
Analyzing and Modeling Encryption Overhead
for Sensor Network Nodes

Prasanth Ganesan, Ramnath Venugopalan, Pushkin Peddabachagari,
Alexander Dean, Frank Mueller, Mihail Sichitiu

Center for Embedded Systems Research
Departments of Electrical and Computer Engineering / Computer Science

North Carolina State University, Raleigh, NC 27695
phone: (919) 515-7889, fax: -7925

{pganesa, rvenugo, ppeddab, agdean, mlsichit, mueller}@ncsu.edu

ABSTRACT
Recent research in sensor networks has raised security issues for
small embedded devices. Security concerns are motivated by the
deployment of a large number of sensory devices in the field.
Limitations in processing power, battery life, communication
bandwidth and memory constrain the applicability of existing
cryptography standards for small embedded devices. A mismatch
between wide arithmetic for security (32 bit word operations) and
embedded data bus widths (often only 8 or 16 bits) combined with
lack of certain operations (e.g., multiply) in the ISA present other
challenges.

This paper offers two contributions. First, a survey investigating
the computational requirements for a number of popular
cryptographic algorithms and embedded architectures is presented.
The objective of this work is to cover a wide class of commonly
used encryption algorithms and to determine the impact of
embedded architectures on their performance. This will help
designers predict a system’s performance for cryptographic tasks.
Second, methods to derive the computational overhead of
embedded architectures in general for encryption algorithms are
developed. This allows one to project computational limitations
and determine the threshold of feasible encryption schemes under
a set of the constraints for an embedded architecture.

Experimental measurements indicate uniform cryptographic cost
for each encryption class and each architecture class and
negligible impact of caches. RC4 is shown to outperform RC5 for
the Motes Atmega platform contrary to the choice of RC5 for the
Motes project, a choice driven in large by memory constraints.
The analytical model allows to assess the impact of arbitrary
embedded architectures as a multi-variant function for each
encryption scheme. Overall, our results are not only valuable to
assess the feasibility of encryption schemes for existing embedded
architectures, they also extend to assess the feasibility of
encryption methods for new algorithms and architectures for
sensor systems.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks] Network
Architecture and Design - Wireless communication

C.3 Special-Purpose and Application-Based Systems - Real-time
and embedded systems

C.4 Performance of Systems - Modeling techniques

D.2.8 [Software Engineering] Metrics – Performance measures

E.3 Data Encryption

General Terms
Security, Performance, Measurement

Keywords
Sensor networks, encryption overhead, analysis, model, embedded
systems.

1. INTRODUCTION
Security is a well-established field for general-purpose computing.
Security mechanisms address computing services, such as
authentication for user admission, intrusion detection and
prevention as well as counter-measures for other forms of attacks
(e.g., denial of service) and data protection in storage, in e-mails
or to provide secure transactions. This paper focuses on the last
aspect, namely, data protection mechanisms provided by
encryption techniques. The objective of this paper is to study the
impact of a variety of encryption techniques for embedded
architectures instead of general-purpose processors.

Embedded systems have a long history in the context of
transaction processing, for example, cash transactions at teller
machines. However, security measures have typically focused on
physical access restrictions as well as software measures to disable
a device if attempts to tamper with it are suspected. Recent
developments have changed this focus. On the one side,
embedded architectures provide a wider range of processing
power, which allows more sophisticated security responses, in
particular for high-end embedded systems. On the other side, new
application areas in embedded systems require secure
communication. For example, recent work in sensor networks
includes data encryption considerations [12]. Sensor networks
allow the collection of data from low-end sensor nodes in the
field. This data is communicated over non-secure channels, such

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WSNA’03, September 19, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-764-8/03/0009…$5.00.

as radio frequencies, through routers (in the latest design) and,
ultimately, to a base station for further processing and decision
making. Applications range from battlefield surveillance over data
collection to study environmental impacts to medical observation.
Beyond sensor networks, embedded processors are increasingly
deployed with network connections, such as in PDAs with
wireless communication (802.11b), e.g., for the Ipaq Pocket PCs
used in this study [23]. The objective of data encryption in such
settings is to ensure that data can only be interpreted by
authorized recipients.

In this paper, we assess the feasibility of different encryption
schemes for a range of embedded architectures. We determine
architectural impacts on the performance of encryption as well as
algorithmic properties of the selected encryption schemes. The
particular embedded platforms were chosen to cover a wide range
of embedded devices. Measurements were obtained for six
different architectures, ranging in word size from 8 (Atmel AVR)
over 16 (Mitsubishi M16C) to 32-bit width (StrongARM, XScale)
to cover low-end, medium and high-end embedded processors,
respectively. As a baseline for comparison, one general-purpose
architecture (SPARC) was also included as a reference point.
Future encryption schemes need only be evaluated on reference
architectures to derive the overhead for other architectures. Other
reference architectures are those with differing ISA support for
encryption, as detailed in the evaluation. The analysis takes into
account features of architectures, such as processor frequency,
ISA characteristics, such as RISC vs. CISC, support for variable-
sized bit shifts or native multiply, and the impact of memory
hierarchies for architectures with caches.

Five popular encryption schemes were chosen for the study
ranging from stream ciphers (RC4) over block ciphers (RC5,
IDEA) to hashing techniques (SHA-1, MD5). This choice was
driven by the objective to assess encryption schemes with
different overheads that provide increasing levels of protection.
Most significantly, the algorithmic choice is motivated by the
constraints of embedded architectures. Public key encryption
schemes do not appear to be feasible on current low-end
embedded systems, not only because of code/data size and
processing constraints but also due to their high demand on power
consumption, which would severely limit the lifetime of mobile
devices such as nodes in a sensor network.

We obtained measurements to assess the overhead of encryption
for the aforementioned algorithms and platforms. We studied the
impact of the length of the data to encrypt as well as a variety of
processor-dependent parameters, as mentioned above. Results
indicate a mostly uniform cycle overhead for each word size
(8/16/32 bit) but differences between the three word-size classes.
The impact on caches was negligible while ISA support is limited
to specific effects on certain algorithms. Specifically, we were
surprised to find that RC4 outperforms RC5 on encryption for the
8 and 16-bit architectures. This is particularly interesting since
RC5 was chosen for the Atmega in the Berkeley Motes SPINS
project [12]. Although the choice of RC5 for SPINS was due to
memory constraints – the block cipher could also be used as a
hash function – other 8-bit architectures may fare better with RC4,
as our results show. We also found that hashing techniques
require almost an order of a magnitude higher overhead. Based on
our results, we formulate an analytical model to assess the impact
of arbitrary embedded architectures as a multi-variant function for

each encryption scheme depending on processor frequency, word
width, ISA type and specific ISA support.

The paper is structured as follows. First, we contrast the different
encryption schemes and embedded platforms. Following this
survey, we present and interpret measurements from a variety of
experiments. From these results, we derive an analytical model.
Our discussion of related as well as future work and a summary of
our contributions conclude the paper.

2. ALGORITHMS
Our choice of algorithms represents popular symmetric encryption
and hashing function schemes that form an integral part of many
security protocols. RC4 [2] is used in IEEE 802.11 WEP [13],
IDEA [2] and MD5 [2],[3] are part of PGP [11], SHA-1 [4] and
MD5 [2][3] are included in the security architecture for Internet
Protocol (IPSEC) [14],[10], and RC5 [1] has been suggested as a
good algorithm for sensor networks [12]. These algorithms offer
variety in the mode in which they operate and encompass different
mathematical and data manipulation operations. They work on
different word sizes ranging from 8 bits to 32 bits, and, hence,
help assess the effectiveness of the different architectures. Table 1
presents the parameters used in our study.

Table 1: Encryption Schemes and Parameters

Algorithm Type |key/hash| |Block|

RC4 [2] stream 128 bits 8 bits

IDEA [2] block 128 bits 64 bits

RC5 [1] block 64 bits 64 bits

MD5 [2][3] 1-way hash 128 bits 512 bits

SHA1 [4] 1-way hash 128 bits 512 bits

RC4 is a stream cipher symmetric key algorithm. This algorithm is
quite simple and operations involve the addition of 8 bit elements
or swapping variables in a 256-byte state table. RC4 supports
variable length keys. We consider a 128-bit key here.

IDEA (International Data Encryption Algorithm) is a symmetric-
key block cipher that operates on 64 bit plaintext blocks. The key
is 128 bits long with the same algorithm used for both encryption
and decryption. The algorithm primarily includes operations from
three algebraic groups: XOR, addition modulo 216, multiplication
modulo 216+1.

RC5 is a fast symmetric block cipher with a variety of parameters:
block size, key size and number of rounds. We currently focus on
a RC5 implementation with a 64-bit data block and 64-bit key. It
uses the XOR, addition and rotation operations.

MD5 is a one-way hash function that processes the input text in
512 bit blocks to generate a 128-bit hash value. The mathematical
operations that are involved in this algorithm are: XOR, AND,
OR, NOT and rotations. The algorithm also pads plaintext to 512
blocks with the last 64 bits of the last block indicating the length
of the message.

SHA-1 is also a one-way hash function that produces a 160-bit
output when any message of any length less than 264 bits is input.

The operations are similar to MD5 and constitute XOR, AND, OR,
NOT and rotations.

3. HARDWARE PLATFORMS
We evaluate the performance of the cryptographic functions on
five different embedded processors, which were selected to span a
broad range of applications from low-end (4 MHz 8-bit Atmel
AVR Atmega 103) to high-end (400 MHz 32-bit Intel XScale).
For comparison we also evaluate the performance of a workstation
(with a 440 MHz 64-bit SPARC CPU, operated in 32-bit mode),
as depicted in Table 2.

Table 2: Hardware Platforms

Platform Wordsize clockfreq. I/D-$

Atmega 103 8 bits 4 MHz none

Atmega 128 8 bits 16 MHz none

M16C/10 16 bits 16 MHz none

SA-1110 32 bits 206 MHz 16/8KB

PXA250 32 bits 400 MHz 32/32KB

UltraSparc2 64/32 bits 440 MHz 16/16KB

3.1 Atmega 103/Atmega 128
The Atmega 103 implements the AVR architecture, a RISC
architecture featuring 8 bit native word size, 32 general-purpose
registers, and limited support for 16 bit operations. The processor
features a two-stage pipeline. This processor lacks multiply and
divide instructions. Data memory is byte-accessible and byte-
aligned. The Atmega 103 is in the middle of the performance
spectrum of the AVR device family. We use an Atmel STK300
evaluation board with a 4 MHz clock. On-chip memory consists
of 4 kilobytes of SRAM and 128 kilobytes of Flash EEPROM. In
addition, 32 kilobytes of external SRAM are used (with a one
cycle performance penalty). No cache exists, and no coprocessor
is available. The C compiler used is GCC 3.0. No operating
system is used.

Running at 16MHz, the Atmega 128 is pin-compatible with the
Atmega 103 (which runs only at 4 MHz). With its improved clock
rate, the Atmega 128 is at the high end of the AVR family’s
performance spectrum. The performance is identical on a cycle-
by-cycle basis, with the exception of the addition of a two-cycle
multiply instruction. Some algorithms use multiplication; these
were recompiled for the Atmega 128 and run to derive new
execution times. Algorithms that do not use multiplication have
identical code whether for the Atmega 103 and 128, and they
result in identical cycle counts.

3.2 M16C/10
The Mitsubishi M30102 implements the company’s M16C ISA, a
CISC architecture featuring a 16 bit native word size, four general
purpose registers and six address and pointer registers. This is a
widely used architecture in the automotive industry and has been
available for over ten years. The CPU is not pipelined; the
manufacturer states 75% of instructions take five or fewer cycles
to execute. The 16 MHz M30102 is in the middle of the

performance spectrum of the M16C device family; other devices
are available with clock rates of 24 MHz. There is no coprocessor
available. We use a Mitsubishi MSV30102-SKP evaluation board
with a 16 MHz M30102 and no external memory. No operating
system is used.

This MCU offers 1 KB of SRAM and 24 KB of Flash EEPROM
on-board. No cache exists, and the memory is word-aligned (with
a one-cycle penalty for misaligned accesses). The C compiler used
is Mitsubishi's nc30 version 3.00.01, and -03 optimization is
selected.

3.3 StrongARM SA-1110
The SA-1110 is a 32-bit Intel StrongARM RISC processor
capable of running at up to 206 MHz that implements the ARM
v4 architecture. The SA-1110 MMUs provide separate 32-entry
translation look-aside buffers (TLBs) for the instruction and data
streams. The SA-1110 contains 16 Kbytes of instruction cache
and 8 KB of data cache. The memory bus interfaces to many
device types including DRAM, SDRAM and ROM. This
processor forms the core of the iPAQ Pocket PC, which was the
platform we used to perform the measurements. The Pocket PC
comes with 32 MB of RAM. The operating system used was
Familiar Linux with code compiled using the GNU gcc compiler.

3.4 XScale PXA250
The PXA250 is a low-power high-performance 32-bit Intel
XScale™ core-based CPU (200, 300 and 400 MHz). It is ARM
architecture v.5TE compliant and a successor to the StrongARM
processor. It is based on Intel’s superpipelined RISC technology.
The PXA250 has 32 KB of instruction and data caches. This
processor is used in iPAQ 39xx series of Pocket PC 2002 with a
RAM of 64 MB and 48 MB flash ROM. The iPAQ used in our
experiments is powered by Win CE. The eVC++ compiler
provided by Microsoft was used for generating code.

3.5 UltraSPARC II
The UltraSPARC II series of microprocessors are 64 bit RISC
based architectures. They implement the SPARC v9 architecture.
It is a superscalar, superpipelined micro-architecture. It has an on
chip instruction cache of 16 KB and on chip data cache of 16 KB.
The SPARC processor we used has a frequency of 440 MHz. The
processor has an external cache of 2 MB. The SPARC, unlike the
embedded architectures, is a generic processor. The Operating
System used was Sun Solaris with the code compiled in 32-bit
mode using GNU gcc.

4. EXPERIMENTS & ANALYSIS
In this section, we present the results of the execution times
measurements of the considered algorithms on the various
microcontroller architectures. We also develop an approximate
model for the execution times applicable to any microcontroller
architecture.

4.1 Experimental Methods
Experiments were conducted for each architecture and algorithm.
For each of the considered platforms, we compiled the same
implementation of the considered algorithms without any
modifications. Input lengths were varied for encryption based on

hashing with fixed-sized packets to assess the effect of
algorithmic padding up to packet length. The block and hash
algorithms operate on plaintext that meets specific byte
boundaries. In case the plaintext is not a multiple of the block size,
the plaintext is padded. The RC5 and IDEA implementations
work on block sizes of 64 bits. The MD5 and SHA-1 algorithms
work on 512 bit blocks. The plaintext that is input to all the
symmetric cryptography algorithms is 128 bits long. We work
with incrementing sizes of plaintext with the hash algorithms until
we approach the second 512-bit block boundary. For one
architecture, the XScale, the experiments were conducted for two
frequency settings, namely 200 MHz and 400 MHz, while
memory access times remained the same. This experiment was
conducted to assess the impact of caches on the algorithms, which
can be inferred since memory fetches on a miss take fewer cycles
for lower processor frequencies while memory latency remains
constant. Each functional block of the algorithm, such as
initialization, encryption and decryption, was executed 1000 times
with the same input, and results were averaged over these runs.
The timing information is obtained as system time on all platforms,
except for the low-end micro-controllers where built-in timers are
used.

4.2 Performance Assessment
Figure 1 depicts the execution time overhead for each of the
considered platforms and algorithms on a log scale. These
numbers are also depicted in Table 3. For the digest algorithms
(MD5 and SHA1), we used multiple plaintext sizes to emphasize
the non-linear behavior of those algorithms with the length of the
plaintext. The main reason for this nonlinear behavior is the

existence of a minimum plaintext size (64 bytes) for those
algorithms, so smaller messages are padded up to the minimum
plaintext size. As expected, the slowest microcontroller (Atmega
103 –4 MHz), which is also the simplest (from the point of view
of resources and capabilities), will take the longest time to
complete any of the analyzed cryptography algorithms.

A comparison of RC5 and RC4 on Atmega 103 reveals that the
encrypt times are close to each other. In fact, RC4 is slightly faster.
However, a similar comparison on StrongARM indicates RC5 is
three times faster than RC4. This can be attributed to the fact that
RC5 operates on 32-bit words while RC4 operates on 8-bit words.

Since the StrongARM utilizes a 32-bit word size, a 32-bit
operation occurs for every 8 bits needed by RC4, thereby reducing
the efficiency of the algorithm on higher end architectures. Since
RC4 requires accesses to the 256-byte state table for encryption of
each byte, the memory access delay can result in larger execution
times, but this penalty is almost absent in low-end processors like
the Atmega 103.

A comparison between RC5 and IDEA on the Atmega 103 reveals
that RC5 is 1.5 times faster than IDEA, although they both work
on 64-bit blocks. The workhorse of the IDEA algorithm is the
multiply instruction while for RC5 it is rotations. Although both
are costly operations on Atmega 103 (since there is a lack of
native multiply and variable-length bit shifts), the frequency of the
operations makes IDEA more costly.

Figure 1: Execution times [µµµµs] for algorithms, platforms and plaintext sizes [bytes]

Table 1: Execution times [µµµµs] for algorithms, platforms and plaintext sizes [bytes]

Algorithm Size Action Atmega103 Atmega128 M16C/10 StrongARM Xscale(400) Xscale(200) Sparc(440)

MD5 0 Digest 5863 1466 1083 46 26 53 23

 1-26 Digest 5890 1473 1075 46 26 53 23

 62-80 Digest 10888 2722 2011 74 45 90 39

SHA-1 1 Digest 15249 3812 2651 69 12 102 27

 3 Digest 15781 3945 5303 69 12.3 103 27

 56 Digest 14543 3636 7955 133 25.8 205 55

 64 Digest 31107 7777 10907 145 25.7 207 56

RC5 16 Init 9641 2410 2074 41 45 91 28

 Enc 1651 413 197 3 3 6 2

 Dec 1636 409 202 3 3 7 2

IDEA 16 Init enc 1523 381 727 26 15.54 47 11

 Init dec 9417 2354 1927 76 25.16 69 36

 Enc 2555 325 596 16 3.24 17 9

 Dec 2614 325 597 16 3.27 17 9

RC4 Init 1886 472 2455 155 66.8 216 96

 Enc 344 86 123 10 5 9 4

Figure 2: Clock cycles for algorithms, platforms and various plaintext sizes [bytes]

To isolate the influence of the existence of a multiply instruction
we compiled the IDEA algorithm for Atmega 128. Atmega 103
and Atmega 128 microcontrollers almost have identical
architectures. The main difference is that Atmega 128 has a native
two cycles multiply instruction. Confirming our expectations, the
Atmega 128 performs significantly better on IDEA (10220 clock

cycles for Atmega 103 vs. 5200 for Atmega 128), i.e., the
performance is comparable to the level of RC5.

To eliminate the influence of the clock frequency (which spans
two orders of magnitude from 4 MHz for Atmega 103 to 440
MHz for the SPARC), Figure 2 depicts the results in terms of

clock cycles instead of wall-clock time, as in Figure 1. Clock
cycles, depicted on a logarithmic scale, indicate the overhead in
terms of executed instructions for scalar architectures. The most
significant observation is that, depending on the word size of the
architecture, cycle overhead falls into three classes. Again,
consider the impact of the log-scale, which causes diverging
results to appear closer than they are. Class one, the 8-bit
architectures, requires additional loops for architectural
shortcomings, such as a missing variable-length bit-shift operation.
Instead, the Atmega has to resort to a sequence of single bit-shifts.
Class two, the 16-bit architectures, lie between the 8-bit and 32-
bit neighbors, as expected. Class three, the 32-bit architectures,
comprises a third range of cycle overheads fairly close to each
other (StrongARM, XScale and SPARC).

In some cases, the results for the Atmega 103 and the M16C/10
are surprisingly close, which can be attributed to multi-cycle
instructions on M16C/10, while the Atmega 128, a RISC with
multiply support, performs significantly better. This shows that a
RISC design can compensate for its limited instruction set and bus
width.

The SA1110 and the XScale exhibit similar performance, which
stems from their common RISC based ISA at identical bus widths.
Both these processors outperform 8-bit and 16-bit micro-
controllers roughly by a factor of two. Finally, the SPARC
processor, outperformed all other processors in most cases, both
in absolute time as well as in clock cycles. This performance of
the SPARC is due to a combination of its instruction parallelism
(super-scalar RISC design) and multi-level cache hierarchy.
Recall that SPARC executables were compiled for the 32-bit
SPARC binary format, which means that the SPARC should be
treated as a 32-bit architecture in these experiments since its 64-
bit design is not being exploited. Notice that the XScale
performed slightly better than the SPARC for SHA-1 and IDEA
encodes/decodes, which can be attributes to the XScale’s larger
L1 caches (without L2) and faster memory. Overall, the impact of
caches is small. This is realistic given that communicated data will

be cached prior/after communication for pre-/post-processing,
respectively. Hence, messages in excess of 80 bytes should not
result in significant changes.

Comparing the two message digest algorithms (MD5 and SHA1),
we show that prior results [8,9] extend to embedded architectures:
MD5 is significantly faster than SHA1. Similarly, the symmetric
key encryption of RC5 outperforms IDEA. The initialization
overheads are significant for all encryption algorithms (RC5,
IDEA and RC4), especially for small plaintexts (as previously
reported for general-purpose ISAs in [11]).

From these results, clear factors emerge in terms of the effect of
word size and architecture, memory access latency, costliness of
basic operations (such as multiply and rotations) on the overall
performance.

We also studied the variance of execution times, which is of
particular interest for real-time systems. Results indicate that
variances in execution times rarely occur for most encryption
algorithms since data processing proceeds without case
distinctions, and data accesses tend to be regular as well as pre-
cached at encryption time. Few exceptions exist, which are caused
by data dependencies, but even then alternate paths tend to be
balanced. In general, the algorithms do not contain significant
differences in execution due to conditionals, nor do they vary
depending on the input length since data padding up to packet
size is applied. Hence, our results are not only valuable to assess
the feasibility of encryption schemes for arbitrary embedded
architectures, they also impact the analysis of worst-case
execution times suitable for schedulability analysis in the context
of real-time systems.

4.3 Impact of Native Data Size
After normalizing the different clock frequencies in Figure 2, we
still observe a significant performance gap between different
classes of processors. More precisely, architectures with larger
word size perform better than architectures with smaller words.

Figure 3: Normalized overhead for algorithms, platforms and plaintext sizes [bytes]

This is expected because most cryptographic methods use
operations on large words. Naturally, implementing large bit
operations on architectures with large bus widths is more efficient
than implementations on those with a small bus. For a meaningful
comparison of different architectures, we consider the influence of
various bus sizes. Figure 3 shows the time measurements
normalized both as a function of the clock frequency and of the
bus width, and then compared with (divided by) the SPARC
processor performance. The lower a bar is, the more efficient its
ISA and the better it is able to use its native word width. Bars
below 1 are possible due to other ISA factors which improve
efficiency relative to the baseline architecture, such as single-
cycle multibit shifting and fast memory access.

The results in Figure 3 show that the performance overhead
normalized by the word width and relative to the reference
architecture (SPARC) is surprisingly close for most algorithms
and platforms. By normalizing by the word size, we introduce a
novel metric that provides a refreshing view from a different angle.
The surprisingly close results were somewhat unexpected given
the significant differences not accounted for in the normalization
operation (number of registers, availability of certain instructions
in the ISA, presence and size of cache memory, RISC/CISC
architecture etc.). Hence, we conclude that, on the average, these
variables do not influence the execution times significantly.

Figure 3 also depicts a few outliers. The M16C performs poorly
on our metric for SHA-1, which indicates architectural problems
with data sizes and operations of the algorithm. Furthermore, the
Atmega microcontrollers are leading the pack with the lowest
normalized performance overhead for some algorithms (MD5,
IDEA, RC4). This can be explained by the fact that only some
operations benefit from larger bus sizes while others, such as
branch operations, do not. In other words, the Atmega is a
remarkably efficient RISC architecture that fares well considering
its small bus width. Based on these results, a hypothetical Atmega
processor at high processor frequencies might outperform any of
the other architectures.

4.4 Code Memory Size

Figure 4: Code sizes for algorithms

Sensor nodes may be implemented with low-cost processors
which lack large amounts of program memory, making code size
important. Figure 4 shows the code sizes for the cryptographic
functions but excludes all scaffolding, library and other code.
MD5 requires significantly more code than other algorithms,
while RC4 is the most efficient. The AVR architecture requires
significantly more space than other ISAs for its code due to its
limited instruction set and eight-bit native data. Finally, the

StrongARM requires much more memory than the other 32 bit
architectures, which appears to be due to the development tools.

4.5 Performance Model
We observed that the word length and architectural features,
namely the complexity of the ISA (RISC vs. CISC) and support
for certain ALU operations (variable-sized shifts, multiply) are the
causes of variations. From these findings and the experimental
data, we can derive a multi-variant model that allows the
interpolation of performance for other architectures. The
objectives of such a model are threefold. First, the feasibility of
existing encryption schemes can be derived by just implementing
one scheme on an architecture. Second, encryption overhead can
be assessed based on architectural parameters to drive architecture
design for a specific encryption scheme and formulate minimum
requirements. Third, new encryption schemes only need to be
assessed on a subset of reference platforms while their
performance on other platforms can be derived from the model.

First, a simple model is introduced. The results of this model is
imprecise as there are many variables that influence the execution
times of any program (e.g., the presence of variable-sized bit shift
and multiplication instructions, presence and size of cache
memory, RISC vs. CISC design etc.). The objective of this model
is to aid a designer in computing a rough estimate of the execution
times for a given encryption algorithm and a particular
microprocessor. This rough estimate is especially useful for new
architectures. It will allows one to assess if a certain encryption
(or hashing) will meet given timing constraints for this particular
algorithm, on a projected architecture. Hence, the objective is
provide approximate (accurate to a factor of two) execution times
of the algorithms. We derived the following performance model:

where � � is the ceiling function, text_length is the size of the
plaintext in bytes, processor_frequency and bus_width are the
frequency and bus width of the microcontroller, respectively. The
parameters a and b depend on the algorithm being evaluated, and
block_size is the size of the blocks in the algorithm. Parameter a
includes all the initialization overheads while b captures the time
spent in operations repeated for each block.

For the algorithms considered, we derive the parameters a and b,
which minimize the least square relative error as given in Table 4.

Checking the model against the measured results, one can see that
most values are within 10%--20% of the measured value. For
some measurements and architectures the error is almost twice (or
half) of the measured value. This motivates the need to refine the
model, as discussed in the following.

The model in (1) is refined to account for other parameters that
affect the execution times. For example, some algorithms can take
advantage of the existence of a multiply instruction. In Figure 3, it
becomes evident that the architecture of the microprocessor (RISC
vs CISC) favors the short instructions of the RISC architecture.

Table 2: Parameters for performance model

Algorithm A B blksize(bits)

MD5 203656 86298 512

SHA1 77337 233082 512

RC5
init/encrypt

352114 40061 64

RC5
init/decrypt

352114 39981 64

IDEA encrypt 68289 79977 64

IDEA decrypt 385713 105430 64

RC4 69240 13743 8

Therefore, a more detailed model for the parameters a and b can
be derived as follows:

where aBASE and bBASE are the base parameters shown in Table 4,
aMUL and bMUL are adjustments of those parameters, which take
into account the presence of absence of a multiplication
instruction, and aRISC and bRISC take into account the type of the
microprocessor architecture (CISC/RISC). For algorithms not
using multiplication (e.g., MD5), the adjustments aMUL and
bMUL will be zero. For algorithms that can take advantage of a
multiplication operation (e.g., IDEA) the parameters aMUL and
bMUL can be computed by comparing the results for Atmega 103,
which does not have the multiplication instruction, and the other
microcontrollers. The adjustments aMUL and bMUL resulting
from this comparison for the IDEA encryption algorithm are:

Table 5: Parameters aMUL and bMUL for the the IDEA
encryption algorithm

 aMUL bMUL

w/ MUL instr. 17002 -1326

w/o MUL instr. -14438 -8729

Similarly, the influence of the CISC vs. RISC architectures can be
separated by considering the M16C/10 (CISC) and the other
microcontrollers, which all are RISC architectures.

For example, for the MD5 the parameters aRISC and bRISC are:

Table 6: Parameters aRISC and bRISC for the the IDEA
encryption algorithm

 aRISC bRISC
RISC -38579 38968
CISC 77175 -103593

Using the model presented, one can predict the performance of a
particular algorithm on a specific architecture even before the

architecture is implemented. In Figure 5, the measured times and
the predicted times are plotted as a function of the length of the
plaintext for MD5 for a few of the architectures considered in this
paper.

5. RELATED WORK
Prior work has shown that public key cryptographic algorithms
can be a viable solution for constrained high-end wireless devices
[6]. RSA key generation on smart cards [20] further shows that
the generation of up to 1024 bit prime numbers is costly both in
terms of time and energy for embedded systems (~20 sec on a
3.57 MHz Infineon SLE66CX160S). Even if keys were pre-
generated, communication of lengthy public keys as well as their
storage for each sensor node in range adds to these costs. Multiply
operations in cryptographic schemes as a potential source of
power consumption has been evaluated on low-end
microcontrollers [17]. A secure architecture for constrained
systems (like sensors) has been implemented in SPINS [12].

Other papers have analyzed the timing of encryption algorithms
on higher end machines such as the performance analysis of MD5
[21] where timing requirements on various high-end architectures
have been shown and in [16] where various symmetric key
ciphers’ performance have been measured in cycles and analyzed.
Change in various processing times with changes in MIPS
capability of a processor has been modeled [14]. Some symmetric
and asymmetric key algorithms have been evaluated on higher end
microprocessors on the basis of power consumption [7].
Cryptographic overhead for performance critical systems [22]
using a hash, secret key and public key examples for high-end and
one embedded architecture (16MHz Motorola 68K). Also, general
benchmarks for speed have been computed on a Celeron
processor [8]. Our work attempts to bridge the gaps by assessing
the performance of algorithms on different platforms and
evaluates the overhead of each algorithm on different
architectures. To our knowledge, there is currently no published
work that focuses on evaluation of different cryptographic
algorithms on embedded architectures, particularly for low-end
systems, such as 8-bit and 16-bit architectures.

6. FUTURE WORK
Our proposed model helps to extrapolate the performance of a
algorithm on different platforms. This could be enhanced to
consider individual operations in each algorithm and provide a
generic model where performance of any algorithm on any
platform can be extrapolated. Many ad-hoc network security
protocol schemes suggest the use of a variety of cryptographic
algorithms. The model could be scaled to estimate the
performance of these schemes. There are also some fast
encryption algorithm, such as SEAL 3.0 [17], TEA [18] or
TREYFER [19], that show very good performance in software
implementations. These could be evaluated. However, more
information on the strengths of these algorithms is necessary.

7. CONCLUSION
In this paper, we presented a survey investigating the
computational requirements for a number of cryptographic
algorithms and embedded architectures. The measurements
obtained cover a wide class of commonly used encryption
protocols and determine the impact of embedded architectures on
performance. Our experiments indicate a mostly uniform cycle
overhead for each word size (8/16/32 bit) but differences between

a = aBASE + aMUL + aRISC

b = bBASE + bMUL + bRISC

2

3

the three word-size classes. The impact on caches is negligible
while ISA support is limited to specific effects on certain
algorithms. Specifically, we were surprised to find that RC4
outperforms RC5 on encryption in low-end processors, compared
to the choice of RC5 for current sensor networks [12]. Hashing
techniques require almost an order of a magnitude higher
overhead.

We also derived a model to assess the computational overhead of
embedded architectures for encryption protocols in general. Our
analytical model assesses the impact of arbitrary embedded
architectures as a multi-variant function for each encryption
scheme depending on processor frequency, word width, ISA type
and specific ISA support. This allows one to project
computational limitations and determine the threshold of feasible
encryption schemes under a set of the constraints for an embedded
architecture.

Overall, our results are not only valuable to assess the feasibility
of encryption schemes for arbitrary embedded architectures, but
they also provide the basis for modeling encryption overheads
across platforms.

8. REFERENCES
[1] R. Rivest, "The RC5 encryption algorithm", in

Proceedings of the 1994 Leuven Workshop on Fast
Software Encryption, pages 86-96, Springer-Verlag,
1995, http://citeseer.nj.nec.com/rivest95rc.html

[2] B. Schneier, "Applied Cryptography", Second edition,
John Wiley & Sons, 1996.

[3] R. . Rivest, "The MD5 Message-Digest Algorithm", IETF
RFC 1321, April 1992.
ftp://ftp.rfc-editor.org/in-notes/rfc1321.txt

[4] D. Eastlake and P. Jones. "US Secure Hash Algorithm 1
(SHA1)",IETF RFC 3174, Sept. 2001. ftp://ftp.rfc-
editor.org/in-notes/rfc3174.txt

[5] Sun microsystems, "UltraSPARCTM II Microprocessor",
http://www.sun.com/processors/UltraSPARC-II/PBN-
0140.pdf

[6] M. Brown, D. Cheung, D. Hankerson, J. Hernandez, M.
Kirkup, A. Menezes, "PGP in Constrained Wireless
Devices", in Proceedings of the 9th USENIX Security
Symposium, Denver Colorado, pp. 247-261, Aug. 2000.

[7] D. Carman, P. Kruus, B. Matt, "Constraints and approaches
for distributed sensor network security", NAI Labs technical
report #00-010, Sept 2000,
http://download.nai.com/products/media/nai/zip/nailabs-
report-00-010-final.zip.

[8] W. Dai, "Crypto++ 4.0 Benchmarks",
http://www.eskimo.com/~weidai/benchmarks.html

[9] C. Madson, "The Use of HMAC-SHA-1-96 within ESP and
AH", IETF RFC 2404, Nov. 1998,
http://www.ietf.org/rfc/rfc2404.txt

[10] S. Kent and R. Atkinson, "Security Architecture for the
Internet Protocol", IETF RFC 2401, Nov. 1998,
ftp://ftp.rfc-editor.org/in-notes/rfc2401.txt

[11] The International PGP Home Page, http://www.pgpi.org

[12] A. Perrig, R. Szewczyk, J. Tygar, V. Wen, D. Culler,
"SPINS: Security Protocols for Sensor Networks", Proc. 7th
Ann. Intl. Conf. Mobile Computing and Networking
(MobiCom 2001), pp. 189-199, 2001.

[13] "LAN MAN Standards of the IEEE Computer Society.
Wireless LAN medium access control(MAC) and physical
layer(PHY) specification IEEE Standaard 802.11, 1997
Edition," 1997.

[14] O. S. Elkeelany, M. M. Matalgah, K. P. Sheikh, M. Thaker,
G. Chaudhry, D. Medhi, and J. Qaddour, "Performance
Analysis of IPSec Protocol: Encryption and Authentication",
IEEE Communications Conference (ICC 2002), pp. 1164-
1168, 2002.

[15] C. Schnorr, Efficient signature generation by smart cards,
Journal of Cryptology, vol. 4, pages 161-174, 1991.

[16] J. Burke, J. McDonald, T. Austin, "Architectural support for
fast symmetric-key cryptography", ASPLOS-IX, 2000, pp.
178-189

[17] P. Rogaway, D. Coppersmith "A Software-Optimized
Encryption Algorithm", Proceedings of the 1st International
Workshop on Fast Software Encryption, Springer LNCS,
Vol. 809, 1994, pp. 56-63.

[18] D. Wheeler, M. Needham, "TEA, a Tiny Encryption
Algorithm", Fast Software Encryption: Second International
Workshop", Springer LNCS, Vol. 1008, 1994, pp. 14-16.

[19] G. Yuval, "Reinventing the Travois: Encryption/MAC in 30
ROM Bytes" in Proc. 4th Workshop on Fast Software
Encryption, Springer LNCS, Vol. 1267, 1997, pp. 205-209.

[20] C. Lu, A. Santos, F. Pimenetel, "Implementation of fast RSA
key generation on smart cards", ACM Symposium on
Applied Computing, 2000.

[21] J. Touch, "Performance analysis of MD5", Proceedings of
the ACM SIGCOMM, Oct. 1995, pp. 77-86

[22] W. Freeman, E. Miller, "Experimental analysis of
cryptographic overhead in performance-critical systems", 7th
International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems,
1999, pp. 348-357.

[23] IPAQ devices from Compaq,
http://www.compaq.com/products/iPAQ/

