are unprecedented in its combination with efficient and adaptive

checkpointing, PFS I/O performance modeling, and robustness to failure distributions, which gives

it a significant advantages over prior solutions.
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