
ABSTRACT

ANANTHAKRISHNAN, SRINATH KRISHNA. Customized Scalable Tracing with in-situ Data
Analysis. (Under the direction of Frank Mueller.)

The next few years have been projected to usher in the wake of the exascale era where

systems are expected to be comprised of several million cores. Applications that are scaled

to run on these systems can generate extensive amounts of data, and experience with current

petascale systems shows that developers are struggling to keep pace with this increase in scale.

A large number of problems surface at high scale. Root cause diagnosis of such problems often

fails because tools, specifically trace-based ones, cannot afford to record the entire set of metrics

they measure owing to the prohibitive cost of instrumentation.

We propose to address these tool scalability problems by combining customized tracing

and providing support for in-situ data analysis. To this end, we have developed ScalaJack,

a framework that supports dynamic customizable instrumentation and pluggable extension

capabilities through which a user can instrument the interfaces that are pertinent to the problem

at hand and also perform in-situ data analysis at the specific points of execution thus achieving

scalable trace sizes. The framework also allows users to eliminate the presence of cross cutting

concerns by factoring code into modular aspects thus achieving better maintainability. We

evaluate the viability of ScalaJack by demonstrating its ability with several case studies of

traditional HPC applications.
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Chapter 1

Introduction

1.1 The exascale era

Recent years have seen an exponential upsurge in the concurrency levels of large-scale super-

computers. The Top500 list is a biannual list of supercomputers ranked on the basis of their

computing power [6]. The recent edition of the Top500 list released in November 2012 has Oak

Ridge National Laboratory’s Titan machine at the top, boasting 560,640 cores with Nvidia

Kepler GPUs capable of performing about 17.6 PFLOP/s. As can be seen from Figure 1.1, this

decade has been projected to usher in the wake of the exascale era, where systems are expected

to be comprised of several millions of components with up to O(1011) threads [2].

Even current petascale systems, e.g. Titan, have several thousands of active tasks. Expe-

rience with such systems suggests that application developers are struggling to cope with the

immense parallelism offered. Scaling applications to this level of parallelism still remains an

immense challenge. With such an increase in scale, applications are more likely to fall short

relative to expected performance due to bottlenecks. Experience suggests that typical applica-

tion codes suffer from scalability issues when the concurrency levels increase by a factor of 10.

Such issues can be manifestations of problems ranging from inefficient communication between

tasks to inefficient usage of memory hierarchies. Analysis of such problems typically requires

the knowledge of an application’s global as well as local behavior.

It is also interesting to note that, more than 10% of the supercomputers on the Top500

list sport hybrid architectures with accelerators. It is evident that with the race to exascale,

supercomputers are beginning to be comprised of hybrid architectures with several thousand

cores teaming up with accelerators to churn out immense computing capabilities.
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Figure 1.1: Projected performance based on the Nov ’12 Top500 list

1.2 Tool deficiencies at exascale

1.2.1 Scalability of tracing tools

One of the most frequently used techniques for root cause diagnosis is tracing, where specific

events in the application are identified and traced as part of an execution of the application.

Tracing differs from profiling in that it tries to preserve more data about the execution, includ-

ing the chronology of events that took place, while profiling is inherently lossy and focuses on

overall performance metrics related to specific event types. With trace-based tools, it becomes

increasingly difficult to isolate problems since their causes are often subtle to identify and the

instrumentation cost can be prohibitive. Tools generally try to instrument interfaces exhaus-

tively because developers cannot predict the subset of interfaces that might be pertinent to an

application’s problem. Using these tools might be prohibitive and expensive for two reasons.

First, instrumenting more interfaces than necessary might introduce perturbations that can

mask the problem at hand. Second, instrumenting more interfaces results in more data, thus

impairing scalability.

1.2.2 Scalability of instrumentation data

Traditional approaches to reduce the footprint of diagnostic data involve timely probing [5],

instead of instrumenting all APIs. In addition, tools often employ reduction in data volume

through compression. However, this merely postpones the problem of analyzing the data by

writing compressed yet complete traces to the disk. This approach would not be better for

long running applications which is the norm for HPC. Hence, it is imperative to reduce data

volume through in-situ analysis rather than mere compression. In order to be more performant,

applications using online techniques need to be capable of analyzing data in realtime, i.e. at

a rate comparable to that at which data is generated. This can be realized by leveraging the

2



knowledge of the user for instrumenting interfaces that are problem-specific.

1.2.3 Customizable instrumentation

To aid the instrumentation of MPI programs, the MPI Standard [7] defines the PMPI profil-

ing layer. Tracing or profiling tools that are developed for MPI programs can make use of the

PMPI layer to seamlessly instrument the communication and computation routines of the ap-

plication. By intercepting MPI APIs at the profiling layer, tools can perform tracing or profiling

of functions and can ensure scalability by compression of data. However, for non-MPI APIs,

contemporary tools provide little to no support. As a result, developers have to either rely on

different tools to instrument such APIs or implement their own home-grown tools that cater

to both MPI and non-MPI APIs alike. It is thus necessary that tools provide these customized

tracing capabilities so that users can leverage them to instrument non-MPI APIs (in addition

to MPI APIs through the PMPI layer) so as to localize inefficiencies.

1.2.4 Maintainability of codes

In recent years, HPC application codes are becoming increasingly large and multi-scalar as

more intelligent modules are embedded into applications like end-to-end IO pipelines [26]. Also,

with hybrid architectures, applications are increasingly comprised of several logically separate

modules that need to co-exist seamlessly. It is often desired to segregate code into well-defined

modules so as to eliminate cross-cutting concerns. Common strategies, e.g. Object-Oriented Pro-

gramming, are not adequate enough because certain concerns like logging and tracing cannot

be engineered efficiently with reduced scattering of code across modules. Aspect-Oriented Pro-

gramming (AOP) [11] aims to solve this problem of ”code tangling” by refactoring cross-cutting

concerns into aspects that are executed at certain points in the code. A tool framework that

supports the instrumentation of APIs at defined interfaces can help realize the AOP paradigm

by permitting the execution of code at the prologue and epilogue of interfaces, thus reducing

cross-cutting concerns.

1.3 Hypothesis

With the advent of the exascale era, debugging and performance analysis of massively parallel

programs is becoming an increasingly arduous task as tools suffer due to scalability issues. This

is predominantly because tools instrument interfaces exhaustively, which are possibly large

enough to mask the anomalies. We aim to address this limitation in this thesis. Hence, the

hypothesis of this thesis is:
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Tool scalability can be vastly improved by providing users the ability to instrument a subset

of interfaces of their choice and also allow for performing in-situ analysis of the collected per-

formance data. Such a framework can be utilized for innovative performance analysis and can

accelerate the debugging of HPC codes. As an added benefit, such a framework will help realize

the AOP paradigm thus improving code readability.

1.4 Contributions

We propose to combat this problem of trace scalability via ScalaJack, a novel tool that sup-

ports problem-specific extraction and on-the-fly reduction of data through analysis. ScalaJack

is realized above ScalaTrace [17], a tracing tool for MPI programs that ensures scalablity by

exploiting the repetitive nature of timestep simulations of SPMD programs. The ScalaJack

framework makes the following contributions.

1. ScalaJack supports dynamic customizable instrumentation by exposing APIs to the user

for defining custom events to be part of the trace. Such custom events will now co-exist

with MPI events and will be compressed using the intra-node and inter-node compression

routines of ScalaTrace. This results in near-constant trace file sizes that preserve the

underlying communication structure of the program.

2. ScalaJack supports in-situ analysis for diagnostic data reduction. Users can again uti-

lize APIs to register these analysis entities with the respective reduction routines. These

entities are associated with the events in a program and are subject to the intra-node

and inter-node compression routines of ScalaTrace, during which the appropriate reduc-

tion routines are invoked. With ScalaJack, users can thus realize what we term as active

analysis tracing.

3. ScalaJack supports manual instrumentation of custom events by exporting APIs that the

user can use to mark sections of code as prologues and epilogues to events. On the other

hand, ScalaJack also supports automatic instrumentation of such custom events through

a preloader tool that auto-generates code at compile time from a specification file.

4. Extensions developed for ScalaJack are aspect-oriented and, hence, can reduce cross-

cutting concerns in a program’s source code thereby improving code readability and

maintainability.

Evaluation of ScalaJack with typical use cases from HPC applications shows that ScalaJack

results in scalable trace file sizes with increasing number of tasks with minimal additional

overhead. Aspect-oriented analysis of the resulting codes also suggests a significant decrease in

the scattering of cross-referenced data structures across different modules.
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1.5 Organization

This dissertation is organized as follows. Chapter 2 outlines ScalaTrace, a tracing tool for

MPI programs on top of which ScalaJack is realized. Also, since ScalaJack helps segregate

code into aspects, a brief introduction into aspect-oriented programming and typical usages in

HPC applications is discussed. Chapter 3 describes a high level design of ScalaJack with an

example of how a typical application can use it. Following this, we discuss the implementation

of ScalaJack, a framework supporting custom events and user callbacks. We then discuss the

evaluation of ScalaJack in Chapter 4 and the related work in this realm in Chapter 5. We

discuss how ScalaJack can be improved in the future in Chapter 6 and we summarize our work

in Chapter 7.
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Chapter 2

Background

This chapter summarizes the capabilities of ScalaTrace, a scalable and novel tracing tool for

MPI environments on top which ScalaJack’s customizable instrumentation and user callback

frameworks are realized. We summarize the compression mechanisms of ScalaTrace that are

reused by ScalaJack to ensure scalability. Also, a brief background on aspect-oriented pro-

gramming and design is provided which is realized through the user callback framework within

ScalaJack.

2.1 ScalaTrace

ScalaTrace [17] is a state-of-the-art scalable parallel communication tracing library for MPI

programs. It utilizes the PMPI profiling layer to intercept MPI events and trace them as part

of a program’s execution. ScalaTrace achieves near constant trace sizes by employing novel

techniques for intra-node and inter-node compression. Intra-node compression is achieved by

identifying loops within a program and compressing events that form the loop, while inter-

node compression is performed on events across nodes as part of MPI Finalize. ScalaTrace

employs structures known as RSDs and PRSDs to represent events in a loop as constant size

trace logs. An RSD is represented as a tuple < length, event1...eventn > and a PRSD can

represent multiple RSDs in nested loops. For instance, the MPI program shown in Figure 2.1

will correspond to the PRSD < 10, RSD1,MPI Barrier > where RSD1 corresponds to <

10,MPI Send >.

ScalaTrace achieves lossless tracing by storing highly scalable traces through an elastic data

representation [23] where data elements can start as scalars, morph into vectors in time and

finally transform into histograms. The fact that parameters to MPI events are also recorded

through this elastic data representation enables ScalaTrace to produce scalable yet lossless trace

files. ScalaTrace also includes a replay engine with support for non-deterministic replays when

6



... // preceding events

for(i=0; i<10; i++) {

for (j=0; j<10; j++) {

MPI_Send(...);

}

MPI_Barrier();

}

... // following events

Figure 2.1: Nested MPI events

histograms are employed allowing events to be replayed without original program code.

ScalaJack reuses the compression algorithms of ScalaTrace but augments and extends it by

introducing APIs accessible to the user. Users can thus define their own custom events specific

to a program and also register specific callbacks for performing in-situ analysis of live data.

2.1.1 Intra-node compression

ScalaTrace performs intra-node compression by identifying loops in a program and storing them

as PRSDs. This is done by maintaining the events in a queue. When an event is added to the

trace, it is identified as the target tail and a search is performed from the back of the queue

to identify the presence of the same event. This identified event becomes the match tail. The

event immediately following the match tail becomes the target head and a search is performed

again to identify the match head. Once the head and tail of the match and target iterators

have been identified, ScalaTrace performs an element-by-element comparison to identify if two

ranges are indeed the same, which is true in case of a loop. This is shown in Figure 2.2. Here,

Send is identitified as the head of the two iterators and Barrier is identified as the tail. The

next version of ScalaTrace, ScalaTrace II [23] takes this approach further by allowing loops to

be slightly different. This is done by introducing dummy events in the match and target queues

and compressing them accordingly. This gives better scalability as iteration-specific events are

properly identified as part of the loop and compressed.

In order to perform efficient intra-node compression, ScalaTrace employs different tech-

niques, which are discussed below.

1. Calling Sequence Identification: To distinguish between different execution of events,

ScalaTrace employs a signature associated with each event. This signature is computed

by walking the stack backward.

2. Recursion-Folding Signatures: To prevent an explosion in size of the stack signature

7



Figure 2.2: ScalaTrace’s Intra-node compression

for recursive invocations, ScalaTrace identifies recursive calls and folds them to their first

occurence.

3. Location-independent Encodings: ScalaTrace keeps track of the parameters to a MPI

function and stores them as part of the trace. To ensure scalability, parameters like the

source and destination are stored relative to the task’s rank instead of the absolute value.

For stencil codes, this helps in achieving highly scalable traces.

4. Request Handles: ScalaTrace compresses arguments like the request handles, which are

opaque pointers to the MPI implementation’s internal data structures, by accumulating

them in a buffer and storing the indices to the buffer rather than the absolute values.

This helps in indentifying repetitive patterns that are otherwise non-obvious.

2.1.2 Inter-node compression

In order to ensure scalability, ScalaTrace employs inter-node compression in a bottom-up fash-

ion over a radix tree. In contrast to traditional approaches, this eliminates the need for separate

trace files for each task, which would increase the IO bandwidth and thus compromise perfor-

mance. In addition, separate trace files result in linearly increasing disk space. The compression

algorithm has two queues to work on - the master and the slave queues. RSDs and PRSDs are

merged with each other when events match. As parameters to events can morph into vectors,

the same events with different parameters on two nodes are merged as one, retaining a vector

that holds the two parameters. The compression algorithm works by identifying a subsequence

match between the master and slave queues. The two subsequences are then merged together to

arrive at the new sequence. Events from the slave queue that are not merged are finally added

to the master queue.

For inter-node compression, ScalaTrace employs the following techniques.

1. Task ID Compression: ScalaTrace stores each of the task IDs in a PRSD-style repre-

sentation known as the ranklist representing a set of ranks. As part of the global trace,

8



Figure 2.3: Inter-node radix tree compression

events are annotated with ranklists containing IDs of the task that executed the event.

With such a recursive structure, large numbers of task IDs can be stored without com-

promising scalability.

2. Radix Tree: To ensure scalability, RSDs are merged over a binary tree as shown in

Figure 2.3. Each node in the tree receives trace files from its two children, merges them

with its own event queue and then sends the merged trace to its parent. Finally, rank 0

retrieves the traces and performs IO to write the trace files.

In addition to tracing capabilities, ScalaTrace is equipped with benchmark generating and

replaying capabilities with ScalaBenchgen [24] and ScalaReplay [23]. Also, trace files generated

by ScalaTrace for lower numbers of nodes can be extrapolated to larger numbers of nodes with

ScalaExtrap [25], thereby helping to analyse the scalability of the program and also helping in

procurement of supercomputers.

2.2 Aspect-Oriented Programming

Aspect-oriented programming is a software engineering technique that aims to reduce the effect

of cross-cutting concerns in a program by separating ”tangled” code segments. An aspect is de-

fined as a piece of code that cannot be cleanly encapsulated in a generalized procedure. These

are typically cross-cutting concerns that cut at specific pointcuts in a given program’s code. Pro-

grams written in the aspect-oriented paradigm aim to cleanly separate components and aspects

from each other by providing mechanisms that make it possible to abstract and compose them

to produce the overall system [11]. Some typical aspects identified in applications are logging,

timing etc. With HPC applications, this list can be extended to include performance evaluation,

visualization, load-balancing, fault-tolerance provision, memory (re)allocation, synchronization

primitives and other optimizations [11].

With aspects, better code is realized by moving the cross-cutting concerns from the original

component of the application to the aspects themselves. An advice is a functionality that is

9



...

record_start_time();

compute_fd();

record_stop_time();

...

Figure 2.4: Cross-cutting concerns in a traditional application

...

compute_fd();

...

aspect_compute_fd() {

before:

record_start_time();

after:

record_stop_time();

}

Figure 2.5: Application after aspects refactoring

executed at the region of a pointcut in the program. Each aspect can be executed before or after

or around the advice by suitably wrapping the advice. Traditional aspect-oriented frameworks

like AspectJ [12] and AspectC [3] rely on providing run-time or compile-time support for aspects

in Java and C. In ScalaJack, we rely on supporting aspects through run-time constructs like

PMPI for MPI calls and dynamic pre-loading otherwise (or manual tagging of the prologue

and epilogue). More so, ScalaJack is aimed to be an aspect-oriented framework to perform

in-situ data analysis with trace analysis specifically geared for HPC codes. To the best of our

knowledge, such a tool has no precedence.

To illustrate, Figure 2.4 shows a code snippet with a computation routine that is ”pep-

pered” with timing code before and after with timing code. With respect to the main objective

of the component that performs the computation, the timing routines are cross-cutting con-

cerns. Hence, the region before and after the call to the compute fd() advice are pointcuts and

their respective code can be refactored into aspects. Figure 2.5 shows the same program where

the timing routines are refactored into aspects for the advice compute fd(). With code being

refactored across several sections of the code, it can be seen that aspect-oriented programming

can yield codes with better maintainability, readability and reliability.
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Chapter 3

Design and Implementation

This chapter outlines a high-level overview of the design of ScalaJack and also how developers

are envisioned to make use of ScalaJack in their applications. This is followed by a discussion

on the implementation of the custom event framework and the custom user handler framework

in ScalaJack.

3.1 High-level design

The design of ScalaJack is shown in Figure 3.1. MPI events from each task are traced through

the PMPI wrapper while users use APIs from ScalaJack to register and trace arbitrary functions.

Each event traced by ScalaJack is wrapped with a prologue and epilogue for performing tracing

in addition to invoking embedded aspects registered through the callback framework. Events

within a task are compressed on-the-fly by exploiting the loop constructs in the program while

a further phase of compression is performed via inter-node compression over all the tasks. This

highly compressed trace is thus scalable with the number of processes.

A typical application workflow using ScalaJack would resemble Figure 3.2. A parallel appli-

cation uses the customizable instrumentation capabilities of ScalaJack to trace and instrument

MPI routines or arbitrary functions in their code, in addition to performing in-situ reduction

(through analysis) of data generated through instrumentation. This data is co-located with the

appropriate event blocks and stored as RSDs and PRSDs in a scalable fashion, preserving the

structure of the program. Correlating data to the events in the trace provides better insight

into diagnosing problems, thus helping in identifying even the subtlest of performance anoma-

lies. Additionally, the application can use the framework to perform other tertiary tasks that

are identified as cross-cutting concerns, e.g., visualization, so that better code modularity is

achieved.
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Figure 3.1: ScalaJack’s High-level Design

Figure 3.2: Typical Application workflow with ScalaJack
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... // preceding events

MPI_Send(...); // communication

... // computation

MPI_Recv(...); // communication

... // computation

MPI_Allreduce(...); // communication

... // following events

Figure 3.3: Communication and Computation phases in an MPI program

3.2 Custom Event Framework

ScalaTrace originally supports three levels of tracing, viz. tracing of events with no compression,

intra-node compression of events and intra-node with inter-node compression. The events are

MPI routines, characterized as communication points and instrumented via the PMPI layer.

Phases between successive MPI events are considered computation points (see Figure 3.3).

ScalaJack implements a custom-event registration framework that a user can use to extend

ScalaTrace’s scalable compression algorithms to trace arbitrary events in their program. As

part of this work, a new level of tracing is also introduced where only the MPI Init and MPI -

Finalize calls are instrumented to signal the start and end of tracing while no other MPI events

need to be instrumented. This, along with the custom event registration APIs, enables the user

to localize problems in their applications by instrumenting functions at will with trace and

analysis capabilities.

In theory, any two arbitrary functions can be tagged as the Init and Finalize routines for

marking the start and end of tracing. This even supports tracing in non-MPI environments.

However, in such a system, it would be the user’s responsibility to provide alternatives for MPI -

Comm rank, MPI Comm size and MPI Barrier because these APIs are critical in ScalaJack’s

algorithms for identifying processes and identifying the world for cross-node data reduction.

In this paper, to facilitate discussion, it is assumed that ScalaJack is utilized in either a pure

MPI-only environment or a hybrid MPI environment involving GPUs or CPU threads.

ScalaJack’s custom event framework introduces two functionally distinct APIs - one for

registering the event with the framework and the other for marking the prologue and epilogue

of an event. These are explained further.

3.2.1 Registering custom events

Users can register events with ScalaJack’s framework with the SJ register custom event API to

obtain an event code unique to the event. The enumeration of these event codes are mapped

13



... // preceding events

for (i=0; i<5; i++) {

MPI_Send(...);

...

MPI_Recv(...);

}

MPI_Send(...);

... // following events

Figure 3.4: MPI events in a loop

onto a different but related namespace from those of MPI events that were originally traced.

ScalaTrace internally maintains a control block for every custom event registered, indexed with

the respective event code. While registering custom events, users can also supply optional flags

that control ScalaJack’s handling of the event.

One such flag is SJ CE FLAG NO SIG. This flag instructs ScalaJack to refrain from gen-

erating signatures, which identify a specific invocation of a function. ScalaJack, by default,

uniquely identifies each invocation of an event with a stack signature computed by walking the

stack backtrace. This signature is used to identify events that form a loop and to compress

them as part of the intra-node compression step. Such a scenario is shown in Figure 3.4, where

the two invocations of MPI Send are considered unique. While the first is part of the RSD

that defines the loop, the second is part of the PRSD that includes the loop RSD and PRSDs

from preceding and following events. However, with the flag present, no stack signatures are

generated for custom events to identify unique invocations. This may be useful for the user in

an application that resembles Figure 3.5, where the three invocations of the user function are

identified to closely resemble each other will be compressed together. This may be preferable

in collecting timing or performance analysis for events that are scattered about the program.

Scalable compression can be achieved by aggregating such events irrespective of their origin of

invocation. Since walking the stack is expensive, developers can switch this feature off, if they

deem it unnecessary for the application.

3.2.2 Invoking custom events

Custom events registered by the user are mapped to user-supplied arbitrary functions. This is

done by prefixing and suffixing the function call with the APIs SJ custom event pre and SJ -

custom event post, respectively. These prologue and epilogue functions for custom events are

synonymous to those for MPI events instrumented via the PMPI layer. They are discussed in

more detail in Section 3.3.
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... // preceding events

user_function(...);

...

user_function(...);

...

user_function(...);

... // following events

Figure 3.5: Successive Custom events

With the original design, developers have to manually pepper each of their custom event

with a call to the prologue and epilogue. This constraint can be lifted by utilizing the dynamic

preloader bundled with ScalaJack. Users can optionally provide a specification of the functions

to be instrumented and ScalaJack can auto-generate code that can wrap the original function

call.

It should be noted that when custom events are used with MPI events, registered custom

events will co-exist with traditional MPI events, i.e., they will be written as part of the same

trace file. In such a scenario, the provision of the flag SJ CE FLAG NO SIG might not guaran-

tee the compression of custom events outside of loops as shown in Figure 3.6. Since signatures

for the two MPI Send events will be different, the match and target queues will not unify and,

hence, ScalaTrace’s compression algorithms will refrain from matching the custom events even

though no signature is associated with them. In such a scenario, the user can optionally utilize

the level of tracing where only MPI Init and MPI Finalize are traced.

Another challenge with allowing the user to provide custom events is the phenomenon of

nested custom events. As shown in the Figure 3.7, functions that are registered as custom events

can internally call other custom events. Thus, before the epilogue of custom event 1 is reached,

the prologue of custom event 2 is encountered. One way to tackle this would be to buffer nested

events till all the epilogues are encountered, e.g., by storing them in a list. However, this does

not reflect the actual execution of the program and the accretion of such nested events might

hamper scalability in applications that exhibit highly recursive or nested behavior. ScalaJack

tackles this problem by identifying the prologue and epilogue as custom events themselves when

it detects the presence of nested custom events. Thus, the trace contains the prologues and

epilogues as communication events while custom events are recorded as computation phases. In

any case, the event sequence thus recorded resembles the execution behavior of the program.
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... // preceding events

MPI_Send(...);

...

user_function(...);

...

MPI_Send(...);

...

user_function(...);

... // following events

Figure 3.6: Custom events with MPI events

...

SJ_custom_event_pre(event1);

custom_event_1(...);

SJ_custom_event_post(event1);

...

void custom_event_1(...)

{

...

SJ_custom_event_pre(event2);

custom_event_2(...);

SJ_custom_event_post(event2);

}

Figure 3.7: Nested custom events

3.3 User Callback Framework

User callbacks provide hooks at destined points in the call graph of a program. These hooks can

be utilized by users to perform in-situ data analysis on the data collected as part of the custom

events. In addition, these callbacks realize an aspect-oriented framework which developers can

utilize to implement efficient and cleaner code by separating cross-cutting concerns as aspects

from the main algorithmic concern at hand.

As mentioned before, ScalaJack utilizes the PMPI layer to instrument MPI events. Each

event is prefixed with a prologue and postfixed with an epilogue. The prologue is responsible

for creating the event control blocks in ScalaJack. Since MPI events are marked as commu-

nication points in ScalaJack, a prologue generally marks the end of a computation event and

the beginning of communication. In contrast, the epilogue consists of routines that append the
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events into the trace and perform intra-node compression on-the-fly, if enabled. On the same

lines, the epilogue serves as the end of the communication and the beginning of computation.

The user callback framework extends this connotation by allowing developers to register

callbacks at the prologue and epilogue, which serve as pointcuts at their code. In addition,

developers can optionally feed data into the trace from the callbacks pertaining to the com-

putation or communication phase of the event. As part of the epilogue, the analysis of data is

effected during on-the-fly compression of the trace.

Like the custom event framework, ScalaJack’s user callback framework also comprises of

two APIs - one for registering callbacks and the other for user-provided data analysis routines.

3.3.1 Registering callbacks

ScalaJack implements a Stat (short for Statistics) class, which is instantiated twice per event.

The two Stat objects associated with the MPI events govern the statistics for the computation

phase (before the event) and the communication phase (of the event itself). The framework

allows users to register these callbacks in two ways. Users can either extend the Stat class by

providing alternatives for the start and end methods, or they can register two methods that

mark the start and end of the collection of statistics via the SJ register user jack API. In the

latter scenario, ScalaJack internally associates a Stat object with the registered start and end.

As part of the prologue, the end of the computation phase is identified by calling the end

method of the Stat object for computation; in addition, the start of the communication phase

is identified by calling the start method of the Stat object for communication. The epilogue

invokes the end of the computation phase and the start of the computation phase.

The registration of callbacks can optionally be augmented with flags similar to the custom

events. One such flag is SJ UJ FLAG CALLBACK, which can be used to only perform auxiliary

tasks (as with aspects) as part of the callbacks without any addition into the trace. In this

mode, users can override the callback method of the Stat class. Such user callbacks are invoked

only once for every prologue and epilogue. With the callback mode, there is no distinction

between communication and computation events as with the default mode; nonetheless users

can distinguish between the prologue and epilogue.

3.3.2 Compression of user data in callbacks

ScalaJack augments ScalaTrace by providing data analysis capabilities within the user callback

framework, thus allowing users to perform in-situ data analysis within trace analysis. While

ScalaJack tags all data originating from the end method as numeric and compresses them

as a Histogram, users can provide their own compression routines by extending the ValueSet

class and implementing the jadd, jmerge, pack and unpack routines. While the jadd and jmerge
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routines are used for addition to the trace and reduction, respectively, the pack and unpack

routines serialize and de-serialize the user-specified data for transfer between tasks for inter-node

compression. As with the registration of callbacks, users can register callback functions with

ScalaJack’s framework, instead of extending the class and ScalaJack will internally instantiate

a ValueSet object with the appropriate merge routines. With this capability, users can identify

appropriate pointcuts in their program, associate them with specific data and optionally feed

the data to the trace file ensuring scalability through online compression.

While most aspect-oriented frameworks deal with mapping aspects to specific events, the

framework realized through ScalaJack does not make this distinction. Aspects are applicable

to every event that is traced with ScalaJack. The distinction between event-specific aspects

can be made by light-weight filter predicates with-in an aspect. To enable this, developers have

access to the event objects of the pointcuts. This enables them to execute aspects for specific

events or specific conditions, e.g. to access the send count or destination of MPI events. Another

advantage of tying aspects to all events is that users also have access to the entire trace queue

consisting of all the events traced thus far (but in PRSD-structurally compressed form). This

is beneficial in scenarios where users need to perform analysis on the trace as a whole. For

instance, tasks can compute their similarity with others in the system in k-clustering, thereby

grouping them based on a similarity metric.

3.4 Preloader

To aid automatic instrumentation, ScalaJack features a built-in preloader that autogenerates

code at compile time to intercept function calls in a program. A program written in a language

like C can invoke routines that are either statically compiled within the binary (through a

statically linked library) or can be dynamically looked up by the dynamic linker. The preloader

is designed to support the interception of both such routines.

In contrast to other tools that implement interception capabilities, ScalaJack’s preloader

does not rely on run-time binary interception through tools like Pin [14] or Dyninst [21]. This

is because such tools introduce significant run-time overhead on the system, which could pose a

problem at exascale and can potentially introduce perturbations masking the original problem.

Instead, the preloader relies on compile-time strategies to generate two different libraries, one

of which is statically linked with the application and the other dynamically preloaded using

the LD PRELOAD facility of the dynamic linker. The preloader relies on this dual approach

to intercept statically compiled and dynamically linked routines because of the lack of support

for dynamically preloading weak symbols that are statically linked with the application.

The design of the preloader is shown in Figure 3.8. It consists of the compile time generator

tool, sjmake, which generates code for intercepting functions that can then be used to generate
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Figure 3.8: The design of the preloader

libraries for the program to use. This tool generates code based on a user-provided specification

file enumerating the API calls to be instrumented.

3.4.1 Specification file

A sample specification file for the preloader is shown in Figure 3.9. The specification file has two

distinct sections, the sj-include and the sj-definitions. Code added to the sj-include section is

duplicated in the generated file. This can be utilized by the user to include header files or define

data types that are part of the functions to be intercepted. On the other hand, the sj-definitions

section consists of a list of function prototypes that are to be intercepted. The specification file

does not need to identify a function as statically linked or dynamically linked as the preloader

automatically ascertains this from the compiled binary.

As shown in Figure 3.9, by specifying definitions of an MPI function, users can instrument

a subset of MPI routines in conjunction with the custom tracing level of ScalaJack, thereby

tracing only the MPI events that are appropriate to the problem at hand.
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# a sample specification file for sjmake

sj-include:

#include <mpi.h>

#include <stdlib.h>

sj-definitions:

int myfoo();

int mybar(int x, ...);

int MPI_Send(void *buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm);

..

Figure 3.9: A sample specifiction for the preloader

3.4.2 Statically linked routines

The preloader, by default identifies all the routines defined in the specification file as statically

linked ones. Statically linked routines are intercepted by defining the function as a weak symbol

in the application and then generating a non-weak version as part of the static library. When the

generated library is linked with the application, the weak symbol gets resolved to the overloaded

function. To ascertain the original address of the weak symbol which needs to be invoked, the

preloader requires the nm, ldd tools along with the original version of the binary. Since the

preloader assumes that functions are by default statically linked, it tries to lookup the symbol

address from the executable using the nm utility. Symbols that are undefined are assumed to

be dynamically linked and are handled differently. As part of the code generation, the preloader

invokes the original definition of the function by invoking the address looked up by nm. These

addresses are statically encoded in the generated code during compile time and thus pose no

overhead at run-time.

The generated code for static functions resembles Figure 3.10. As part of the static gen-

eration process, two files, SJdef.c and SJdef.h are generated. While the former contains the

generated code for performing interception, the latter contains definitions of the functions as

weak symbols for inclusion in the application. The library SJdef.o generated from the SJdef.c

file is then used to generate the recompiled application.

3.4.3 Dynamically linked routines

Those definitions that are undefined in the binary are considered as dynamically linked and are

handled differently. The preloader utilizes the run-time dynamic linker’s capabilites through

libdl.so. The search is performed over all libraries that are dynamically linked with the applica-

20



int myfoo()

{

int ret;

SJ_custom_event_pre(1300); // 1300 is the event code

// nm_table has addresses of the original routines

ret = (int()(*)())(nm_table[0])();

SJ_custom_event_post(1300); // 1300 is the event code

return ret;

}

Figure 3.10: Generated code for statically compiled routines

tion which are looked up by invoking the ldd utility. This dynamically looked up value is cached

as part of the function routine so that subsequent calls to the functions utilize the cached value

instead of looking up the symbol again.

The generated code for dynamically linked routines is shown in Figure 3.11. For dynamic

routines, the preloader generates the SJdef dynamic.c file which can be compiled to the library,

libSJdef.so. This library is dynamically preloaded using the LD PRELOAD functionality of the

linker. As a result, calls made to preloaded functions are intercepted at the generated library

which internally calls the original definition.

In addition to these, the preloader also generates bookkeeping routines for registration

of custom events with ScalaJack. This registration routine is defined as a weak symbol and

ScalaJack automatically invokes this registration function as part of the epilogue of MPI Init.
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int myfoo()

{

int ret;

static void *fn = NULL;

SJ_custom_event_pre(1300); // 1300 is the event code

if (fn) {

ret = (int()(*)())(fn)();

} else {

for (item: ldd_table && !fn) {

fn = lookup_dlsym(item);

}

ret = (int()(*)())(fn)();

}

SJ_custom_event_post(1300); // 1300 is the event code

return ret;

}

Figure 3.11: Generated code for dynamically linked routines
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Chapter 4

Evaluation

This chapter evaluates the viability of ScalaJack in traditional HPC applications. We assess

the scalability of ScalaJack via the traces generated by utilizing ScalaJack’s custom event

framework. In addition, the overhead incurred in using ScalaJack over a naive implementation is

studied. We evaluate ScalaJack by refactoring several case studies of typical HPC applications to

utilize ScalaJack’s aspect-oriented callback framework. Tasks that are tangential to the program

are refactored as part of these callbacks. As a result, cross-cutting concerns are removed from

the main component of the program, thus improving readability and maintainability.

4.1 Evaluation Setup

All experiments were conducted on our ARC cluster with each node boasting two AMD Opteron

6128 processors with 8 cores each (16 per node) and InfiniBand interconnects between them.

The number of nodes chosen for experimentation was a maximum of 16, with each node handling

up to a maximum of 16 tasks. Experiments involving execution times and trace file sizes were

averaged over a maximum of 10 runs.

4.1.1 Aspect-oriented metrics

Since ScalaJack helps remove cross-cutting concerns in the code, the amount of code related

to a concern that is scattered is reduced. To quantify the improvement of using ScalaJack over

a naive implementation, with respect to the code footprint, we utilize the degree of scattering

(DOS) and degree of focus (DOF) metrics from [8]. Concentration (CONC) measures how many

of the source lines related to a concern s are contained within a component t (e.g., file, class,

method intending to a specific task), i.e.,
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CONC(s, t) =
SLOCt,s

SLOCs

where SLOCt,s is the number of source lines of code (SLOC) in component t related to

concern s, and SLOCs is the SlOC in all of concern s. It should be noted that SLOC ex-

cludes comments, blank lines and annotations for concern assignment. However, the drawback

of CONC is that it does not reflect the amount of scattering of a concern’s code and does not

allow for different concerns to be compared. This is covered by the degree of scattering (DOS)

metric defined by

DOS(s) = 1−
|T |
∑T

t

(
CONC(s, t)− 1

|T |

)2
|T | − 1

where T is the set of components and |T | > 1. DOS is a normalized factor between 0

(completely localized) and 1 (completely delocalized). Thus, a reduction in DOS is an indication

of less scattering of code across components.

Degree of Focus (DOF) is a dual to the DOS metric and captures how focused a component

is. Dedication (DEDI) is defined as

DEDI(t, s) =
SLOCt,s

SLOCt

where SLOCt,s is the number of source lines of code (SLOC) in component t related to

concern s, and SLOCt is the SLOC in all of component t. Again, a better metric would be the

normalized degree of focus (DOF)

DOF (s) =
|S|
∑S

s

(
DEDI(t, s)− 1

|S|

)2
|S| − 1

where S is the set of concerns and |S| > 1. DOF is also a normalized factor between 0

(completely unfocused) and 1 (completely focused). Thus, an increase in DOF is desired as it

is indicative of reduction in scattering and increase in focus.

4.2 Performance analysis

One of the most frequently identified aspects in any program is performance analysis. Develop-

ers typically want to identify the performance characteristics of specific regions of their code.

In most HPC applications, distinct regions of computation and communication can be identi-

fied, and it is often desired to collect performance metrics related to the phases. We evaluate

ScalaJack’s viability with the IS benchmark of the NAS Parallel Benchmark suite. IS sorts
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MPI_Init();

PAPI_library_init();

initialization();

PAPI_start();

create_random_seq();

add_to_trace(PAPI_read());

..

MPI_Reduce();

add_to_trace(MPI_REDUCE);

..

PAPI_shutdown();

MPI_Finalize();

Figure 4.1: Outline of the IS benchmark

integers through a parallel implementation of bucket sort. As part of the benchmark, each task

generates a random number sequence from a seed based on the rank.

We illustrate ScalaJack’s capabilities to support performance analysis aspects by choosing

PAPI [15] to instrument the L1 data cache misses during the random sequence generation in

addition to performing trace analysis on every MPI event in the program. We compare an im-

plementation of the IS benchmark that uses ScalaJack with a naive implementation with tracing

concerns around all MPI functions and performance analysis concerns around the random se-

quence generation step. We utilize the tracing level of ScalaJack where all MPI events are traced

with custom events where both intra-node and inter-node compression is performed. Figure 4.1

shows the outline of the naive implementation of the IS benchmark. The code initializes the

PAPI library, followed by an instrumentation of the random sequence generation routine of IS

with PAPI APIs. The return value of this instrumentation routine is then added to the trace.

To indicate the changes to perform tracing, a sample MPI routine, MPI Reduce is shown with

an API call following it, to add data to the trace. The ScalaJack version shown in Figure 4.2 dif-

fers from the naive implementation by utilizing PMPI wrappers to trace events (and compress

them) while the PAPI APIs are invoked as part of the callback StatPAPI registered. These

callbacks are invoked as part of the prologue and epilogue of the custom event associated with

random number generation. This allows for separation of concerns and reusability of the PAPI

statistics collection Stat framework.

Figure 4.3 compares the trace files generated with ScalaJack and that of the naive imple-
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MPI_Init();

initialization();

SJ_register_event(&ec);

SJ_register_user_jack(StatPAPI);

SJ_ce_pre(rand);

create_random_seq();

SJ_ce_post(rand);

..

MPI_Reduce();

..

MPI_Finalize();

StatPAPI: rand

start:

PAPI_start();

end:

return PAPI_read();

Figure 4.2: Outline of the IS benchmark with ScalaJack

mentation. The trace file sizes shown are relative to the ones generated with n = 4 tasks. As can

be seen from the graph, traces generated with ScalaJack are highly scalable with an increasing

number of processors compared to the traces generated by the naive implementation. This is

owing to the fact that ScalaJack employs intra-node (to compress loops) and inter-node com-

pression to generate a single trace file, while the naive implementation performs no compression

and generates traces for each of the tasks. We compare relative trace file sizes because, on an

absolute scale, trace files generated with ScalaJack are larger by a factor of a few hundred bytes

for lower values of n due to timestamp data that is also added to the trace. ScalaJack inter-

nally times every communication and computation phase of the program and stores them as

histograms. This is utilized later by the replay engine and other tools like benchmark generators

to create instances of the original program. [17][24].

To highlight the overhead incurred in using ScalaJack, we compare the running times of the

two implementations of the IS benchmark. As shown in Figure 4.4, ScalaJack introduces very

little overhead to the naive implementation’s execution. To put it in a different perspective,

Figure 4.5 shows the percentage overhead times of ScalaJack over the naive implementation.

As it can be seen, ScalaJack introduces a performance overhead of about 0.07% for n = 4. There

is substantial variability in the overhead of ScalaJack over the naive implementation since each
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Figure 4.3: Trace file sizes with IS

task of the naive implementation performs IO to the parallel file system at MPI Finalize to

write n traces files for n nodes back to disk, each of which may be rather large (in the order of

GBs depending on the number loop iterations). However, with ScalaJack, only rank 0 performs

IO to the file system after aggregating the traces from all its peers, i.e., a single file of rather

moderate size (in the MBs) suffices.

Table 4.1 shows the improvement of using ScalaJack for separation of concerns over the

naive implementation. For IS, the identifiable components are main and PAPI, where the main

component implements the benchmark while the PAPI component implements the performance

metrics collection routines. The concerns here are identified as perf and sort, where perf is the

actual performance metrics collection API invoked at the pointcuts and sort is the rest of the

main component that performs the sorting. The goal is to reduce the tangling of code between

the two concerns and ScalaJack achieves this. This is reflected by the lower DOS score and a

correspondingly higher DOF score for ScalaJack compared to the naive implementation.

4.3 Visualization and Load balancing

We evaluate the effectiveness of the ScalaJack framework on CLAMR [13] an adaptive mesh

refinement solver developed at Los Alamos National Laboratory. CLAMR implements a cell-

based shallow water code on MPI by computing the finite difference on AMR. As with AMR

codes, CLAMR periodically refines the mesh and also performs load balancing across the nodes
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Figure 4.4: Execution times with IS

Figure 4.5: Percentage overhead with ScalaJack for IS

to redistribute the meshes. In addition, CLAMR performs OpenGL or MPE-based visualization

to display the current state of the mesh.
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Table 4.1: Aspect metrics for IS

naive ScalaJack

PAPI main PAPI main

CONC(perf, t) 1 0.4777 1 0.0444

DOS(perf) 0.4992 0.0850

perf sort perf sort

DEDI(main, s) 0.0588 0.9411 0.0057 0.9942

DOF(main) 0.7782 0.9770

MPI_Init();

initial_setup();

visualize();

for (loop) {

for (burst_loop) {

calc_fd();

refine_mesh();

load_balance();

}

visualize();

}

stats_print();

MPI_Finalize();

Figure 4.6: Outline of CLAMR

Application codes like CLAMR have numerous conflicting concerns that can be effectively

addressed using ScalaJack. A rough outline of the naive implementation of CLAMR is shown in

Figure 4.6. As can be seen, tasks like visualization, mesh refinement, load balancing and printing

of statistics are not part of the main concern at hand, i.e., computing the finite difference. An

implementation of CLAMR with ScalaJack is shown in Figure 4.7. In this implementation,

the various concerns that are tangential to the main concern at hand are refactored into the

appropriate prologue/epilogue as shown. CLAMR was evaluated with the custom level of tracing

where no MPI events are traced other than MPI Init and MPI Finalize, but custom events are
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MPI_Init();

initial_setup();

ce_pre(loop);

for (loop) {

ce_pre(burst);

for (burst_loop) {

ce_pre(fd);

calc_fd();

ce_post(fd);

}

ce_post(burst);

}

ce_post(loop);

MPI_Finalize();

StatViz: loop, burst

before loop:

after burst:

visualize();

StatRef: fd

after:

refine_mesh();

load_balance();

StatPrint: loop

after:

stats_print();

Figure 4.7: Outline of CLAMR with ScalaJack

traced. Also, custom events are configured to be created without the stack signature so as to

reduce the trace footprint. Also, since no data is to be written as part of the callbacks, we

register user callbacks with the callback mode flag. Since the goal with CLAMR is not tracing

but rather refactoring tangential concerns into callbacks, we refrain from comparing trace sizes

between the naive and the ScalaJack implementations. Instead, to assess the scalability, we

compare the execution times of both the versions.

Figure 4.8 compares the overhead in using ScalaJack through the differences in execution
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Figure 4.8: Execution times with CLAMR

Figure 4.9: Percentage overhead with ScalaJack for CLAMR

time between the naive and the ScalaJack versions of CLAMR. As it can be seen from Figure 4.9,

ScalaJack introduces an overhead of a maximum of 0.03% overhead. This is lower than that of

IS because we utilize custom level tracing for CLAMR, which does not trace any MPI events.

Table 4.2 summarizes the improvements of using ScalaJack to eliminate concerns from
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Table 4.2: Aspect metrics for CLAMR

naive ScalaJack

aux main aux main

CONC(aux, t) 1 0.0739 1 0.0118

DOS(aux) 0.1369 0.0234

main fd main fd

DEDI(main, s) 0.2708 0.7293 0.0540 0.9459

DOF(main) 0.2102 0.7955

CLAMR. With CLAMR, the main component is the code that performs the finite difference,

while all cross-cutting concerns are grouped as an auxiliary concern. With ScalaJack, all cross-

cutting concerns are performed at the callbacks as part of custom events registered as shown in

Figure 4.7. With CLAMR, the majority of the cross-cutting concern code was that of visualiza-

tion because the rank 0 task aggregates all mesh values from the other tasks for visualization.

Since a major portion of the code is eliminated from the main component, we observe a better

DOF score (and, consequently a lower DOS score).

4.4 Data analysis in-situ with trace analysis

As the final case study, we analyze ScalaJack’s effectiveness with a MapReduce style appli-

cation that can take advantage of the reduction capabilities of ScalaJack. TF-IDF is a data

analysis metric used to assess the importance of a given term with respect to a document in

a dictionary[20]. The two metrics involved are term frequency tf(t,d), defined as the frequency

of occurrence of a term t in a given document and inverse document frequency idf(t,D) in a

set of documents D, defined as the inverse of the frequency of documents that contain a term

t within a given dictionary of term. The TF-IDF metric is then defined by

tfidf(t, d,D) = tf(t, d)× idf(t,D)

TF-IDF is a MapReduce style problem wherein a set of documents are initially mapped

across a number of tasks and each task computes the tf and idf metrics separately followed

by a reduction, which aggregates idf metrics. With such analysis problems, efficient reduction

strategies that are scalable are required because a naive implementation might lead to bottle-

necks and lower performance. Data analysis problems, such as TF-IDF, can exploit the internal

reduction logic of ScalaJack otherwise utilized by inter-node compression. This can be done by
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MPI_Init();

read_documents();

pre_processing();

compute_tf();

compute_idf_local();

construct_comm_tree();

receive_trace(lchild);

deserialize_idf_table();

receive_trace(rchild);

deserialize_idf_table();

reduce_idf();

serialize_idf_table();

send_trace(parent);

MPI_Finalize();

Figure 4.10: Outline of TF-IDF

defining a custom ValueSet instead of the Histogram, thus performing data analysis as part of

a defined user callback. This allows for increased reusability of code as developers do not have

to explicitly implement communication strategies themselves.

Figure 4.10 shows an implementation of TF-IDF that initially computes the tf and node-

local idf and then constructs a communication tree to perform a reduction. An implementation

with ScalaJack is shown in Figure 4.11 where the reduction is defined as a ValueSet of the

StatTFIDF object associated with the idf computation event. As part of the event’s epilogue,

the idf table is added to the Stat object. When inter-node compression is performed at the

prologue of MPI Finalize, the idf tables are compressed as well. With the ScalaJack version,

users do not have to be concerned with implementing a communication tree and use ScalaJack’s

internal reduction tree to perform scalable compression. In our tests, we compare the naive

implementation with the ScalaJack implementation with support for inter-node compression.

As with CLAMR, tracing is not the goal here. Hence, we assess the scalability through the

overhead of ScalaJack over the naive implementation.

Figure 4.12 shows the overhead of ScalaJack in comparison to the naive version. As can be

seen, ScalaJack introduces minimal overhead of about 0.16% as reflected in Figure 4.13, thus
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MPI_Init();

..

compute_tf();

SJ_ce_pre(idf);

compute_idf_local();

SJ_ce_post(idf);

MPI_Finalize();

StatTFIDF: idf

after:

jadd(idf_table);

ValIDF: StatTFIDF

jmerge:

reduce_idf();

pack:

serialize_idf_table();

unpack:

deserialize_idf_table();

Figure 4.11: Outline of TF-IDF with ScalaJack

Figure 4.12: Execution times with TF-IDF
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Figure 4.13: Percentage overhead with ScalaJack for TF-IDF

Table 4.3: Aspect metrics for TF-IDF

naive ScalaJack

aux main aux main

CONC(comm, t) 1 0.3665 1 0.0683

DOS(comm) 0.4643 0.1273

main aux main aux

DEDI(main, s) 0.4155 0.5945 0.1134 0.8666

DOF(main) 0.0286 0.5978

proving to be light weight.

Table 4.3 shows the aspect-related metrics for the TF-IDF case study. With ScalaJack,

concerns relating to the communication tree for final idf aggregation are eliminated and are

made through an extension of the ValueSet class. This reduces the tangling of code, thus leading

to better DOF and lower DOS scores.
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Chapter 5

Related Work

Our implementation of customizable instrumentation with in-situ data analysis through Scala-

Jack is closely related to tools that support tracing or profiling of MPI programs as in [19][16].

Paraver [19] is a tracing and visualization tool that supports tracing of both shared memory

and message passing programs. For MPI programs, Paraver includes a tracing library for inter-

cepting MPI calls and saving them as individual trace file sizes during execution. These trace

file sizes are then merged offline and then visualized. With Paraver, users cannot arbitrarily

tag sections of the code to be instrumented thus preventing the users from identifying subtle

performance anomalies. Also, ScalaJack performs compression of trace files on the fly and thus

is efficient in comparison to Paraver.

VAMPIR [16] is another MPI tracing tool with support for visualization, that stores traces

as flat files which are compressed later through zlib compression. Even though such tools gener-

ate scalable trace files, they do not take advantage of the underlying structure of the trace file.

Thus, such trace files cannot be efficiently used for replay [23] or code generation [24]. Recent

versions of VAMPIR provide support for marking regions in the trace with specific marker

events for identifying potential hotspots in the trace files [4]. These markups can then be used

by automated performance analysis tools like Scalasca [9] and periscope [18]. With ScalaJack,

this can easily be achieved by writing instrumentation data with additional markups directly

to the trace file. VAMPIR also supports tracing of arbitrary user events through automatic

instrumentation via compiler abstractions or manual instrumentation of code. While VAMPIR

relies on binary instrumentation through Dyninst to achieve automatic instrumentation, Scala-

Jack provides automatic instrumentation support through a built-in preloader in addition to

supporting manual instrumentation. In contrast to VAMPIR, ScalaJack excels in providing a

robust callback support using which users can offload cross-cutting concerns and reuse them

efficiently in other programs. In addition, programs can leverage ScalaJack’s compression tree

framework to perform reduction of their own data structures efficiently without having to define
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their own communication APIs.

Our work is also related to light-weight profiling tools like mpiP [22], gprof [10], HPCToolkit

[1]. While these tools provide a simple and high-level information to provide a high-level un-

derstanding of performance problems, ScalaJack provides facilities to the user to do profiling of

arbitrary interfaces in their programs in addition to supporting light-weight tracing. Since the

instrumentation data is stored along with the trace files, users can correlate events to the data

thus helping to diagnose subtle anomalies.
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Chapter 6

Future Work

ScalaJack aims to reduce trace file sizes and improve scalability by providing customized in-

strumentation capabilities with support for in-situ data analysis. To facilitate automatic instru-

mentation of custom events, ScalaJack also has a built-in preloader that users can utilize to

instrument their programs. ScalaJack may still be enhanced in a number of ways.

1. For MPI events, ScalaTrace internally keeps track of all the parameters. These parameters

are stored as part of the trace and, hence, can be used to perform instrumentation based

on predicates depending on parameters. Such support for parameters is not currently

provisioned for custom events. With parameter tracking, users could instrument functions

for certain invocations and, thus, can enhance scalability of trace file sizes.

2. The preloader currently has the ability to override only weak symbols. For non-weak

symbols, users have to rely on manual instrumentation capabilities. This could, however,

be improved by utilizing some form of binary instrumentation capabilities in the preloader

so as to intercept any function. The downside of this approach will be increased overhead

due to dynamic binary instrumentation.

3. The preloader does not currently provide users the ability to directly insert something as

part of a prologue or an epilogue for a function, but relies on Stat objects registered with

ScalaJack. With support for direct insertion, users could arbitrarily execute any function

without relying on the user callback framework.

4. ScalaTrace internally performs intra-node compression as part of every event that has been

recorded and inter-node compression as part of MPI Finalize. However, for long running

jobs, it is often desired to periodically perform out-of-band compression and trace-file

writing so as to minimize overhead. This could be achieved through the user callback
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framework where ScalaJack can internally provide callbacks for performing compression

and IO to disk at specific events.

5. As ScalaJack is envisioned to be used in hybrid programs where users can instrument

accelerator kernels as well, the prologues could be used to house debugging facilities for

routines that execute in the kernel. This can be realized by generating code in the prologue

of a kernel function to perform handshaking with a corresponding function in the CPU.

As part of this handshaking process, the kernel could transfer debugging data, which can

be stored as part of the trace. Conversely, the CPU can also feed specific data to the

kernel routine for debugging purposes. Since the code is autogenerated by the preloader,

the onus on the user is reduced to only tagging the debugging data that needs to be

moved back and forth. Such a framework can be of significant benefit in hybrid codes for

accelerators in environments with limited built-in debugging capabilities.
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Chapter 7

Conclusion

With the race to exascale, systems are beginning to be comprised of millions of components.

Diagnosis of application performance at such high scale is burdensome because tools suffer from

scalability issues. Tools cannot afford to instrument interfaces exhaustively and then generate

trace files that are not scalable. Such tool scalability issues can be effectively addressed by

providing support for customizable instrumentation that the user can leverage and for in-

situ reduction of diagnostic data, thus resulting in scalable trace file sizes. In addition, such a

framework will help realise the Aspect-oriented paradigm of software engineering thus improving

code readability.

We have implemented ScalaJack, a framework for customizable instrumentation with in-situ

data analysis. ScalaJack provides APIs for users to tag sections of the code that need to be

instrumented. This allows users to perform instrumentation at interfaces that are pertinent to

the problem at hand, instead of having to instrument exhaustively, thereby often compromis-

ing scalability. ScalaJack employs novel intra-node and inter-node compression algorithms to

preserve the execution structure of a program in a lossless fashion in addition to maintaining

scalability. ScalaJack also provides support for automatic instrumentation of code through a

preloader which generates code for interception of routines based on a specification file.

To facilitate in-situ analysis, ScalaJack provides the ability for users to perform reduction of

data by registering callbacks with the framework. In addition to providing support natively to

compress numeric data into histograms, ScalaJack provides APIs for users to define their own

data elements depending on the application. Since the callbacks are synonymous to aspects,

users can leverage them to write better code thus enhancing readability and maintainability.

An evaluation of ScalaJack with several case studies has shown that it is very light-weight,

posing an overhead of under 0.2% and capable of producing lossless and near-constant trace

sizes, while resulting in efficient, maintainable source codes with about 75% reduction in the

degree of scattering (DOS). Users can choose between the different levels of tracing provided by
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ScalaJack to instrument interfaces that are pertinent to the problem at hand and thus generate

trace files that orders of magnitude lower in size.
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