
ABSTRACT

NAGARAJAN, ARUN BABU. System Virtualization for Proactive Fault-Tolerant Com-
puting. (Under the direction of Associate Professor Dr. Frank Mueller).

Large-scale parallel computing is relying increasingly on clusters with thousands

of processors. At such large counts of compute nodes, faults are becoming common place.

Current techniques to tolerate faults focus on reactive schemes to recover from faults and

generally rely on a checkpoint/restart mechanism. Yet, in today’s systems, node failures

can often be anticipated by detecting a deteriorating health status.

Instead of a reactive scheme for fault tolerance (FT), we are promoting a proactive

one where processes automatically migrate from “unhealthy” nodes to healthy ones. Our

approach relies on operating system virtualization techniques exemplified by but not limited

to Xen. This thesis contributes an automatic and transparent mechanism for proactive

FT for arbitrary MPI applications. It leverages virtualization techniques combined with

health monitoring and load-based migration. We exploit Xen’s live migration mechanism

for a guest operating system (OS) to migrate an MPI task from a health-deteriorating

node to a healthy one without stopping the MPI task during most of the migration. Our

proactive FT daemon orchestrates the tasks of health monitoring, load determination and

initiation of guest OS migration. Experimental results demonstrate that live migration

hides migration costs and limits the overhead to only a few seconds making it an attractive

approach to realize FT in HPC systems. Overall, our enhancements make proactive FT

a valuable asset for long-running MPI application that is complementary to reactive FT

using full checkpoint/restart schemes since checkpoint frequencies can be reduced as fewer

unanticipated failures are encountered. In the context of OS virtualization, we believe that

this is the first comprehensive study of proactive fault tolerance where live migration is

actually triggered by health monitoring.
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Chapter 1

Introduction

1.1 Background

High-end parallel computing is increasingly relying upon large clusters with thou-

sands of processors. At such large count of processors, faults are becoming commonplace.

Reactive fault tolerance is traditionally employed to recover from such faults. In this thesis,

we are promoting a proactive fault tolerant scheme to complement the reactive schemes.

Let us first introduce common terminology for our work.

The objective of high performance computing (HPC) is to solve numerical problems

from the scientific domain by using a large collection of computers/processors connected

with each other using interconnects that work cooperatively with specific communication

methodologies to solve a computational problem.

A cluster is a collection of compute nodes (PCs or workstations) that are generally

identical in configuration and interconnected with a dedicated network. They serve as a

platform for multiprogramming workloads. Furthermore, clusters generally run an identical

version of the operating system and feature a shared file system [14]. Single Program Mul-

tiple Data (SPMD) is a parallel programming model wherein the same program is executed

on all the nodes of a parallel system(cluster) whereas the nodes operate on different data

[20]. SPMD is suitable for both shared memory and message passing environments. This

thesis focuses on message passing environments typically manifested by clusters.

Message Passing Interface (MPI) is a standard specification for the interface of a

message-passing library for writing parallel programs [19]. The extensive set of interfaces

provided by MPI helps in writing efficient SPMD programs with minimal effort. MPI sup-
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ports point-to-point communication, collective communication and synchronization among

others. HPC codes are typically written as SPMD programs with MPI and are designed to

run on cluster-based environments.

The shift towards parallel computing in general is driven mainly by hardware lim-

itations [20]. From the view of computer design, clock frequencies are increasing slowly

having reached their physical limits. In addition, the difference in speed of operation of

processor and the memory is continuously increasing. This property popularly known as

“memory wall”, widens the bottleneck and also contributes to the shift. This has not only

affected the high performance computing (HPC) environments, but the effect is well ob-

served even in general-purpose computing as manufacturers have moved from uni-processors

to the now ubiquitous multi-core processors over the past few years. More importantly, the

trend in HPC has been to rely more upon a large collection of processors.

1.2 Necessity of Fault Tolerance

As seen above, faults are common in high performance computing enviroments

with thousands of processors. For example, today’s fastest system, BlueGene/L (BG/L) at

Livermore National Laboratory with 65,536 nodes, was experiencing faults at the level of

a dual-processor compute card at a rate of 48 hours during initial deployment [29]. When

one node fails, a 1024-processor mid-plane had to be temporarily shut down to replace the

card.

Results from related work [26], depicted in Table 1.1, show that the existing re-

liability of larger HPC clusters is currently constrained by a mean time between failures

(MTBF) / interrupts (MTBI) in the range of 6.5-40 hours, depending on the maturity /

age of the installation. The most common causes of failure were processor, memory and

storage errors / failures. This is reinforced by a study of HPC installations at Los Alamos

National Laboratory (LANL) indicating that, on average, 50% of all failures were due to

hardware and almost another 20% due to software with more than 15% of the remaining

failure cases unaccounted for in terms of their cause [46]. Another study conducted by

LANL estimates the MTBF, extrapolating from current system performance [40], to be

1.25 hours on a petaflop machine.

Commercial installations, such as Google (see Table 1.1) experience an interpolated

fault rate of just over one hour for equivalent number of nodes, yet their fault-tolerant
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Table 1.1: Reliability of HPC Clusters
System # CPUs MTBF/I
ASCI Q 8,192 6.5 hrs

ASCI White 8,192 5/40 hrs (’01/’03)
PSC Lemieux 3,016 9.7 hrs

Google 15,000 20 reboots/day

middleware hides such failures altogether so that user services remain completely intact

[21]. In this spirit, our work focuses on fault-tolerant middleware for HPC systems.

1.3 Traditional Approach

Current techniques to tolerate faults focus on reactive schemes where fault recovery

commonly relies on a checkpoint/restart (C/R) mechanism.

The mode of operation is to allow the fault to happen and recover from the fault.

A typical C/R system checkpoints the application’s progress over its entire runtime by

recording the state during every time delta on all the nodes and saving it to a global file

system. In case of a node failure, the state of the application can be restored by restarting

the whole system with the latest available checkpoint. The frequency of checkpoints affects

the performance on the system: If the checkpoint is very frequent, the checkpoint overhead is

increased but, on a failure, the work to repeat lost computation is reduced. On a contrary,

if the checkpoint is less frequent, the overhead is reduced but, on a failure, the work to

repeat lost computation is increased. Since C/R does not contribute to useful computation,

there is a considerable overhead on the system. In fact, the LANL study [40] also estimates

the checkpointing overhead based on current techniques to prolong a 100 hour job (without

failure) by an additional 151 hours in petaflop systems. Clearly, a mechanism which aids

in reducing the checkpointing overhead is necessary.

1.4 Motivation

1.4.1 Fault Detection Feasibility

In today’s systems, node failures can often be anticipated by detecting a deteri-

orating health status using monitoring of fans, temperatures and disk error logs. Recent

work focuses on capturing the availability of large-scale clusters using combinatorial and
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Markov models, which are then compared to availability statistics for large-scale DOE clus-

ters [47, 42]. Health data collected on these machines is used in a reactive manner to

determine a checkpoint interval that trades off checkpoint cost against restart cost, even

though many faults could have been anticipated. Hence, instead of a reactive scheme for

FT, we are promoting a proactive one that migrates processes away from “unhealthy” nodes

to healthy ones. Such an approach has the advantage that checkpoint frequencies can be

reduced as sudden, unexpected faults should become the exception. The availability of

spare nodes is becoming common place in recent cluster acquisitions. We expect such spare

nodes to become a commodity provided by job schedulers upon request. Our experiments

assume availability of 1-2 spare nodes.1

The feasibility of health monitoring at various levels has recently been demon-

strated for temperature-aware monitoring, e.g., by using ACPI [4], and, more generically,

by critical-event prediction [43]. Particularly in systems with thousands of processors, such

as BG/L, fault handling becomes imperative, yet approaches range from application-level

and runtime-level to the level of operating system (OS) schedulers [10, 11, 12, 37]. These

and other approaches are discussed in more detail in Section 5. They differ from our ap-

proach in that we exploit OS-level virtualization combined with health monitoring and live

migration.

1.4.2 Minimal Overhead of OS Virtualization

This thesis promotes operating system virtualization as a means to support fault

tolerance (FT). Since OS virtualization is not an established method in HPC due to the

potential overhead of virtualization, we conducted a study measuring the performance of the

NAS Parallel Benchmark (NPB) suite [53] using Class C inputs over Xen [7]. We compared

three Linux environments: Xen Dom0 Linux (privileged domain 0 OS), Xen DomU Linux

(a regular guest OS), and a regular, non-Xen Linux version on the same platform (see

Chapter 3 for configuration details). The results in Figure 1.1 indicate a relative speed of

0.81-1.21 with an average overhead of 1.5% and 4.4% incurred by Xen DomU and Dom0,

respectively. This overhead is mostly due to the additional software stack of virtualizing the

network device, as OS-bypass experiments with InfiniBand and extensions for superpages
1Our techniques also generalize to task sharing on a node should not enough spare nodes be available,

yet the cost is reduced performance for tasks on such a node. This may result in imbalance between all tasks
system-wide and, hence, decrease overall performance. In this model, tasks sharing a node would still run
within multiple guest OSs hosted by a common hypervisor on a node.
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have demonstrated [34, 33]. With OS bypass, the overhead is lowered to ≈ ±3% for NAS

PB Class A. In our experiments with Class C inputs, CG and LU result in a reproducible

speedup (using 10 samples for all tests) for one or both Xen versions, which appears to

be caused by memory allocation policies and related activities of the Xen Hypervisor that

account for 11% of CG’s runtime, for example. The details are still being investigated.

Hence, OS virtualization accounts for only marginal overhead and can easily be amortized

for large-scale systems with a short MTBF.
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Figure 1.1: Xen Overhead for NAS PB, Class C, 16 Nodes

1.5 Thesis Statement

The objective of this thesis is to develop a proactive fault tolerance scheme for

HPC environments. We explore solutions addresssing the following questions in this thesis.

• Can transparent and automatic fault tolerance be achieved in a proactive manner for

a cluster-based HPC environment running arbitrary MPI applications?

• Is virtualization a feasible (efficient and supportive) option for providing FT?

• Can proactive FT complement reactive fault tolerance?

1.6 Overview of our approach

We have designed and implemented a proactive FT system for HPC over Xen [7],

of which we provide a brief overview here. A novel proactive FT daemon orchestrates the



6

tasks of health monitoring, load determination and initiation of guest OS migration. To

this extent, we exploit the intelligent performance monitoring interface (IPMI) for health

inquiries to determine if thresholds are violated, in which case migration should commence.

Migration targets are determined based on load averages reported by Ganglia. Xen supports

live migration of a guest OS between nodes of a cluster, i.e., MPI applications continue

to execute during much of the migration process [13]. In a number of experiments, our

approach has shown that live migration can hide migration costs such that the overall

overhead is constrained to only a few seconds. Hence, live migration provides an attractive

solution to realize FT in HPC systems. Our work shows that proactive FT complements

reactive schemes for long-running MPI jobs. Specifically, should a node fail without prior

health indication or while proactive migration is in progress, our scheme can revert to

reactive FT by restarting from the last checkpoint. Yet, as proactive FT has the potential

to prolong the mean-time-to-failure, reactive schemes can lower their checkpoint frequency

in response, which implies that proactive FT can lower the cost of reactive FT. In the

context of OS virtualization, this appears to be the first comprehensive study of proactive

fault tolerance where live migration is actually triggered by health monitoring. An earlier

version of this work was published at International Conference on Supercomputing, June

2007 [36].

1.7 Thesis Layout

This thesis is structured as follows. Chapter 2 presents the design and imple-

mentation of our health monitoring and migration system with its different components.

Chapter 3 describes the experimental setup. Chapter 4 discusses experimental results for a

set of benchmarks. Chapter 5 contrasts this work to prior research. Chapter 6 summarizes

the contributions.
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Chapter 2

System Design and

Implementation

A proactive fault tolerance system, as the name implies, should provide two mecha-

nisms - one for proactive decision making and another for addressing load balancing, which,

in combination, provide fault tolerance. The various components which are involved in

the design and the way in which they act together to achieve the goal of proactive fault

tolerance are explained in the following sections.

2.1 Setup of the components

An overview of the various components in the system and their interaction is

depicted in Figure 2.1. The components depicted in the figure are discussed below:

1. Each node in the cluster hosts an instance of the Xen Virtual Machine Monitor (VMM)

or Xen Hypervisor. The Hypervisor works at the highest privilege level than the

operating systems which run on it.

2. On top of the VMM runs a privileged/host virtual machine, which is a para-virtualized

Linux version in our case. It is called ’privileged’ because only this virtual machine

is provided with some capabilities via a set of tools to manage the other virtual

machines running on the hypervisor - e.g, start / suspend / shutdown / migrate the

virtual machines.

3. The privileged virtual machine hosts the following among others.
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Figure 2.1: Overall setup of the components

• A daemon for Ganglia, which aids in selecting the target node for migration -

explained in Section: 2.4.

• Proactive FT daemon (PFTd) used to monitor health and initiate migration -

explained in Section 2.5.

• A standard daemon called Xend or Xen daemon which aids in administration of

the other virtual machines.

4. A guest virtual machine (also the same version of Linux) runs on top of the Xen

VMM. One or more of them can be running on the Hypervisor. But for our purpose

we have used only one of them on a node.

5. The guest virtual machines form a multi-purpose daemon (MPD) ring of all cluster

nodes [9] on which the MPI application can run (using MPICH-2). Other MPI runtime

systems would be handled equally transparently by Xen for the migration mechanism.

6. There is another hardware component available with each of the nodes in the cluster

called the BMC (Baseboard Management Controller), which provides the functionality

of monitoring the hardware using sensors. The BMC is explained in more detail in



9

Section 2.3.

7. Apart from the above mentioned components, we also have some spare node(s) with

all the above components except for the guest VM running on it. Availability of spare

nodes was discussed in the Section 1.4.1.

Upon deteriorating health of a compute node, determined through the monitoring capabil-

ities of BMC and a spare/weakly loaded node identified by the PFTd through Ganglia, the

entire guest VM can be migrated to the identified node. We will describe each of the above

components of our system in the following sections in detail.

2.2 Fault Tolerance over Xen

To provide an efficient fault tolerance system certain qualities are desired:

1. Transparency: The MPI task does not need to be aware of the fault tolerance

activity that happens in response to an anticipated fault.

2. Relocation: A mechanism is needed that would gracefully aid the relocation of an

MPI task, thereby enabling it to run on a different physical node with minimum

possible overhead.

Xen proves to be an apt candidate for us since it provides the above two qualities which are

discussed below:

2.2.1 Transparency

Xen is a Virtual Machine Monitor (VMM) that provides a way for multiple op-

erating systems to run over it, with proper isolation between guest operating systems

[7]. Xen is a para-virtualized environment requiring that the hosted virtual machine be

adapted/modified to run on the Xen virtual machine monitor (VMM). However, the appli-

cation binary interface(ABI) needs no modifications. Because of para-virtualization, Xen

has an improved performance benefits compared to a fully-virtualized environment [7]. Xen

provides a complete transparency not even at the level of applications, but to the whole Op-

erating System with virtualization. One of the virtual machines which run on the VMM is

called privileged/host virtual machine with additional capabilities exceeding those of other
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virtual machines. We can start other underprivileged guest virtual machines on that host

VM using the command line interface.

2.2.2 Relocation

Xen provides the functionality of migration, which enables the guest VM to be

transferred from one physical node to another. Xen’s mechanism exploits the pre-migration

methodology where all state is transferred prior to target activation. Migration preserves

the state of all the processes on the guest, which effectively allows the VM to continue

execution without interruption. Migration can be initiated by specifying the name of guest

VM and the IP of the destination physical node hosted by the VM.

Xen supports two types of migration - Live migration and Stop and Copy migra-

tion. The mechanism behind these two techniques are discussed here.

Mechanism of Xen Live Migration:

A Live migration [13] refers to the virtual machine being in operation while the

migration is performed except for a very short period of time, during which the machine is

actually stopped. Live migration occurs as a sequence of the following phases:

1. When the migration command is initiated, the host VM inquires if the target has

sufficient resources and reserves them as needed in a so-called pre-migration and reser-

vation step.

2. Next, the host VM sends all pages of the guest VM to the destination node in a first

iteration of the so-called pre-copy step. Prior to sending a page, the corresponding

modified (dirty) bit is cleared in the shadow page table entry (PTE) of the guest

OS. During the transfer, the guest VM is still running. Hence, it will modify data in

pages that were already send. Using page protection, a write to already sent pages

will initially result in a trap. The trap handler then changes the page protection such

that subsequent writes will no longer trap. Furthermore, the dirty bit of the page is

automatically set in the PTE so that it can later be identified.

3. The host VM now starts sending these dirty pages iteratively in chunks during sub-

sequent iterations on the pre-copy step until a heuristic indicates that pre-copy is no

longer beneficial. For example, the ratio of modified pages to previously sent pages (in
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the last iteration) can be used as a termination condition. At some point, the rate of

modified pages to transfer will stabilize (or nearly do so), which causes a transition to

the next step. The portion of the working set that is subject to write accesses is also

termed in writable working set (WSS) [13], which gives an indication of the efficiency

of this step. An additional optimization also avoids copying modified pages if they

are frequently changed.

4. Next, the guest VM is actually stopped and the last batch of modified pages is sent to

the destination where the guest VM restarts after updating all pages, which comprises

the so-called stop & copy, commitment and activation steps.

The actual downtime due to the last phase has been reported to be as low as 60

ms [13]. Keeping an active application running on the guest VM will potentially result in

a high rate of page modifications. We observed a maximum actual downtime of around

three seconds for some experiments, which shows that HPC codes may have higher rates

of page modifications. The overall overhead contributed to the total wall-clock time of the

application on the migrating guest VM can be attributed to this actual downtime plus the

overhead associated with the active phase when dirty pages are transferred during migration.

Experiments show that this overhead is negligible compared to that of the total wall-clock

time for HPC codes.

Mechanism of Xen Stop & Copy Migration:

Stop & Copy migration is simple compared to live migration. It also is the last

phase of the live migration. The sequence of events that happen are:

1. Once the migration command is initiated, the execution of the VM is stopped.

2. The image of the VM is transferred to the destination with all the state information

needed to resume execution on the other side.

3. The execution restarts at the destination from the received data.

The live and stop & copy migrations are contrasted while discussing the experi-

mental results in Section 4.6.
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Figure 2.2: Parts of Baseboard Management Controller

2.3 Health monitoring with OpenIPMI

Any system that claims to be proactive must effectively predict an event before

it occurs. As the events to be predicted are fail-stop node failures in our case, a health

monitoring mechanism is needed. To this extent, we employ the Intelligent Platform Man-

agement Interface (IPMI).

2.3.1 Introduction to IPMI

IPMI is an increasingly common management/monitoring interface that provides a

standardized message-based mechanism to monitor and manage hardware, a task performed

in the past by software with proprietary interfaces.1

The Baseboard Management Controller (BMC) as introduced in Figure 2.1 is elab-

orated in Figure 2.2. (This figure is made available from the documentation of OpenIPMI

[3]). As we can infer from the figure, the BMC acts at the center of the IPMI system,

providing interfaces to all the various components of interest namely the sensors. More im-

portantly, the figure presented is a generic one in that the interface to the sensors of the MC
1Alternatives to IPMI exist, such as lm sensor, but they tend to be system-specific (x86 Linux) and may

be less powerful. Also, disk monitoring can be realized portably with SMART.
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might be different for different hardware manufacturers. But the MC manages to hide these

details and provides proper abstractions so that the sensors can be read through the IPMI.

Another relevant information from the figure is the Sensor Device Record (SDR) reposito-

ries that store information about the sensors. It is the SDRs which the BMC will contact to

fetch the required information when we query for details. Notable sensors available in our

system are CPU temperature sensor (one each for each processor), voltage sensors, multiple

CPU fan sensors, multiple system fan sensors and battery sensors.

2.3.2 OpenIPMI

OpenIPMI [3] provides an open-source higher-level abstraction from the raw IPMI

message-response system. We use the OpenIPMI API to communicate with the Baseboard

Management Controller of the backplane and to retrieve sensor readings. Based on the

readings obtained, we can evaluate the health of the system. We have implemented a system

with periodic sampling of the BMC to obtain readings of different properties. OpenIPMI

also provides an event-triggered mechanism allowing one to specify ,e.g., a sensor reading

exceeding a threshold value and register a notification request. When the specified event

actually occurs, notification is triggered by activating an asynchronous handler. This event-

triggered mechanism might offload some overhead from the application side since the BMC

takes care of event notification. Unfortunately, at a specific level of event registration,

OpenIPMI did not provide stable/ working mechanism at the time of development. Hence,

we had to resort to the more costly periodic sampling alternative. More details on how

OpenIPMI is configured and used are presented in the Section 2.5.

2.4 Load Balancing with Ganglia

When a node failure is predicted due to deteriorating health, as indicated by the

sensor readings, a target node needs to be selected to migrate the virtual machine to. We

utilize Ganglia [1], a widely used, scalable distributed monitoring system for HPC systems,

to select the target node in the following manner. All nodes in the cluster run a daemon that

monitors local resource (e.g., CPU usage) and sends multicast packets with the monitored

data. All nodes listen to such messages and update their local view in response. Thus, all

nodes have an approximate view of the entire cluster.

By default, Ganglia measures the CPU usage, memory usage and network usage
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among others. Ganglia provides extensibility in that application-specific metrics can also be

added to the data dissemination system. For example, our systems requires the capability

to distinguish whether a physical node runs a virtual machine or not. Such information can

be added to the existing Ganglia infrastructure. Ganglia provides a command line interface,

gmetric, to this respect. An attribute specified through the gmetric tool indicates whether

the guest VM is running or not on a physical node. Once added, we obtain a global view

(of all nodes) available at each individual node. Our implementation selects the target node

for migration as the one which does not yet host a guest virtual machine and has the lowest

load based on CPU usage. We can further extend this functionality to check if the selected

target node has sufficient available memory to handle the incoming virtual machine. Even

though the Xen migration mechanism claims to check the availability of sufficient memory

on the target machine before migration, we encountered instances where migration was

initiated and the guest VM crashed on the target due to insufficient memory. Furthermore,

operating an OS at the memory limit is known to adversely affect performance.

2.5 PFT Daemon Design

Figure 2.3: Proactive Fault Tolerance Daemon

We have designed and implemented a proactive fault tolerance daemon (PFTd).

In our system depicted in Figure 2.1, each node runs an instance of the PFTd on the

privileged VM, which serves as the primary driver of the system. The PFTd gathers details,

interprets them and makes decisions based on the data gathered. The PFTd provides three

components: Health monitoring, decision making and load balancing (see Figure 2.3). After
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initialization, the PFTd monitors the health state and checks for threshold violations. Once

a violation is detected, Ganglia is contacted to determine the target node for migration

before actual migration is initiated. The above described operations are explained in the

following sections in detail.

2.5.1 Initialization

Initialization of the daemon happens in the following steps.

1. The PFTd reads a configuration file containing a list of parameters/sensors to be

monitored. In addition to a parameter name, the lower and upper thresholds for that

particular parameter can also be specified. For example, for dual processor machines,

the safe temperature range for two CPUs and the valid speed range for system fans

is specified.

2. Next, the PFTd initializes the OpenIPMI library using the calls available through the

OpenIPMI interface. It also gathers the details needed to sets up a connection for

the specified network destination (determined by the type of interface, e.g., as LAN,

remote host name and authentication parameters, such as user-id and password). A

connection to the BMC becomes available after successful authentication.

3. Using the above collected details, a domain is created (using the domain API) so that

various entities (fans, processors, etc.) are attached to it. The sensors monitor these

entities. It is during this call that a connection is tried to set up with the BMC.

4. OpenIPMI, as we discussed earlier, provides an event-driven system interface, which

is somewhat involved, as seen next. As in any event-driven system, we need to register

a handler for an event with the system. Whenever the event occurs, that particular

handler will be invoked. While creating a domain in the previous step, a handler is

registered, which will be invoked whenever a connection changes state. The connection

change handler will be called once a connection is successfully established.

5. Within the connection change handler, a handler is registered for an entity state

change. This second handler will be invoked when new entities are added.

6. Inside the entity change handler, a third handler is registered that is triggered upon

state changes of sensor readings. It is within the sensor change handler that PFTd
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discovers various sensors available from the BMC and records their internal sensor

identification numbers for future reference.

7. Next, the list of requested sensors is validated against the list of those available to

report discrepancies. At this point, PFTd registers a final handler for reading actual

values from sensors by specifying the identification numbers of the sensors indicated

in the configuration file. Once these values are available, this handler will be called

and the PFTd obtains the readings on a periodic basis.

As mentioned earlier namely, there were problems with the functionality of the OpenIPMI

version with the registration of the final handler with the IPMI, the callback was not

triggered with the OpenIPMI interface. So we resorted to the periodic sampling by forcing

a read of the sensors after a sampling interval.

2.5.2 Heath Monitoring and Load Balancing

After the above discussed lengthy one-time initialization, the PFTd goes into a

health monitoring mode by communicating with the BMC. Here it starts monitoring the

health via periodic sampling of values from the given set of sensors before comparing it with

the threshold values.

In case of any threshold is exceeded, control is transferred to the load balancing

module of the PFTd. Here, a target node needs to be selected to migrate the guest VM

to. The PFTd then connects to the locally running Ganglia daemon to determine the least

loaded node. Since the state of the entire cluster is broadcasted via UDP and available at

each node of the cluster, the selection process of the spare node is almost instantaneous.

Since the PFTd runs on a privileged domain and also has been authorized to use

the xend (Xen daemon), it can perform administrative task on the Guest domain. Having

identified a potential fault and also a target node, The PFTd next issues a migration

command that initiates live migration of the guest node from the “unhealthy” node to the

identified target node. After the migration is complete, the PFTd can raise an alarm to

inform the administrator about the change and can log the sensor values that caused the

disruption pending further investigation.
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Chapter 3

Experimental Setup

Experiments were conducted on a 16 node cluster. The nodes are equipped with

two AMD Opteron-265 processors (each dual core) and 2 GB of memory interconnected by a

1 Gbps Ethernet switch. The Xen 3.0.2-3 Hypervisor/Virtual Machine Monitor is installed

on all the nodes. The nodes run a para-virtualized Linux 2.6.16 kernel as a privileged virtual

machine on top of the Xen hypervisor. The guest virtual machines are configured to run the

same version of the Linux kernel as that of the privileged one. They are constrained within

1 GB of main memory. The disk image for the guest VMs is maintained on a centralized

server. These guest VMs can be booted disklessly on the Xen hypervisor using PXE-like

netboot via NFS. Hence, each node in the cluster runs a privileged VM and a guest VM.

The guest VMs form an MPICH-2 MPD ring on which MPI jobs run. The PFTd runs on

the privileged VM and monitors the health of the node using OpenIPMI. The privileged

VM also runs Ganglia’s gmond daemon. The PFTd will inquire with gmond to determine

a target node in case the health of a node deteriorates. The target node is selected based

on resource usage considerations (currently only process load). As the selection criteria

are extensible, we plan to consult additional metrics in the future (most significantly, the

amount of available memory given the demand for memory by Xen guests). In the event of

health deterioration being detected, the PFTd will migrate the guest VM onto the identified

target node.

We have conducted experiments with several MPI benchmarks executed on the

MPD ring over guest VMs. Health deterioration on a node is simulated by running a

supplementary daemon on the privileged daemon that migrates the guest VM between the

original node and a target node. The supplementary daemon synchronizes migration control
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with the MPI task executing on the guest VM by utilizing the shared file system (NFS in

our case) to indicate progress / completion. To assess the performance of our system, we

measure the wallclock time for a benchmark with and without migration. In addition, the

overhead during live migration can be attributed to two parts: (1) overhead incurred due

to transmitting dirty pages and (2) the actual time for which the guest VM is stopped. To

measure the latter, the Xen user tools controlling the so-called “managed” migration [13]

are instrumented to record the timings. Thus, the actual downtime for the VM is obtained.

Results were obtained for the NAS parallel benchmarks (NPB) version 3.2.1 [53].

The NPB suite was run on top of the experimental framework described in the previous

section. Out of the NPB suite, we obtained results for the BT, CG, EP, LU and SP

benchmarks. Class B and Class C data inputs were selected for runs on 4, 8 or 9 and 16

nodes.1 Other benchmarks in the suite were not suitable, e.g., IS executes for too short a

period to properly gauge the effect of imminent node failures while MG required more than

1 GB of memory (the guest memory watermark) for a class C run.

1Some NAS benchmarks have 2D, others have 3D layouts for 23 or 32 nodes, respectively.
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Chapter 4

Experimental Results

Our experiments focus on various aspects: (a) overheads associated with node

failures — single or multiple failures1, (b) the scalability of the solution (task and problem

scaling on migration) and (c) the total time required for migrating a virtual machine. Be-

sides the above performance-related metrics, the correctness of the results was also verified.

We noted that in every instance after migration, the benchmarks completed without an

error.
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Figure 4.1: Execution Time for NPB Class C on 16 Nodes (standard deviation for wall-
clock time was 0-5 seconds — excluding migration — and less than 1 second for migration
overhead)

As a base metric for comparison, all the benchmarks were run without migration

to assess a base wallclock time (averaged over 10 runs per benchmark). The results obtained
1We use the term failure in the following interchangeably with imminent failure due to health monitoring.



20

from various experiments are discussed in the following.

4.1 Overhead for Single-Node Failure

The first set of experiments aims at estimating the overhead incurred due to one

migration (equivalent to one imminent node failure). Using our supplementary PFT dae-

mon, running on the privileged VM, migration is initiated and the wallclock time is recorded

for the guest VM including the corresponding MPD ring process on the guest. As depicted

in the Figure 4.1, the wallclock time for execution with migration exceeds that of the base

run by 1-4% depending on the application. This overhead can be attributed to the migra-

tion overhead itself. The longest execution times of 16-17 minutes were observed for NPB

codes BT and SP under Class C inputs for 4 nodes (not depicted here). Projecting these

results to even longer-running applications, the overhead of migration can become almost

insignificant considering current mean-time-to-failure (MTTF) rates.

4.2 Overhead for Double-Node Failure

In a second set of experiments, we assessed the overhead of two migrations (equiv-

alent to two simultaneous node failures) in terms of wallclock time. The migration overhead

of single-node and double-node failures over 4 base nodes is depicted in Figure 4.2. We ob-

serve a relatively small overhead of 4-8% over the base wallclock time. While the probability

of a second failure of a node decreases exponentially (statistically speaking) when a node

had already failed, our results show that even multi-node failures can be handled without

much overhead, provided there are enough spare nodes that serve as migration targets.

4.3 Effect of Problem Scaling

We ran the NPB suite with class B and C inputs on 16 nodes to study the effect

of migration on scaling the problem size (see Figure 4.3). Since we want to assess the

overhead, we depict only the absolute overhead encountered due to migration on top of

the base wallclock execution time for the benchmarks. Also, we distinguish the overhead

in terms of actual downtime of the virtual machine and other overheads (due transferring

modified pages, cache warm-up at the destination, etc.), as discussed in the design section.
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Figure 4.2: Execution Time for NPB Class B on 4 Nodes

The downtime was determined in a ping-pong migration scenario since the times-

tamps of a migration source nodes and of a target node cannot be compared due to insuffi-

cient clock synchronization. Hence, we obtain the start time, s1A, of the stop & copy phase

within the first live migration on node A, the finish, f1B, of the first and the start, s2B, of

the second stop & copy phase on node B, and the finish time, f2A, of the second migration

on node A again. The total downtime per migration is calculated the duration for each of

the two downtimes divided by two:

downtime =
(f2A− s1A)− (s2B − f1B)

2
.

Since the two timestamps on A and the two timestamps on B are consistent with one

another in terms of clock synchronization, we obtain a valid overhead metric at fine time

granularity.

Figure 4.3 shows that, as the task size increases from Class B to Class C, we observe

either nearly the same overhead or an increase in overhead (except for SP). This behavior

is expected. Problem scaling results in larger data per node. However, the migration

mechanism indiscriminately transfers all pages of a guest VM. Hence, problem sizes per

se do not necessarily affect migration overhead. Instead, the overhead is affected by the

modification rate of pages during live migration. The overhead further depends on whether

or not page transfers can be overlapped with application execution and on the moment

the migration is initiated. If migration coincides with a global synchronization point (a

collective, such as a barrier), the overhead may be smaller compared than that of a migration
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initiated during a computation-dominated region [38]. SP under class C input appears

to experience a migration point around collective communication while memory-intensive

writes may dominate for others, such as CG and — to a lesser extent — BT and LU.
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Figure 4.3: Problem Scaling: Migration Overhead for NPB on 16 Nodes

4.4 Effect of Task Scaling

We next examined the behavior of migration by increasing the number of nodes

involved in computation. Figure 4.4 depicts the overhead for the benchmarks with Class C

inputs on varying number of nodes (4, 8/9 and 16).
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Figure 4.4: Task Scaling: Migration Overhead for NPB Class C

As with problem scaling, we distinguish actual downtime from other overheads.
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For most of the benchmarks (BT, EP, LU and SP), we observe a trend of decreasing over-

heads for increasing number of nodes. Only for CG, we observe an increasing overhead.

This can be attributed to additional communication overhead combined with smaller data

sets per nodes. This communication overhead adversely affects the time required for migra-

tion. These results indicate the potential of our approach for when the number of nodes is

increased.

Next, we examine the overall execution time for varying number of nodes. Figure

4.5 depicts the speedup on 4, 8/9 and 16 nodes normalized to the wallclock time on 4

nodes. The figure also shows the relative speedup observed with and without migration.

The lightly colored bars represent the execution time of the benchmarks in the presence of

one node failure (and one live migration). The aggregate value of the light and dark stacked

bars present the execution time without node failures. Hence, the dark portions of the bars

represent the loss in speedup due to migration. The results indicate an increasing potential

for scalability of the benchmarks (within the range of available nodes on our cluster) that

is not affected by the overhead of live migration.
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Figure 4.5: Speedup for NPB Class C

4.5 Cache Warm-up Time

The reported overhead (in previous measurements) includes cache-warm at the

migration target. To quantify the cache warm-up effect due to starting the guest VM and

then filling the caches with the application’s working set, we consider architectural effects.
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The Opteron processors have 64KB split I+D 2-way associative L1 caches and two 16-way

associative 1MB L2 caches, one per core. We designed a microbenchmark to determine

the warm-up overhead for the size of the entire L2 cache. Our experiments indicate an

approximate cost of 1.6 ms for a complete refill of the L2 cache. Compared to the actual

downtime depicted in Figure 4.3, this warm-up effect is relatively minor compared to the

overall restart cost.

4.6 Total Migration Time

We already discussed the overhead incurred due to the migration activity. We next

provide insight into the amount of time it takes on the host VM to complete the migration

process. On average, 13 seconds are required for relocating a guest virtual machine with 1

GB of RAM that does not execute any applications. Hence, all the migration commands

have to be initiated prior to actual failure by at least this minimum bound.

The attractive feature about the stop & copy migration is that, no matter how

data intensive or computation intensive the application, migration takes the same amount

of time. In fact, this time is constrained by the amount of memory allocated to a guest VM,

which is currently transferred in its entirety so that the cost is mostly constrained by network

bandwidth. The memory pages of a process, while it remains inactive, simply cannot be

modified during stop & copy. In contrast, live migration requires repeated transfers of

dirty pages so that its overhead is a function of the write frequency to memory pages. Our

experiments confirm that the stop & copy overhead is nearly identical to the base overhead

for relocating the entire memory image of the guest OS. However, the application would be

stopped for the above-mentioned period of time. Hence, the completion of the application

would be delayed by that period of time.

We have obtained detailed measurements to determine the time required to com-

plete the migration command for the above benchmarks with (a) live and (b) stop & copy

migration. These durations were obtained in ping-pong migration experiments similar to

the ones for determining the downtime, yet the starting times are when the respective mi-

gration is initiated (and not at a later point during migration, as in the earlier downtime

measurements).

Figure 4.6 shows the time taken from initiating migration to actual completion on

16 nodes for the NPB with Class B and C inputs. Live migration duration ranged between
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14-24 seconds in comparison to stop & copy with a constant overhead of 13-14 seconds.

This overhead includes the 13 seconds required to transfer a 1 GB inactive guest VM.
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Figure 4.6: Migration Duration for NPB on 16 Nodes (with a standard deviation of 0.7-3
seconds)

In case of live migration, we observe that the duration for migration increases for

BT and SP from Class B to Class C. In contrast, for CG, EP and LU, little variation is

observed. In order to investigate this further, we measured the memory usage and also

the count of pages transferred during live migration to assess the rate at which pages are

modified for 16-node jobs of these benchmarks. The results are depicted in Table 4.1. We

observe an increased memory usage from Class B to Class C for all benchmarks except for

EP. Yet, the increase in the number of modified pages, indicated in the last column, shows

significant increases for only BT and SP. Thus, the page modification rate has a decisive

impact on the migration overhead explaining the more significant overall increases for BT

and SP between class B and C under live migration in Figure 4.6. The results in the Figure

also show that, in contrast to live migration, stop & copy migration results in constant time

overhead for all the benchmarks.

Figure 4.7 shows the migration duration for different numbers of nodes for NPB

with Class C inputs comparing live and stop & copy migration modes. In case of live

migration, for the input-sensitive codes BT and SP, we observe a decreasing duration as

the number of nodes increases. Other codes experience nearly constant migration overhead

irrespective of the number of nodes. In case of stop & copy migration, we note that the

duration is constant. These results again assert a potential of our proactive FT approach
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Table 4.1: Memory Usage, Page Migration Rate on 16 Nodes
NPB Memory Usage % Increase Number of Pages % Increase

in MB in Memory Transferred in Pages
Class B Class C Usage Class B Class C Transferred

BT 40.81 121.71 198.23 295,030 513,294 73.98
CG 43.88 95.24 117.04 266,530 277,848 4.25
EP 10.71 10.71 0.01 271,492 276,313 1.78
LU 24.15 61.05 152.76 292,070 315,532 8.03
SP 42.54 118.67 178.93 315,225 463,674 47.09

for scalability within the range of available nodes in the cluster.
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Figure 4.7: Migration Duration for NPB Class C inputs

While live migration has a higher overhead than the stop & copy approach, the

application continues to execute in the former but not in the latter. Hence, we next com-

pare the overall execution time of the benchmarks to assess the trade-off between the two

approaches. Figure 4.8 depicts the overall execution times of the benchmarks with Class B

and C inputs on 16 nodes, both for live migration and stop & copy migration with a single

node failure.

We observe that live migration results in a lower overall wallclock execution time

compared to stop & copy migration for all the cases (except for nearly identical times for CG

under input C). Considering earlier results indicating that the total duration for migration

in live approach keeps decreasing as the number of nodes increases (see Figure 4.7), live

migration overall outperforms the stop & copy approach.

Besides the above comparison, the actual migration duration largely depends on



27

¬

Ã¬¬

�¬¬

©¬¬

À¬¬

×¬¬

î3 JÜ ¶k �y �k

�¾
ì�

�Q
h

J�òhh î j��ë�h Â���¾� J�òhh î j��ë�h Â����ÔJ����
J�òhh J j��ë�h Â���¾� J�òhh J j��ë�h Â����ÔJ����

Figure 4.8: Execution Time for NPB on 16 Nodes

the application and the network bandwidth. Migration duration is one of the most relevant

metrics for proactive FT. The health monitoring system needs to indicate deteriorating

health (e.g., a violated threshold of temperatures or fan speeds) prior to the actual failure

of a node. Migration duration provides the metric to bound the minimum alert distance

required prior to failure to ensure successful migration completion. Future work is needed

in the area of observing the amount of lead time between a detected health deterioration

and the actual failure in practice, as past work in this area is sparse [43].
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Chapter 5

Related Work

A number of systems have been developed that combine FT with the message

passing implementations of MPI, ranging from automatic methods (checkpoint-based or

log-based) [48, 44, 8] to non-automated approaches [5, 18]. Checkpoint-based methods

commonly rely on a combination of OS support to checkpoint a process image (e.g., via

Berkeley Labs Checkpoint Restart (BLCR) Linux module [16]) combined with a coordi-

nated checkpoint negotiation using collective communication among MPI tasks. Another

variation to the checkpointing approach is a co-operative checkpointing scheme [38] wherein

the checkpoint operation is not performed at a periodic interval. The application instead

indicates suitable points for a checkpoint, e.g., at the end of a timestep when data has

been consolidated. The runtime/OS then decides to grant or deny the request based on

system-wide parameters, e.g., network utilization. Log-based methods generally rely on

logging messages and possibly their temporal ordering, where the latter is required for

asynchronous approaches. Non-automatic approaches generally involve explicit invocation

of checkpoint routines.

Different layers have been utilized to implement these approaches ranging from

separate frameworks over the API level to the communication layer or a combination of

the two. While higher-level layers are perceived to impose less overhead, lower-level layers

encompass a larger amount of state, e.g., open file handles. Virtualization techniques, how-

ever, have not been widely used in HPC to tolerate faults, even though they capture even

more state (including the entire IP layer). This thesis takes this approach and shows that

overheads are quite manageable, even in the presence of faults, making virtualization-based

FT in HPC a realistic option. LA-MPI [5] operates at a different abstract level, namely
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that of the network/link layer and, as such, is not designed to transparently provide check-

point/restart capabilities. It differs in that it provides a complete MPI implementation and

transparently hides network errors rather than node failures. FT-MPI [18] is a reactive

fault-tolerant solution that keeps the MPI layer and the application alive once a process

failure has occurred. This is done by reconfiguring the MPI layer (MPI Communicator) and

by letting the application decide how to handle failures. It is the application’s responsibility

to recover from failures by compensating for lost data/computation within its algorithmic

framework, which shifts the burden to the programmer. Compared to potential resynchro-

nization of MPI layer of an entire machine, the restart of lost process and the roll back of

all other processes, the performance penalty of our approach is quite minimal.

Virtualization as a technique to tolerate faults in HPC has been studied before

showing that MPI applications run over a Xen virtualization layer [7] result in virtually

no overheads [27]. To make virtualization competitive for message-passing environments,

OS bypassing is required for the networking layer [34, 33]. This thesis leverages Xen as an

abstraction to the network layer to provide FT for MPI jobs. It does not exploit OS bypass

for networking as this is not an integrated component of Xen. Yet, it does not preclude such

extensions without changes to our work in the future. Our FT support leverages the Xen

live migration mechanism that, in addition to disk-based checkpointing (and restarting) of

an entire guest OS, allows a guest OS to be relocated on another machine [13]. During

the lion’s share of the migration’s duration, the guest OS remains operational while first

an initial system snapshot of all pages and then a smaller number of pages (modified since

the last snapshot) are transferred. Finally, the guest OS is frozen and last changes are

communicated before the new target node is activating the migrated guest OS. This guest

OS still uses the same IP number (due to automatic updates of routes at the Xen host level)

and is not even aware of its relocation (other than a short lapse of inactivity). We exploit

live migration for proactive FT to move MPI tasks from unstable (or unhealthy) nodes to

stable (healthy) ones. While the FT extensions to MPI cited above focus on reactive FT,

our approach emphasizes proactive FT as a complementary method (at lower cost). Instead

of costly recovery after actual failures, proactive FT anticipates faults and migrates MPI

tasks onto healthy nodes.

Past work has shown the feasibility of proactive FT [37]. More recent work pro-

motes FT in Adaptive MPI using a combination of (a) object virtualization techniques to

migrate tasks and (b) causal message logging within the MPI runtime system of Charm++
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applications [10, 11, 12]. Causal message logging is due to Elnozahy et al. [17]. Our work

focuses on assessing the overhead of Xen-based proactive FT for MPI jobs. It contributes an

integrated approach to combine health-based monitoring with OpenIPMI [3] to predict node

failures and proactively migrate MPI jobs to healthy nodes. In contrast to the Charm++

approach, it is coarser grained as FT is provided at the level of the entire OS, thereby

encapsulating one or more MPI tasks and also capturing OS resources used by applications,

which are beyond the MPI runtime layer.

FT support at different levels has different merits due to associated costs. Process-

level migration [41, 49, 30, 6, 15, 16] may be slightly less expensive than virtualization

support. Yet, the former may only be applicable to HPC codes if certain resources do

not need to be captured that virtualization covers — at the cost of increased memory

utilization due to host and guest OS consumption for virtualization. A system could well

support different FT options to let the application choose which one best fits its code and

cost constraints.

In related, orthogonal work [51], experiments were conducted with process-level

BLCR [16] to assess the overhead of saving and restoring the image of an MPI application

on a faulty node, which we compare with the save/restore overhead over Xen [7]. For

BLCR, this comprises the process of an MPI task while for Xen, the entire guest OS is

saved. Process-level FT with BLCR showed an overhead of 8-10 seconds for BLCR and

15-23 seconds for Xen for NPB programs under Class C inputs on a common experimental

platform. Variations are mostly due to the memory requirements of specific benchmarks.

These memory requirements also dominate those of the underlying OS, which explains why

Xen remains competitive in these experiments. From this, we conclude that both process-

level and OS-level C/R mechanisms are viable alternatives. This thesis focuses on the OS

virtualization side.

Even though the prediction of faults seems to be a difficult task, best effort can be

put forward with the available monitoring tools like IPMI, SMART and by inspecting the

system log for IO or file system errors. As a considerable improvement over the ordinary

threshold-based approach to detect hard-drive failures using SMART, [35] compares various

machine learning methods for predicting hard-drive failures using the attributes monitored

internally by individual drives. This work shows that SMART thresholds implemented

in hard drives provide a 3-10% failure detection rate with 0.1% false alarms whereas the

machine learning algorithms can push the failure detection rate as high as 50.6% without
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any false alarms. Also, the majority of the failures were predicted within 100 hours before

the failure with machine learning methods. In [32], the authors had collected event logs on

BlueGene/L over a period of 100 days and investigated the characteristics of fatal failure

events, including their relation to non-fatal events. This work showed that it is possible

to predict around 80% of memory and network failures and 47% of the application I/O

failures.

In contrast to reactive and proactive failure management schemes, [22] discusses

an on-line failure forecast system to achieve predictive failure management for fault-tolerant

data stream processing. While we have concentrated on identifying hardware failures with

hardware sensors, this scheme focuses on observing system logs (e.g., available memory,

CPU idle time) and application behavior to identify degradation in performance of appli-

cations as an indicator for failure. This approach uses hooks in the applications (similar to

query processing) to identify degrading performance (e.g., reduction in number of output

tuples per second) and uses the alerts generated for performing preventive actions. The

above work on on-line failure prediction was further shown to be applicable to distributed

stream processing systems [23]. While our primary focus has been the HPC environment,

this approach focuses mainly on the distributed processing systems.

In addition to the health monitoring framework that we have implemented, there

is another framework called Nagios [2], a system and network monitoring application that

provides alert services for specific registered events. Furthermore, studies have been con-

ducted in the use of artificial neural networks for the purpose of improved fault prediction.

Neural networks can be trained for specific input and output patterns — those datasets that

actually produced fault and those that did not. Based on the input datasets, the neural

network learns autonomously and provides a better indication of occurrence of faults in the

system.

In [50], the authors provide a generic framework based on a modular architecture

allowing the implementation of new proactive fault tolerance policies/mechanisms. An

agent oriented framework [28] was developed for grid computing environments with separate

agents to monitor individual classes or subclasses of faults and proactively act to avoid or

tolerate a fault.

While integrated with Xen’s live migration, our solution is, in it’s methodology,

equally applicable to other virtualization techniques, such as live migration strategies im-

plemented in VMWare’s VMotion or NomadBIOS [24], a solution closely related to Xen’s
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live migration, which is implemented over the L4 microkernel [25]. Even non-live migration

strategies under virtualization [45, 31, 52, 39] could be integrated but would be less effective

due to their stop & copy semantics. Demand-based migration [54], however, is unsuitable

in a proactive environment as it does not tightly bound the migration duration.
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Chapter 6

Conclusion and Future Work

In this work, we have provided answers to the original thesis statement in Section

1.5 as follows.

• We have shown how automatic and transparent fault tolerance can be supported in a

proactive manner for arbitrary MPI applications on a cluster based HPC environment.

• Virtualization is a feasible option for providing proactive FT. By combining virtual-

ization techniques with health monitoring and load-based migration, we assessed the

viability of proactive FT for contemporary HPC clusters. Xen’s live migration allows

a guest OS to be relocated to another node, including running tasks of an MPI job.

We exploit this feature when a health-deteriorating node is identified, which allows

computation to proceed on a healthy node, thereby avoiding a complete restart neces-

sitated by node failures. The live migration mechanism allows execution of the MPI

task to progress while being relocated, which reduces the migration overhead for HPC

codes with large memory footprints that have to be transferred over the network. Our

proactive FT daemon orchestrates the tasks of health monitoring, load determination

and initiation of guest OS migration.

• Experimental results confirm that live migration hides the costs of relocating the

guest OS with its MPI task. The actual overhead varies between 1-16 seconds for

most NBP codes. We also observe migration overhead to be scalable (independent of

the number of nodes) within the limits of our test bed. Our work shows that proactive

FT complements reactive schemes for long-running MPI jobs. As proactive FT has
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the potential to prolong the mean-time-to-failure, reactive schemes can lower their

checkpoint frequency in response.

Node failures on contemporary computers can often be anticipated by monitoring

health and detecting a deteriorating status. To exploit anticipatory failures, we have pro-

moted proactive fault tolerance (FT). Instead of a reactive scheme proactive FT system,

processes automatically migrate from “unhealthy” nodes to healthy ones. This is in contrast

to a reactive scheme where recovery occurs in response to already occurred failures.
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