
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y., ACCEPTED NOVEMBER 2006 1

Source-Code Correlated Cache Coherence Characterization of OpenMP Benchmarks

Jaydeep Marathe and Frank Mueller, Senior Member, IEEE

Abstract— Cache coherence in shared memory multiproces-
sor systems has been studied mostly from an architecture
viewpoint, often by means of aggregating metrics. In many
cases, aggregate events provide insufficient information for pro-
grammers to understand and optimize the coherence behavior
of their applications. A better understanding would be given
by source-code correlations of not only aggregate events but
also finer-granularity metrics directly linked to high-level source
code constructs, such as source lines and data structures.

In this paper, we explore a novel application-centric approach
to studying coherence traffic. We develop a coherence analy-
sis framework based on incremental coherence simulation of
actual reference traces. We provide tool support to extract
these reference traces and synchronization information from
OpenMP threads at run-time using dynamic binary rewriting
of the application executable. These traces are fed to ccSIM,
our cache-coherence simulator. The novelty of ccSIM lies in
its ability to relate low-level cache coherence metrics (such as
coherence misses and their causative invalidations) to high-level
source code constructs including source code locations and data
structures. We explore the degree of freedom in interleaving
data traces from different processors and assess simulation
accuracy in comparison to metrics obtained from hardware
performance counters.

Our quantitative results show that: (a) Cache coherence
traffic can be simulated with a considerable degree of accuracy
for SPMD programs, as the invalidation traffic closely matches
corresponding hardware performance counters. (b) Detailed
high-level coherence statistics are very useful in detecting,
isolating and understanding coherence bottlenecks. We use
ccSIM with several well known benchmarks and find coherence
optimization opportunities leading to significant reductions in
coherence traffic and savings in wall clock execution time.

Index Terms— Cache memories, simulation, dynamic binary
rewriting, program instrumentation, SMPs, coherence protocols

I. INTRODUCTION

High-performance computing platforms are increasingly
deployed in configurations of multiprocessor shared-memory
nodes. Understanding the coherence behavior of multi-
threaded programs on such systems can lead to optimizations

Manuscript received May 9, 2006; revised October 25, 2002; accepted
November 6, 2006.

Author’s address: Dept. of Computer Science, North Carolina State
University, Raleigh, NC 27695-7534, mueller@cs.ncsu.edu, phone: (919)
515-7889.
A preliminary version of this paper appeared in the International Confer-
ence on Supercomputing, 2004. This work was supported in part by NSF
CAREER grant CCR-0237570 and through the U.S. Department of Energy
by the University of California, Lawrence Livermore National Laboratory
under subcontract # B540203. This research was supported in part by NSF
cooperative agreement SCI-9619020 through resources provided by the San
Diego Supercomputer Center.

with significant impact on the overall wall-clock execution
time of the program. Past work on understanding cache
coherence has concentrated on two distinct areas: architecture
simulation and program analysis for performance tuning.
Many architecture and system simulators have been reported,
supporting different coherence models (e.g., [1], [2], [3], [4],
[5], [6]), and they operate at varying levels of abstraction
ranging from cycle accuracy to discrete event based simula-
tion. In the performance tuning area, work has been focused
mostly on compiler analysis to derive optimized code (e.g.,
[7], [8]).

Hardware performance monitors of modern processors of-
fer new opportunities for low overhead measurement of co-
herence activities. Here, we explore a complementary scheme
where programmers use hardware counters to confirm that a
potential coherence bottleneck exists in the program, and then
use our framework to generate detailed source-code related
information to understand its cause.

In this paper, we focus on a discrete event-based cache co-
herence simulation without cycle accuracy or instruction-level
simulation. We constrain ourselves to an SPMD programming
paradigm on dedicated SMPs. Specifically, we assume the
absence of workload sharing, i.e., only one application runs
on a node, and we enforce a one-to-one mapping between
threads and processors. These assumptions are common for
high-performance scientific computing [9], [10].

ccSIM is the first tool to characterize coherence traffic for
OpenMP programs. The novelty lies in being able to provide
detailed per-reference source-code correlated statistics about
coherence events (invalidations, coherence misses) and in
showing how such tools can be used to detect, understand, and
fix inefficiencies in accessing shared data in large well known
benchmarks that closely resemble real world programs. In
contrast to most previous approaches, ccSIM does not require
any special compiler or linker support. It operates directly on
the program executable and potentially allows the collection
of partial access traces by toggling the instrumentation at
run-time (dynamic instrumentation).

Our contributions are as follows: 1) We introduce ccSIM, a
cache coherence simulator that we have designed and built for
shared memory multiprocessors. 2) We develop a novel dy-
namic binary-rewriting mechanism to extract memory access
traces and thread synchronization information from OpenMP
parallel programs. 3) We demonstrate good correlation be-
tween ccSIM results and hardware performance counters for
an SMP architecture on a variety of OpenMP benchmarks. 4)
We quantify the run-time overhead of software instrumenta-
tion and evaluate several on-line compression algorithms with

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y., ACCEPTED NOVEMBER 2006 2

respect to compression factors and execution time. 5) Finally,
we demonstrate how ccSIM obtains detailed information
indicating causes of invalidations and coherence misses and
relates these events to their program location and data struc-
tures. We achieve significant wall-clock time improvements
for several well known benchmarks by inferring optimization
opportunities from the information supplied by ccSIM.

II. CCSIM FRAMEWORK

Figure 1 shows the ccSIM framework. There are 3 phases
in our approach - Instrumentation, Trace generation and
Coherence simulation. First, the target OpenMP executable
is instrumented for capturing the memory access trace and
OpenMP synchronization information. During execution, the
instrumentation calls handler functions in a shared library that
compress the event trace and write the compressed repre-
sentation to stable storage. An incremental shared memory
multiprocessor simulator uses this event trace to simulate
coherence traffic for a selected coherence protocol. The simu-
lator maps the coherence events (e.g., invalidations, coherence
misses) to high-level constructs, such as source code locations
and also to local and global variable names. The simulator
achieves this using the symbolic information extracted from
the target OpenMP executable by the instrumenter (controller)
program. At the end of simulation, the detailed coherence
metrics are presented to the user. In our work, we explicitly
bind each OpenMP thread to a different processor using the
bind processor system call. Thus, the per-thread event
trace is actually a per-processor event trace. Each phase is
discussed in more detail in the following.

A. Instrumentation
Our instrumentation tool uses the DynInst instrumentation

library [11] for dynamic program instrumentation. It is an
extension of our previous work in using binary rewriting
to extract memory traces from uniprocessor programs [12].

Access Trace

Synch. Info
+

Access Trace

Synch. Info
+

Access Trace

Synch. Info
+

Trace Generation

Simulation

Instrumentation

Compression
Handler()

Handler()

Thread0

Thread1

ThreadN

Detailed
Coherence

Metrics

SMP Cache Simulator

Handler()

Descriptor
Target

Controller

Execute

Extract

Global & Local Variables

Target OpenMP
Executable

DynInst API

Instruction Line,File

Fig. 1. ccSIM Framework

In this work, we extend the original tool to support multi-
threaded OpenMP programs.

The instrumentation process occurs as follows. A control
program (controller) attaches to the potentially executing
target OpenMP program. For each OpenMP thread, the con-
troller inserts instrumentation to intercept the memory access
instructions (loads and stores). To reduce the overhead of trace
collection, the controller does not instrument instructions that
access memory locations at an offset from the stack pointer
register. These memory instructions access stack locations
that are private to each thread (since each thread has a separate
stack). It is uncommon that a thread’s stack variables will be
accessed by other threads such that exclusion of such instruc-
tions during instrumentation will not result in any measurable
loss of accuracy. In addition, we also instrument the compiler-
generated functions that implement OpenMP synchronization
constructs (e.g., #pragma parallel do, #pragma barrier, etc.).
This synchronization information is saved in the captured
event trace. During simulation (phase 3), the synchronization
information allows us to maintain a correct ordering among
accesses from different threads (e.g., no accesses from any
thread past a barrier can be simulated till all accesses from
all threads before the barrier have been simulated). Finally, the
instrumentation also records function entry and exit events,
as well as the stack base address when the function was
entered. The former allows us to tag coherence traffic to
specific functions. The latter allows us to also support tagging
coherence traffic to local variables whose addresses are not
determined till the function is entered. 1

To support tagging of coherence events to high level
constructs, the controller extracts symbolic information from
the target executable. This symbolic information is embedded
in the target executable.2 This information is used to map the
memory access instructions to locations in the source code
(line::File). In addition, the names and addresses of global
variables as well the names and stack offsets of local variables
for each function are extracted and stored in a target descriptor
file.
B. Trace Generation

The instrumentation instructions call handler functions in
a shared library that is loaded into the target program’s
address space using a one-shot instrumentation. Once the
instrumentation is complete, the target program is allowed
to continue execution. As the program executes, the handler
functions get invoked, generating an event trace (memory
accesses, function entry/exits and OpenMP synchronization

1The debug information embedded in the executable contains the offset
values for each local variable of a function. The offset values can be
combined with the value of the stack pointer to get the absolute memory
address of the local variable for that instance of the function.

2Most compilers support inserting debug information in the binary, e.g.,
with the -g flag.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y., ACCEPTED NOVEMBER 2006 3

calls). For real-world programs, the tool can be expected to
capture hundreds of millions of events. To conserve space,
it is essential to efficiently compress this trace online before
storing it to stable storage. In later sections, we discuss and
evaluate several compression strategies.

Our instrumentation framework allows partial event trac-
ing. After an adequate number of events have been captured,
the instrumentation can be turned off, and the original ap-
plication can continue execution without any instrumentation
overhead. This is important for tracing “snippets” of long-
running applications. In this paper, however, we only collect
full event traces, i.e., we run the application from start to
finish and use the generated event trace for processing.

Each thread is responsible for logging its own event trace.
There is no cross-thread dependence for tracing. Hence, our
framework scales with increasing number of threads.

C. Simulation
This is the final phase. The simulator uses the compressed

per-thread event trace for incremental coherence simulation.
In this work, ccSIM simulates the MESI coherence protocol
that is present on our target platform. Other protocols can be
easily simulated, if required in the future.

Interleaving of Reference Streams: It is important to note
that for correct coherence simulation, we must not only
capture the memory access trace but also the partial ordering
information among the OpenMP threads. The partial ordering
among threads occurs due to the execution of OpenMP
synchronization directives, i.e., barriers, critical sec-
tions, atomic sections and accesses protected by explicit
mutex locks (omp get lock, omp set lock).

We maintain the partial ordering during simulation in the
following manner. In the instrumentation phase, we instru-
ment the entry and exit points of the functions implementing
the OpenMP directives in the compiler’s run-time support
library. These recorded events are used to order accesses
from different threads during coherence simulation. For bar-
rier events, the simulator ensures that all events from all
threads before the barrier are executed before any events
after the barrier. The mutual exclusion effect of critical,
atomic, omp get lock() and omp set lock() direc-
tives is achieved by allocating and manipulating correspond-
ing lock structures in the simulator.

For understanding coherence behavior more effectively, we
found that it is useful to classify accesses within and across
a region. We define a region as the execution between two
successive barrier events.3 In a region without additional

3Our definition of region is slightly different from its definition in the
OpenMP 2.5 standard. Even though both definitions refer to the dynamic
extent of execution, our focus is only on barrier events. In contrast, the
OpenMP standard defines regions more generally as the dynamic or runtime
extent of a construct or OpenMP library routine [13].

OpenMP synchronization events (e.g., omp critical),
there is no ordering between accesses from different threads.
We explore the effect of different interleavings by allowing
our simulator to execute in two modes at the start of a region:
Interleaved Mode: The simulator processes one data refer-
ence from each trace (corresponding to a thread or processor)
before processing the second reference for each trace etc.
Effectively, the simulator enforces a fine-grained interleaving
in a round-robin fashion on a per-reference base in this mode.
Piped Mode: The simulator processes all data references
from one trace up to the next synchronization point before
processing data references from the second trace etc., effec-
tively enforcing a coarse-grained interleaving at the level of
regions.

A comparison of results from the interleaved and piped
modes reflects the extent to which program latency is affected
by the non-deterministic order of execution of OpenMP
threads and may provide extremes (bounds) on metrics for
coherence traffic.

Example: Figure 2 shows the trace events and simulator
actions for a simple OpenMP program with two active
OpenMP threads. A and B are shared arrays of size N, and
i is a local variable. Static loop scheduling is assumed for
the OpenMP for loop. The entry into the parallel OpenMP
region is logged as a trace event and causes the simulator
to activate two driver objects. Accesses generated by each
OpenMP thread to the A and B arrays are logged separately.
The drivers may simulate these accesses in parallel, as shown
for the interleaved mode. When an OpenMP thread exits from
the implicit barrier at the end of the for loop, a barrier
exit event is logged for that thread. Detection of a barrier
event causes drivers to synchronize. Another synchronization
takes place when the parallel end event is processed.
After an OpenMP parallel region, a serial phase starts, and
only one driver (corresponding to the master thread) will
remain active. All others remain unused till the start of the
next parallel phase.
D. Studying Invalidations and Misses

A key metric for the identification of memory performance
bottlenecks in a multiprocessor system is the number of
invalidations to lines in the lowermost level of cache of
each processor. Invalidations cause coherence traffic, thereby
increasing the utilization of the shared bus in a symmetric
multiprocessor architecture. More significantly, these inval-
idations could lead to coherence misses. Since coherence
misses will miss in all levels of cache (the data being accessed
is in a modified state in some other processor’s cache), the
latency for the miss will be high and contemporary out-
of-order superscalar processors would stall till the miss is
satisfied (since the out-of-order window has limited size).
Thus, reducing the volume of coherence misses often has a
direct impact on the overall wallclock execution time.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y., ACCEPTED NOVEMBER 2006 4

OpenMP Thread 0 OpenMP Thread 1

Parallel StartParallel Start
Simulator Thread 0 Simulator Thread 1

Activate Activate
{

Source Code Trace Events Simulator Actions

#pragma omp parallel

#pragma omp for
for(i=0; i < N;i++) {

A[i] = A[i] * B[i]; A[0] Read
B[0] Read
A[0] Write

A[N/2] Read
B[N/2] Read
A[N/2] Write

AccessesSimulate
A[0],B[0],A[0]

..........................

.........................
..........................
.........................

Simulate Accesses
A[N/2],B[N/2],A[N/2]

.........................
} /* end OpenMP for */ Barrier Exit Barrier Exit Synchronize Synchronize

SynchronizeSynchronizeParallel EndParallel End} /* end OpenMP parallel */

Deactivate

..........................

.........................
..........................

Fig. 2. Illustration: Trace Events and Simulator Actions

Since the main motivation in reducing the invalidate traffic
is to decrease the number of coherence misses, it is imperative
to distinguish between coherence misses and uniprocessor
misses in a processor. Invalidations to cache lines can further
be classified as true-sharing invalidations and false-sharing
invalidations in each level of cache. True-sharing invalidations
arise from accesses to the same shared memory location by
more than one processor, with at least one access being a write
access. False-sharing invalidations are caused due to accesses
to different memory locations that map to the same cache line
on more than one processor. ccSIM maintains state between
accesses to a cache line to detect and distinguish true/false
sharing. We introduced the concept of a region above (Section

y_Write
y_Read

Region
x_Write

x_Read across−region

in−region

barrier event

barrier event

Fig. 3. Classification of Invalidations
II-C). Invalidations can be classified as in-region and across-
region as shown in Figure 3. Within the same region, we
further distinguish true-sharing invalidations as follows: 1)
References not protected by locks: These typically occur in
the single-writer, single/multiple-reader scenario where one
processor writes to a common location and one or more
processors read from it. If there are multiple processors
that write to a shared memory location, it may indicate the
existence of a data race condition in the program. In this
case, our tool will pinpoint the exact source code references
involved in the race. We found such a data race using our
tool, in the ASCI Purple benchmark sPPM (Section IV-
E). 2) References protected by locks: These typically occur
in the multiple-writer, single/multiple-reader scenario where
multiple processors write and read from a common location.

In summary, ccSIM generates the following metrics 1)
Uniprocessor statistics: Hits, misses, temporal and spatial
locality ratios, and list of evictors for each reference. The
uniprocessor metrics are described in our previous work [12].
2) Invalidations: These are sub-classified into true and
false-sharing invalidations, as discussed above. 3) Coherence
Misses: A miss is classified as a coherence miss if it is
accessing data that was present in the processor’s cache

previously but was invalidated due to a write from another
processor to the shared data’s memory line. When a cache
line is invalidated, we save the cache tag of the invalidated
line. Later, when a miss occurs, this information is used to
classify a miss as a coherence miss. 4) Invalidator Lists: We
have enhanced our framework described in [14] to generate
invalidator lists for each reference. The invalidators for a
reference are the write (store) references on other processors
that invalidated the data accessed by this reference. Invalidator
lists help to understand the movement of shared data elements
across processor caches. A later case study (ammp) shows the
use of these lists for understanding coherence patterns.

These statistics can be viewed at several levels of detail: 1)
Per-Processor: This level of detail is similar to architecture-
oriented coherence simulators. 2) Per-Reference: A source
code reference is a program location (line:File). Per-reference
results allow us to magnify per-processor results and to map
them to individual program locations. 3) Per-Function: Since
we instrument function entry and exit points, we can generate
per-function as well as per-calling context coherence metrics.
4) Per-Variable: Global and local variables are supported by
our framework. In addition, dynamically allocated variables
can be distinguished by their call-context-sensitive allocation
site in the program source code. 5) Within/Across OpenMP
regions: As discussed before, we distinguish between interac-
tions that occur in the same OpenMP region from interactions
that occur across different OpenMP regions.

The coarser levels of detail can be used to quickly check
whether a potential coherence bottleneck exists (e.g., high
ratio of coherence misses to total misses). Then, the per-
reference and per-data structure metrics can be used to isolate
the bottleneck to particular source code locations and data
structures. Finally, the invalidator lists show how the shared
data is moving across processor caches. We demonstrate this
performance evaluation process with several case studies.

III. EXPERIMENTS

First, we present the OpenMP benchmarks used for exper-
iments with ccSIM. Next, we compare results obtained from
ccSIM with hardware performance counters. We evaluate
the trace extraction framework with respect to execution

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y., ACCEPTED NOVEMBER 2006 5

overhead induced on the target application and compare the
effectiveness of various compression strategies for online
compression of the access stream.

Finally, we use ccSIM to characterize the shared memory
usage of representative OpenMP benchmarks and show how
ccSIM statistics are useful in detecting and isolating coher-
ence bottlenecks.

Benchmarks: In later sections, we validate our simula-
tor against hardware performance counters and measure the
overhead of tracing with different compression algorithms.
For these experiments, we selected the 6 benchmarks from
the NAS OpenMP suite [15] plus an additional OpenMP
benchmark (NBF) from the GROMOS benchmark suite [16].

A brief description of each benchmark is given below. 1)
IS: A large integer sort used in “particle method” codes. 2)
MG: A V-cycle MultiGrid method to compute the solution
of the 3-D scalar Poisson equation. 3) CG: A Conjugate
Gradient method to compute an approximation to the smallest
eigenvalue of a large, sparse, unstructured matrix. 4) FT: An
implementation of a 3-D Fast Fourier Transform (FFT)-based
spectral method. 5) SP: A simulated CFD application with
scalar pentagonal bands of linear equations that are solved
sequentially along each dimension. 6) BT: A simulated CFD
application with block tridiagonal systems of 5x5 blocks
solved sequentially along each dimension. 7) NBF (Non-
Bonded Force Kernel): A molecular dynamics simulation
computing non-bonded forces due to molecular interactions.

All NAS benchmarks used class S data sets, except for
IS which used class W. The NBF kernel was run for 2
time steps with 16384 molecules. For these settings, we
observed a sufficient number of invalidations to characterize
the application behavior.

In addition, we also present case studies in using ccSIM
to optimize much larger applications, which closely resemble
real world programs. These include two benchmarks (IRS-
1.4, SMG2000) from the ASCI Purple OpenMP suite [17],
and one benchmark (AMMP) from the SPEC2001M OpenMP
suite [18]. More details about these applications are presented
in the case studies.

A. Comparison with Hardware Counters
In this section, we validate ccSIM against measurements

from hardware performance counters. From a developer’s
perspective, the number of coherence misses is the most
important facet of the shared memory access pattern of
an application. However, there are no hardware counters
capable of measuring coherence misses on our target plat-
form. Instead, we compare the number of invalidations for
ccSIM against the actual number of invalidations measured
by the hardware counters. The total number of invalidations
is an upper bound on the number of coherence misses for
the application. Reducing invalidations will also lower the

number of coherence misses, thereby improving application
performance.

Hardware Environment: The hardware counter measure-
ments were carried out on a 4-way SMP machine with 375
MHz Power3 processors. The hardware counters were ac-
cessed through the proprietary Hardware Performance
Monitor (HPM) API. The system has a 64 KB 128-way
associative L1 cache with round-robin replacement and an
8 MB 4-way associative L2 cache. All experiments were
carried out with 4 active OpenMP threads bound to distinct
processors. The IBM OpenMP compilers, xlc r and xlf r, were
used to compile the benchmarks at the default optimization
level O2 with following flags settings: -qarch=auto,
-qsmp=omp, -qnosave.

HPM measurements: The Power3 hardware implements
the MESI coherence protocol within an SMP node. The
PM SNOOP L2 E OR S TO I and PM SNOOP M TO I HPM
events were used to measure the number of L2 cache inval-
idations with E→I, S→I and M→I transitions, respectively.
The OpenMP runtime system also contributes to the number
of invalidations measured. Since we are interested only in
the invalidations of the application, we need to remove these
invalidations from the measured numbers.

To assess the side-effect of the OpenMP runtime system on
invalidations, we measured invalidations for OpenMP runtime
constructs with empty bodies in a set of microbenchmarks.
For example, the overhead in terms of invalidations for
a barrier construct was determined. The microbenchmarks
were subsequently used to adjust raw HPM data obtained
from application runs by removing the extrapolated effect of
OpenMP runtime invalidations for n iterations. For example,
we removed the effect of n = 100 times the overhead for
a single barrier if the benchmark contained 100 barriers. We
refer to these measurements as the raw HPM metrics and the
OpenMP-adjusted HPM metrics.

Table I shows the raw and OpenMP-adjusted HPM mea-
sured invalidations for the L2 cache. The invalidations were
measured for each processor separately using the HPM events
discussed above and summed up to get the total invalidations
shown in the table. Each HPM measurement is the mean of
5 samples.

Comparison with ccSIM: ccSIM was configured with the
MESI coherence protocol and with the cache parameters of
the hardware platform (4-way Power3 SMP node). Both L1
and L2 caches were simulated. Table II compares total L2
invalidations for HPM and the two ccSIM modes - piped and
interleaved.

The results indicate a good correlation between ccSIM
and HPM for most benchmarks. The absolute error between
ccSIM and HPM is less than 17% for all benchmarks and
less than 7% for most. Moreover, for the NAS benchmarks,
both interleaved and piped modes result in closely matching

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y., ACCEPTED NOVEMBER 2006 6

TABLE I
TOTAL L2 INVALIDATIONS WITH HPM

Benchmark HPM(raw) HPM(OpenMP-adjusted)
IS 165246 162964

MG 24631 13629
CG 134964 100488
FT 326595 325257
SP 282269 258923
BT 185317 157384

NBF 474121 135926

TABLE II
HPM VS. CCSIM

Benchmark HPM ccSIM ccSIM % Error
Interleaved Piped Interleaved vs. HPM

IS 162964 163073 159913 -0.06
MG 13629 13174 12355 3.30
CG 100487 117117 116318 -16.50
FT 325257 302630 302607 6.90
BT 157384 157503 157480 -0.07
SP 258922 268334 268334 -3.60

NBF 135926 137498 14629 -1.15

numbers of invalidations. This indicates that for these bench-
marks, fine-grained round-robin simulation is not necessary
to achieve a high level of simulation accuracy. NBF stands
out as an anomalous case with significant difference between
the interleaved and piped modes of simulation. ccSIM allows
us to categorize invalidations into true and false sharing
invalidations as well as to distinguish between across-region
and in-region invalidations, as explained in Section II-D. The
cause of the discrepancy becomes apparent when we exam-
ine the in-region true-sharing critical invalidations shown in
Figure 4. Metrics are plotted in a log scale. The number of
true-share invalidations occurring within a region is much
higher (at least an order of magnitude) in the interleaved
simulation mode. The interleaved simulation mode involves
fine-grained round-robin simulation, which leads to a “ping-
pong” exchange of shared data across processors. The ping-
pong exchange does not take place with the piped mode of
simulation, leading to a very small number of invalidations
to be recorded. A look at the per-reference ccSIM statistics
indeed shows that the most significant invalidation source is
a data access point inside an OpenMP critical construct.
This demonstrates the necessity of interleaved simulations
for codes containing critical sections to closely resemble the
interleaving of references during actual execution.4

B. Execution Overhead and Trace Compression
Instrumentation for capturing the memory access trace

imposes execution overhead on the application. The access
traces being captured can be in the order of hundreds of
gigabytes. Hence, effective compression is necessary before
they can be stored to disk. In this section, we measure the
run-time overhead imposed by software instrumentation. We
also evaluate several compression strategies with respect to
additional run-time overhead imposed and the quantum of
compression achieved by each.

4In Figure 4, the number of in-region true-sharing invalidations is shown
to be zero for P4. This is an artifact of our round-robin scheduling due to
which the true-sharing invalidations were classified as across-region false-
sharing invalidations in this particular benchmark. This can potentially be
improved upon by using pseudo-random instead of round-robin scheduling,
after which the results for P4 will be similar to other processors.

For compression, we compare the following strategies: 1)
No Compression (No-Compr): No compression algorithm is
used. The raw uncompressed trace is written to stable storage.
2) PRSD Compression (PRSD-Compr): This compression
algorithm is targeted for regular accesses in nested loop
structures, as commonly found in scientific programs. It is
reported in our previous work in [19]. 3) LZO Compression
(LZO-Compr): This is an open-source lossless compression
library designed specifically for compression speed [20]. We
use the mini-lzo variant that implements the LZO1X-
1 algorithm. Compression input is in chunks of 64KB. 4)
Multi-stage Compression (Multi-Compr): This is a hybrid
algorithm that uses LZO compression to compress the output
stream of the PRSD algorithm.

Run-Time Overhead: Figure 5(a) shows the execution
time of just the software instrumentation (Null-Instru),
and for instrumentation plus compression with the algorithms
discussed above. The execution time is normalized to the
execution time of the original unmodified executable. We
make the following observations: 1) The cost of software
instrumentation alone (Null-Instru) is approximately 2
to 3 orders of magnitude (i.e., 100 to 1000 times slowdown).
This is due to the high frequency of instrumentation at
every load and store instructions. 2) The execution over-
head of storing the compression trace is comparatively low
(No-Compr vs. Null-Instru). 3) LZO Compression is
very fast and adds very little overhead by itself (LZO-Compr,
Multi-Compr). 4) PRSD Compression has variable over-

�

��

���

����

�����

������

�� �� �� �� �� �� �� ��
�� �� �� ��

��	

�

�
�
���

���
��
��

��
�
�

��
��
���
��
����
��

���
���

�

���������������
 �������

Fig. 4. NBF: Interleaved and Piped

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y., ACCEPTED NOVEMBER 2006 7

�

��

���

����

�����

�� �� �� �� 	� �
 �	�

�

��
���

��
���
��

���
��
��

���
��
�

����������� ������ � !"#���� �
$�%���� � ��������� �

(a) Execution Time (Normalized)

���� ����

�
���
���
���
���
���
���
���
��	
��

�

��
� �� �� �� �� ���

��
��
���

���
���

��
��

���
�
!

"#$%���&�
�'�(%���&�

)�*�%���&�

(b) Trace Size (Normalized)
Fig. 5. Execution Overhead and Trace Sizes

head. For some benchmarks (MG, FT, SP) the overhead is
low while for others, there is significant overhead compared
to LZO compression.

Trace Compression: Figure 5(b) compares the trace sizes
achieved with the various compression strategies normalized
to the original size of the trace. We make the following
observations: 1) LZO compression always reduces the trace
size by half or even more. 2) PRSD-based compression can
lead to spectacular compression in some cases (MG, FT
and SP) and beats LZO-based compression in 4 out of the
7 benchmarks (MG, FT, SP, BT). However, the compres-
sion rate is significantly better for LZO for the remaining
three benchmarks (IS, CG, NBF). 3) Multi-stage compression
achieves the best compression for all benchmarks, except for
NBF. Even with NBF, multi-stage compression reduces the
trace size to approximately half of the original size.

To summarize, PRSD-compression either works very well
(with low execution overhead and very high compression) or
very poorly (with relatively high overhead and poor compres-
sion). Compression is poor when the program either does not
have nested loops that dominate the overall memory accesses
or the access stream generated is irregular. The latter is the
cause for the poor compression rate of both CG and NBF, due
to the presence of indirectly indexed arrays in sparse matrix
computations, which generate a non-linearly strided access
stream.

A hybrid multi-stage algorithm (PRSD+LZO) almost al-
ways achieves the best compression, at the price of additional
execution overhead.

IV. OPPORTUNITIES FOR TRANSFORMATIONS

In this section, we demonstrate how ccSIM is used to detect
and isolate coherence traffic bottlenecks, to derive opportuni-
ties for transformations leading to reduced coherence traffic
and, thereby, to obtain potential performance gains.

Our methodology for performance evaluation is subject
to a cost/benefit trade-off, as detailed in the following. A
high overhead of tracing and simulation limits the extent

of the program execution that can be realistically traced by
our framework. We expect the programmer to either create a
smaller data set or to identify a repeating program phase (e.g.,
a single timestep) for performance evaluation. The resulting
smaller program trace must have similar sharing characteris-
tics as the original one; otherwise, the performance analysis
results may not apply to the original program. Consider a the
smaller program’s data set that completely fits in cache while
the original program’s data set does not. Then, the importance
of coherence (sharing) optimization may be exaggerated by
the performance analysis.

Tracing has relatively high overhead. Thus, we recommend
that programmers follow a two-step approach for performance
evaluation of coherence activity. First, existing hardware
performance counters can be used to quickly and cheaply
evaluate if there exists a significant amount of sharing be-
tween processor caches (e.g., using our previous approaches
[21]). If such sharing exists, then our framework can provide
detailed source code level information about the causes of
any potential sharing bottlenecks.

Except for NBF, all our case studies use a smaller data set
for performance evaluation and the recommended large data
set that is used for measuring performance improvements. We
are able to effectively use smaller data sets due to two notable
reasons. First, 3 out of the 4 use cases (NBF, SMG2000,
AMMP) exhibit sharing behavior between processors that is
temporally close. In other words, the same sharing behavior
will occur for small or large data sets, irrespective of whether
the data set fits in cache or not. Second, for all use cases,
the coherence simulation results lead us to optimizations
(removing redundant concurrency, increasing concurrency,
prefetching) that provide performance benefits irrespective of
whether the data set fits in cache or not. In the first case,
this is a property of the trace while in the later one, it is a
property of the optimizations. This shows that in practice,
the potentially difficult task of crafting smaller data sets
or truncated program runs that reflect the original program

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y., ACCEPTED NOVEMBER 2006 8

behavior may be mitigated.
We shall now use ccSIM to optimize the NBF kernel.

This code is comparatively simple compared to the other
applications that we discuss later (irs, smg, ammp). NBF
serves as a good introduction to characterizing and optimizing
coherence behavior with ccSIM, even though the code analy-
sis and transformations we discuss for it are straightforward,
and may be achievable by visual inspection of the code.
The other benchmarks are much larger and complex, and a
profile-guided approach (like our tool) would be essential to
understand and optimize their coherence behavior.
A. NBF: Non-Bonded Force Kernel

A full access trace was obtained for the OpenMP
NBF kernel. The OpenMP environment was set to four
threads and static scheduling (OMP NUM THREADS=4,
OMP SCHEDULE=STATIC). Analysis: Figure 6 shows the
breakdown of misses for L1 and L2 caches for each processor
obtained by ccSIM.

�

�����

�����

�����

�����

�����

�����

�����

�����

	� 	� 	� 	� 	� 	� 	� 	�

�
�
�
�

�
�

�

��������

�
 ������������

�
 ������������������

Fig. 6. NBF: Breakdown of L2 misses
We observe that almost all L2 misses and a significant

number of L1 misses are coherence misses. A coherence miss
is caused when a processor accesses a cache line that was
invalidated due to a write from another processor. However,
a large number of invalidations does not necessarily imply a
large number of coherence misses, since the invalidated cache
lines may not be referenced by the processor again before
being flushed out of the cache. The number of coherence
misses shown in Figure 6 is very close to the number of
invalidations received by the cache. This shows that almost
all invalidations eventually caused a coherence miss. Mini-
mizing the total number of invalidations will also reduce the
magnitude of coherence misses correspondingly.

We have detected a potential coherence bottleneck. We can
use the per-reference coherence and cache statistics generated
by ccSIM to determine the cause of the bottleneck. Table III
shows the per-reference statistics on processor one for the top
three references of the original code and two optimization
strategies (serialized and round-robin) discussed next. Only
L2 cache statistics are shown.

We observe that access metrics across all processors are
uniform. The f Read reference on line 141 of the source

code has an exceptionally high miss rate in all processors.
Moreover, more than 96% of the misses for this reference
are coherence misses. The invalidation data shows that the
large number of in-region invalidations are the primary cause
for these misses. The relation of this reference to the source
code indicates that line 141 is of interest:
#pragma omp parallel
...
for (i = 0; i < natoms; i++) {
#pragma omp critical

141: f[i] = f[i] + flocal[i];
}

The for loop updates the global shared array f with values
from the local private copy flocal for each OpenMP thread.
The large number of invalidations attributed to the f Read
reference is due to a ping-pong exchange of the shared f array
between processors as all of them try to update the global f
array simultaneously.
Optimizing Transformations: Using ccSIM’s per-reference
statistics, we isolated the coherence bottleneck to the updates
of the shared global array f. We shall discuss two ways of
reducing the number of coherence misses. One method elimi-
nates the ping-pong exchange of the f array by serializing the
updates to the array f since they require mutually exclusive
writes. This is achieved by moving the critical section to
encompass the entire for loop instead of the single update.
The modified code is shown below.
#pragma omp parallel
...
#pragma omp critical
for(i = 0; i < natoms; i++) {
f[i] = f[i] + flocal[i];

}
Moving the critical statement outside the loop also

reduces the number of times that the mutual exclusion region
must be entered and exited, decreasing the execution over-
head. Although reducing the number of coherence misses,
this method does not exploit the potential for parallel updates
to separate parts of the f array by different threads. Hence,
we consider an alternate transformation. We can exploit
parallelism by partitioning the array f into a number of
segments. Each thread updates a distinct segment until all
segments are updated. We call this scheme the round-robin
update scheme. The modified code is shown below as pseudo-
code.
//1. calculate #segments
tot_segments = (size of "f" array) / #threads;

//each thread executes this for loop
for(i = 0; i < tot_segments; i++) {
//2. get segment id to update
seg_id = (thread_id + i) % tot_segments;
//3. update segment seg_id of array "f".
...
//4. synchronize all threads (barrier)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y., ACCEPTED NOVEMBER 2006 9

TABLE III
NBF: COMPARISON OF PER-REFERENCE STATISTICS FOR EACH OPTIMIZATION STRATEGY

Invalidations
Line Ref Optimization Misses Miss % Coherence True False
No. Strategy Ratio Misses Total In Across In Across

Region Region Region Region
141 f Read Original 32500 0.99 96.87% 32768 32768 0 0 0

Serialized 2050 1.0 50.30% 2048 2048 0 0 0
Round-robin 1790 0.87 42.84% 2048 2048 0 0 0

227 x Read Original 1540 0.997 99.74% 768 1 765 0 2
Serialized 1540 0.997 99.74% 768 1 765 0 2
Round-robin 1540 0.997 99.74% 768 0 766 0 2

217 f Read Original 512 1.0 100% 256 256 0 0 0
Serialized 512 1.0 100% 256 256 0 0 0
Round-robin 512 1.0 100% 256 0 255 0 1

TABLE IV
NBF: WALL CLOCK TIMES (SECONDS)

Code Original Serialized Round-robin
Segment
f-Update 4.981 0.003 (99.9%) 0.003 (99.9%)
Other 2.141 2.076 (3%) 2.190 (-2.28%)
Overall 7.122 2.079 (70.8%) 2.193 (69.2%)

TABLE V
NBF: L2 INVALIDATIONS (HPM RAW)

Code Original Serialized Round-robin
Segment
f-Update 503654 921 6209
Other 37987 32916 38863
Overall 541641 33837 45072

barrier();
}

Results: Table III compares the L2 coherence misses and
invalidations for the two optimization strategies. Statistics
are depicted only for processor-1 and are similar for the
other processors. We observe that both strategies lead to a
significant decrease in the volume of coherence misses for the
f Read reference. Table IV shows the wall clock execution
time for (a) the routine that updates the shared array f, (b)
the remainder and (c) the entire program. Table V shows the
total L2 invalidations from all processors for each approach
measured with HPM. We observe that the transformations
cause a significant improvement in wall clock execution
time. This improvement occurs due to two effects. First,
the restructured programs have far less invalidations (and,
subsequently, coherence misses) compared to the original
program (Table V). Second, the restructured programs have
lower OpenMP execution overhead because they execute
fewer OpenMP calls.

B. IRS: Implicit Radiation Solver
IRS-1.4 is part of the ASCI Purple codes [17]. IRS

can use MPI, OpenMP or a mixture of both for par-
allelization. We use the pure OpenMP version of IRS
for our study. Existing OpenMP parallelization uses “omp
parallel do” constructs for loop level parallelization. For
the analysis below, we ran IRS for 10 calls to the top-
level xirs function, with a limited data set (NDOMS=10,
ZONES PER SIDE=NDOMS PER SIDE) with 4 OpenMP
threads and static scheduling. This partial data trace is

comparatively small, yet captures essential coherence traffic.
Once our optimizations are complete, we compare the wall-
clock time for the recommended full-sized data set for IRS
(zrad.008.seq).

Analysis: Figure 9 shows that for all processors, coherence
misses constitute almost the entire volume of L2 cache
misses. Interestingly, the coherence miss magnitudes are
asymmetric with processor-1 experiencing more than twice
the number of coherence misses of any another processor.
Figure 7 shows the per reference coherence statistics for
processors 1 and 2. Statistics for other processors were similar
to those for processor-2. References have been collected
into groups with distinct coherence characteristics (Groups
1, 2 and 3). Multiple references are shown with only a
single representative reference. For example, there are a set
of fourteen references to different arrays in the matrix
structure, all of which show similar coherence characteristics;

�

�����

�����

�����

�����

������

������

������

�� �� �� ��

�	
��
������

��
������
������

Fig. 9. Breakdown of L2 misses
�

���

���

���

���

���

��
�	

�
�

�����
��
����
���������
���������������
�

Fig. 10. Time w/ Optimizations

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y., ACCEPTED NOVEMBER 2006 10

Fig. 7. IRS: Per-Reference Statistics
Invalidations Opt.

Proc No. Reference Grp Coh. True False Optimization Coh.
misses in across in across strategy misses

1 1 v1[] rd 8627 4 7517 31 1342 code 1980
2 v2[] rd 8568 310 5093 78 3085 transforms 1971

3-16 matrix.dbl[] wr 1 2547 25 2325 0 455 for data 719
17 x[] rd 1803 0 1402 391 2 segregation 968
18 timersflag rd 2 3182 1 0 3122 70 padding 0
19 thread flop[] rd 1789 0 2 1789 0 0
20 clock last rd 3 2165 2166 0 0 0 remove sharing 0

2 1 clock last rd 3 5997 5644 353 0 0 0
2-3 timersflag rd 2907 18 0 2908 0 0
4-6 thread flop[] rd 2 2734 0 0 2407 327 0
7 thread wall secs[] rd 1022 0 0 652 371 padding 0
8 thread cpu secs[] rd 811 0 71 742 0 0

/* only master */
for (i =0; i < nblk; i++)

dotprev += icdot(r[i], z[i],...);
/* Reads r,z */

...
/* parallel updates to r,z */
#pragma omp parallel for
for (i =0; i < nblk; i++) {

setpz1(r[i],...); /* Writes to r*/
setpz1(z[i],...); /* Writes to z*/

}
...
/* only master */
for (i =0; i < nblk; i++)

dotrz += icdot(r[iblk], z[iblk],...);
/* Reads r,z */

Fig. 8. IRS Breakup into Parallel Regions

these are represented by a single representative reference
matrix.dbl[] in the table. We observe that the set of
references with significant coherence behavior are quite dif-
ferent for processor-1 and processor-2. We shall now analyze
references belonging to each group in detail.

Group 1: These references account for the largest fraction
of coherence misses. True sharing across-region invalidations
are dominant for this group. This indicates that the data
elements accessed by these references move across the L2
caches of multiple processors. Consider the first two ref-
erences (v1[] and v2[]). These references occur in the
icdot function, that is only called at three locations from the
MatrixSolveCG function. All call sites are in serial code,
i.e., they are executed only by the master thread. Between
successive calls, the argument arrays are updated by other
processors in parallel regions, as depicted in Figure 8.

Thus parts of arrays r and z move between processor-
1 and other processors. We can eliminate this unnecessary
movement using code transformations for data segregation.
In this case, we can parallelize the icdot calls using
OpenMP. This allocates segments of r and z arrays to specific
processors thereby eliminating unnecessary data movement.
More significantly, icdot calls now operate in parallel. This
potentially has a much bigger impact on performance than the
elimination of data movement alone.

Similar transformations are carried out for other references
from Group-1, which we do not further discuss here.

Group 2: In-region false sharing invalidations constitute
almost the entire volume of invalidations for these references.
The number of coherence misses closely matches the number
of invalidations received. All these references are related
to timer routines used for performance benchmarking. Most
of the coherence misses arise due to parallel updates to
counter arrays indexed by thread id. Since array elements are
contiguous, this leads to false-sharing, causing a ping-pong
exchange of cache lines across processors. We use intra data-
structure padding to align individual array elements at cache

line boundaries, which eliminates coherence misses.
Group 3: This group has a single reference exhibiting large

volumes of true in-region invalidations. These invalidations
occur inside a omp critical region updating a shared
global clock variable. We eliminate this sharing by maintain-
ing clock variables for each thread separately.

Results: The coherence misses for each reference after
optimization are shown in the last column of Figure 7.
We see that coherence misses for Groups 2 and 3 have
been eliminated (by padding and sharing elimination, respec-
tively) and have decreased significantly for Group 1. Figure
10 shows the wall-clock execution times for the different
optimization strategies on the recommended OpenMP data
set(zrad.008.seq). The readings were obtained on a non-
interactive node with 8 OpenMP threads. DSeg represents
code transformations for data segregation (Group 1 refer-
ences). DSeg+Crit additionally removes the shared global
clock (Group 3 reference). DSeg+Crit+Padding repre-
sents the fully optimized benchmark. We observe that DSeg
causes significant decrease in wall clock execution time (over
30%), compared to the original program. The performance
impact is due to a combination of 2 factors. First, there
is reduction in coherence traffic due to our optimizations.
Second, the reduction in coherence traffic was achieved by
additional parallelization of serial sections of code. This
additional speedup also contributes to the overall wallclock
time improvement.

It would be hard to achieve these optimizations by con-
ventional time-based profiling alone. Such schemes might be
able to pin-point the source-code locations taking significant
amounts of execution time. However, our ability to understand
the exact flow of shared data across processor caches was
critical in identifying the ping-pong effect due to insufficient
parallelization.
C. SMG2000: Semi-coarsening Grid Solver

SMG2000 is part of the ASCI Purple benchmark set [17].
The SMG code utilizes the hypre library [22], that can

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y., ACCEPTED NOVEMBER 2006 11

TABLE VI
SMG: PER-REFERENCE STATISTICS (PROCESSOR-1)

Invalidations Optimized
No. Reference Group Coherence True False Optimization Coherence

Misses In Across In Across Strategy Misses
1 rp[] Read 1 170046 0 0 156585 13387 Code Transforms 256
2 rp[] Read 83509 0 0 80145 3529 for coarse-level 0
3 rp[] Write 43640 0 0 43305 3373 interleaving 0
4 xp[] Write 23193 0 0 22309 1284 2764
5 num threads 2 44362 44929 0 0 0 Remove sharing 0

�

������

������

������

������

�� �� �� ��

�	
��
������
�	�������
������
�	
��
��������
�	��
��������

Fig. 11. Breakdown of L2 misses

�
��
��
��
��
��
��
��
��
	�

���

� �� �� �� �� �� �� �� �� 	� ���

��
�
����������������������������������

�

�

��
���

���
��

���
��

���
���

��

�� �� �� ��

Fig. 12. SMG: Cumulative L2 Coherence Misses

�

�

��

��

��

��

� � � �
���	
���

��
��

��

�������

����
�����
����
�������������������

Fig. 13. SMG: Time for different Workloads

select between OpenMP and MPI parallelization. We use
the default settings of SMG2000 for our analysis (10 x
10 x 10 grid, cx=cy=cx=1.0). We then compare the
wall-clock execution time for the recommended full-sized
workloads for different optimization strategies.

Analysis: For all processors, the L2 miss rate is quite high,
ranging from 64% to 81%. Figure 11 shows that almost all
of the L2 misses are coherence misses. It also shows that
the number of invalidations received is very close to the
number of coherence misses. This indicates that almost all
invalidations received by the L2 cache eventually caused a
coherence miss.

Our instrumentation framework instrumented 11,047 mem-
ory access points, out of which only 338 access points (3%)
experienced coherence misses. Figure 12 shows the cumula-
tive coherence misses for the access points that experienced
coherence misses (“participating access points”) for each
processor. Notice that the cumulative distribution is quite
skewed — 10% of the participating access points accounted
for 82-85% of the total coherence misses for a processor.
Thus, by focusing on optimizing the coherence misses for the
top references, we can remove a large number of coherence
misses, potentially resulting in a significant performance gain.

The per-reference statistics for the top 5 references from
processor-1 are shown in Table VI. The statistics for other
processors were similar to those of processor-1. As with
IRS, we classify references into groups based on coherence
characteristics to facilitate analysis.

Group 1: References in this group are all array access
references. All references experience a very large volume
of in-region false-sharing invalidations. This indicates that

multiple processors are updating different data elements on
the same cache line, causing the cache line to ping-pong
between L2 caches of different processors. The cause of
the large volume of invalidations lies in the sub-optimal
implementation of loop-level parallelization by the hypre
library function. This function must choose one loop of a
triply-nested loop nest to parallelize. Each loop in the nest
iterates over a single coordinate axis. The order of iteration
is x,y,z from the inner to the outer loop. The function always
chooses the largest dimension for parallelization, with the
default being the innermost loop (x dimension). This results
in fine-grained interleaving of thread accesses to adjacent
array elements, resulting in large amounts of coherence traffic.
To correct this, we hoist the OpenMP parallelization to the
outermost loop (z dimension) ensuring that threads access
data on different cache lines.

Group 2: This group has a single store reference that
exhibits large volumes of true-sharing in-region invalidations.
The data element referenced is a shared variable that is simul-
taneously updated by all threads with the number of runnable
OpenMP threads, inside an omp parallel construct. We
eliminate this sharing by replacing the omp parallel
construct with separate calls to omp get max threads()
in each thread.

Results: The coherence misses after optimization are
shown in the last column of Table VI. Our optimizations
have eliminated almost all the coherence misses for these
references. We compare the performance impact of our op-
timizations on wall clock execution time for the following
workloads, as recommended by the SMG2000 benchmarking
criteria:

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y., ACCEPTED NOVEMBER 2006 12

1. 35x35x35 grid, OpenMP threads=1
2. 35x35x70 grid, OpenMP threads=2
3. 35x70x70 grid, OpenMP threads=4
4. 70x70x70 grid, OpenMP threads=8

All workloads have processor configuration 1x1x1 (-P 1
1 1), cx=0.1, cy=1.0, cz=10.0. The workloads scale up the
input grid size with increasing number of threads keeping
the overall data processed per processor constant. Figure 13
compares the wall-clock times for the different workloads.
says: 2293500 Coarsening represents code transforma-
tions for coarse-level interleaving of accesses (Group 1).
Coarsening+Sharing Removal additionally removes
unnecessary shared data access (Group 2). We observe that
both optimizations have significant impact on execution time,
with a maximum improvement of 73% for the 4th workload
(8 OpenMP threads).
D. AMMP: Molecular Mechanics Program

AMMP is a part of the SPEC2001M OpenMP benchmark
suite [18]. We use the smaller test data set for characteriz-
ing the coherence behavior of the benchmark, and later use
the larger train data set for measuring the performance
improvements on the target machine. The benchmark was
run with 4 OpenMP threads. We modified the scheduling
policy specified by the program to static scheduling,
from guided scheduling, for more repeatable performance
numbers. 5 As before, we bound the OpenMP threads to
separate processors using the bindprocessor system call.

For the coherence characterization, the address traces were
obtained on a 8-way SMP Power4-II platform6. We updated
the coherence simulator configuration to simulate the cache
configuration of this target platform, including shared L2
caches. We simulate the generic MESI protocol and do
not model the more specialized version of the protocol as
implemented on the target POWER4 platform. Table VII
shows the top references exhibiting coherence misses for
processor 3. The results for other processors are similar.

Invalidator Lists: Figure 14 shows the invalidator lists
for selected references. We shall describe invalidator lists
in more detail, since this is the first use case to use this
feature. The invalidator lists are shown graphically in the
following format. Each ellipse represents a reference in the
source code. An edge from ellipse A (source) to B (target)
denotes that A caused the memory line resident in some other
processor’s cache to be invalidated, and that memory line
was previously accessed by the reference B. Here, A must
be a store reference (since it caused an invalidation) and

5Static scheduling ensures that the each processor executes the same
iterations, over multiple runs of the program. With guided scheduling, the
iterations that are executed on a processor can vary across multiple program
run, leading to more variance in performance numbers.

6The Power3 machine that we used for earlier experiments was no longer
in service.

B can be either a load or a store reference. The numbers
on the edges denote the percentage of the invalidations of
the target reference that were accounted for by the source
reference. E.g., consider the invalidator list for reference Ref7
in Figure 14. Ref7 is a number Read, with source code
location atoms.c:111. The data brought into the cache by
this reference was invalidated 50% of the time by reference
highest Write (atoms.c::235) executing on processor1,
25% of the time by reference last Write (atoms.c::207)
executing on processor1 and 25% of the time by reference
last Write executing on processor2. The invalidator ref-
erences are accessing a different data element than the refer-
ence being invalidated (highest Write, last Write vs.
a number Read). The invalidations occur because all these
data elements are resident on the same cache line (an example
of false-sharing).

Analysis: We have grouped references showing similar
characteristics. Let us consider each group in more detail.

Group 1: There are 3 references in this group. Together,
they account for 72% of all the L2 coherence misses suffered
by this processor. For this group, almost all the invalidations
received are in-region true-sharing invalidations, i.e., other
processors wrote to the same shared data element within the
same OpenMP region causing the invalidation.

The invalidator lists for reference (a2->qzz) Read are
shown in Figure 14. It is apparent that all the invalidations
for this reference occur due to writes by processors 1 and 2
on the same source code line. In turn, these references are
invalidated by the same write instruction on processors 3 and
4. The cycle of invalidations causes a ping-pong exchange of
data across the processor caches.

A look at the source code shows why the ping-pong
exchange is occurring. All the references access nodes of
type struct atom. Consider reference a2->qzz) Read
at rectmm.c::1237.
1158:for(i=0; i< nng0; i++) {
1160: a2 = (*atomall)[natoms*o+i];
1180: omp_set_lock(&(a2->lock)); //capture lock
1237: a2->qzz -= (k2*(zt2 - third) + ...);
1306: omp_unset_lock(&(a2->lock));//release lock
1309: }//end loop

For each atom in the for loop, the shared atom data is
accessed in a critical section guarded by the a2->lock
OpenMP lock variable. Our results indicated that the update
of the a2->qzz element suffers frequent coherence misses
due to writes to the same element by different processors.

It is difficult to re-structure the code to remove sharing
of the atom elements. Instead, we use prefetching to pre-
load the data that will be accessed in the near future by
this processor using the POWER4 dcbt (“Data Cache Block
Touch”) instruction. Prefetching is beneficial even with larger
data sets when the working set size increases beyond the L2
cache capacity and most of the data is fetched from memory

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y., ACCEPTED NOVEMBER 2006 13

TABLE VII
AMMP: PER-REFERENCE STATISTICS

Invalidations
Reference Group Coh. True False Optimization

file line name misses in across in across strategy
1 rectmm.c 1184 (a2->py) Read 45321 88081 0 4489 0
2 rectmm.c 1237 (a2->qzz) Read 1 43905 89614 0 0 0 Prefetch
3 vnonbon.c 536 (a2->dy) Read 6764 35700 1639 0 0
4 atoms.c 95 a number Read 9580 0 9582 0 0
5 atoms.c 99 new Write 2395 0 2395 0 0 Remove
6 atoms.c 194 (*name) Read 2394 0 2395 0 0 Superfluous
7 atoms.c 111 a number Read 2 9582 0 1 9581 0 Parallelization
8 atoms.c 144 a number Read 4791 0 0 4792 0
9 atoms.c 115 serial Read 2394 0 0 0 2395

10 atoms.c 115 serial arr[] Write 2095 0 0 0 2395
11 atoms.c 116 serial p[] Write 2095 0 0 0 2395

atoms.c::207

atoms.c::111

50

last_Write
PROC_2

atoms.c::207last_Write
PROC_1

2525

atoms.c::235

PROC_1
highest_Write

a_number_Read
PROC_3

PROC_2

PROC_3

rectmm.c::1237

6931

22 77
31 78

78 21

6534

rectmm.c::1237

rectmm.c::1237 rectmm.c::1237

rectmm.c::1237

PROC_3

PROC_1

(a2−>qzz)_Write

Ref2: (a2−>qzz)_Read

(a2−>qzz)_Write
PROC_4

(a2−>qzz)_Read

(a2−>qzz)_Write

(a2−>qzz)_Write

100

a_number_Write
PROC_1

atoms.c::105

PROC_3

atoms.c::95

Ref4: a_number_Read

a_number_Read

Ref7: a_number_Read
Fig. 14. Invalidators for Selected References

rather than from another processor’s L2 cache. We apply
this optimization for all the 3 references in this group. The
resulting performance improvements are discussed below.

Group 2: All references in group 2 belong to the function
atom() in atom.c. There are 3 distinct reference sub-groups
receiving true-inregion, false-inregion and false-across-region
invalidations, respectively. Figure 14 shows the invalidators
for reference4 a number Read (atoms.c::95) and reference7
a number Read (atoms.c::111). Reference-4 is invalidated
always by a write in processor-1 occurring at atoms.c::105.
Reference7 suffers false-sharing invalidations due to writes to
the shared variables highest and last in other processors.

We further reduce the coherence misses for this group as
follows. Consider reference4 (atoms.c::95) and its invalidator
(atoms.c::105) in the source code.
94:#pragma omp parallel
95: if (omp_get_thread_num() ==

a_number % omp_get_num_threads())
96: {
97: new=malloc(ALONG);
98: }

.......
105: a_number++;

Variable a number increases linearly with each call to
the atom() function. The “if” condition is only satisfied by
one thread for each call, so the parallel region is extremely
imbalanced. Following the OpenMP region, a number is
updated by the master thread (line 105), which causes a
coherence miss on other processors when they attempt to read

a number the next time. We can avoid this needless coherence
miss and eliminate the overhead of spawning the parallel
region by removing this superfluous parallelization. There
are 2 other similar OpenMP regions that are superfluous;
they together cause all the other coherence misses in this
group. We shall remove OpenMP parallelization for these
regions and denote this optimization “Shared-Removal” in
the performance results discussed below.

Results: In this section, we compare the performance of
the original version of ammp with our optimized versions
(Shared-Removal and Shared-Removal + Prefetching). Since
our simulator currently does not simulate the effect of prefetch
instructions, we do not show the simulator results for the
optimized versions. Instead, we measure the performance
on the real physical machine using hardware performance
counters, shown in Figure 15. For these experiments, we
used the larger train data set as input. The performance
measurements were obtained for each bound OpenMP thread
using 4 threads on a non-interactive Power4-II 8-way SMP
node. For maximum performance, we force the threads to
busy-wait by setting the XLSMPOPTS environment variable
to “spins=0:yields=0”. The counter values were averaged over
4 runs. We observed very low deviation among runs with a
coefficient of variance less than 0.6 for all counter values.

Figure 15(a) and 15(b) shows the reduction in per-
processor cycles and per-processor L1 data cache misses,
over the original version. Figure 15(c) shows the reduction

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y., ACCEPTED NOVEMBER 2006 14

�

�

�

�

�

�

�

�� �� �� ��
�����		��	

�
�

��
��

�

��

�

����������
����
����������
������������������

(a) Reduction in Processor Cycles Mea-
sured with Hardware Counters

���

�

��

��

��

��

��

��

�� �� �� ��

�����		��	

�
�

��
��

�

��

�

����������
����
����������
������������������

(b) Reduction in L1 Data Cache Misses
Measured with Hardware Counters

�

�

�

�

�

�

�

��
	

��

�

�

��

�

����������

���
����������

�����
�����������

(c) Reduction in Wall-Clock Time
Fig. 15. Reduction in Execution Metrics for AMMP

in wall-clock time for the application. We observe that
Sharing-Removal leads to a measurable decrease in the
number of cycles for each processor and negligible reductions
in the overall wall-clock time. This is because the time spent
in the atom() function is less significant compared to the
overall execution time. The impact of this optimization may
increase with a larger number of processors, especially in cc-
NUMA systems where the cost of accessing remote memory
and remote caches is higher than the cost of accessing their
local counterparts [23].
Sharing-Removal + Prefetching dramatically

decreases the magnitude of L1 data cache misses for all
processors, ranging from 21% to 47% across processors.
This leads to a 0.5% to 5.3% reduction in processor cycles.
Overall, Sharing-Removal+Prefetching leads to a
5% reduction in wall-clock time.
E. Other benchmarks

In addition to the benchmarks discussed above, our frame-
work was able to find incorrect/sub-optimal instances of
parallelization in several other benchmarks — sPPM from
the ASCI Purple suite [17], 301.wupwise m from the SPEC
OMP2001M suite and FT from the C OpenMP version of the
NAS-2.3 suite [24]. We discuss them briefly below.

sPPM/ASCI-Purple: Our framework pin-pointed a large
number of in-region true-sharing invalidations that were not
protected by locks (initbuf() function in sppm/main.m4). The
code is shown in Figure 16. The PLOOP macro is expanded
by the m4 preprocessor to OpenMP pragmas. Due to incorrect
parallelization, all threads update the mm1, mm2, mm3,
mm4, mm5 scalar variables that are used in the body of
the loop without critical sections. This is reflected in our
coherence simulation results as true-sharing in-region invali-
dations. However, program correctness is not affected because
the values of the overwritten variables are monotonically
increasing and are used as indices for initializing array
elements to 0. Thus, some array elements may be initialized
multiple times, but the problem does not affect program
correctness. Also, the initialization only happens once and
does contribute significantly to the overall execution time.
This problem manifests due to a combination of incorrect

parallelization and multiple updates spread over 50 lines of
code. It would be very hard to detect this problem by mere
visual inspection.

310.wupwise m/SPEC-OMP2001M: Our framework
found two instances of sub-optimal parallelization (rndcnf()
and rndphi() functions). The concerned code for rndcnf()
is shown in Figure 17. The U array is initialized to 0 in
parallel, but it is immediately overwritten by the serial thread
in the following do loop. This shows up in our simulation
results as large across-region true-sharing invalidations by
thread 0 (master thread). A similar situation arises in the
rndphi() function. The initialization to 0 can be removed.
Furthermore, the second DO loop may be parallelized.
However, these two functions do not contribute significantly
to the overall execution time.

FT/NAS-2.3-C: Our framework found large numbers of in-
region false-sharing invalidations and coherence misses in the
loop nest shown in Figure 18 (function compute indexmap()
of ft.c). All the invalidations and coherence misses occurred
for the update of the indexmap variable on line 436.
A closer inspection of the loop nest shows the problem:
The i loop is parallelized but the i variable indexes the
contiguous dimension of the array indexmap. As a result,
multiple threads write simultaneously to adjacent elements of
indexmap located in the same cache line, which leads to a
ping-pong exchange of the memory line between processors.
This problem is similar to the “coarsening” problem discussed
for SMG2000 (Section IV-C). The problem can be alleviated
by reordering the loop nest in memory order (k,j,i) and paral-
lelizing the k loop instead. We found significant improvement
in execution time for the loop nest after this optimization.
However, the compute indexmap() function is not invoked
after the initialization phase. Hence, the optimization had
negligible impact on the overall program execution time.

V. RELATED WORK

There are several software-based and hardware-based ap-
proaches for memory performance characterization of shared
memory multiprocessor systems. Gibson et al. provides a
good overview of the trade-offs of each approach [25]. At
one end of the spectrum are complete software machine

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y., ACCEPTED NOVEMBER 2006 15

1042: PLOOP(ii,1,iq,11,<<

........
do jj=1,iq*ndata*nbdy

mi xma(mm1+jj) = zero
........

enddo
1054: mm1 = mm1 + iq*ndata*nbdy

........
1061: mm2 = mm2 + iqb*ndata*nbdy

........
1072: mm3 = mm3 +

(nbdy*2+iq)*ndata*nbdy2
........

1083: mm4 = mm4 + ndata*2*nbdy*nbdy2
........

1090: mm5 = mm5 + ndata*2*nbdy2*nbdy2
1092: >>)

Fig. 16. sPPM, initbuf() in main.m4

48: !$OMP PARALLEL DO
49: DO I=1,LENGTH
50: U(I) = 0.0
51: ENDDO
52: DO 100 I=1,LENGTH
53: U(I) = DLARND(2,SEED)
54: 100 CONTINUE

Fig. 17. 310.wupwise m, rndcnf() in
rndcnf.f

427: #pragma omp for
428: for (i = 0; i < dims[2][0]; i++){
429: ii = (i+1+xstart[2]-2+NX/2)%NX - NX/2;
430: ii2 = ii*ii;
431: for (j = 0; j < dims[2][1]; j++) {
432: jj = (j+1+ystart[2]-2+NY/2)%NY - NY/2;
433: ij2 = jj*jj+ii2;
434: for (k = 0; k < dims[2][2]; k++) {
435: kk = (k+1+zstart[2]-2+NZ/2)%NZ - NZ/2;
436: indexmap[k][j][i] = kk*kk+ij2;
437: }
438: }
439: }
Fig. 18. FT, compute indexmap in ft.c

simulators. RSim is a simulator for ILP multiprocessors with
support for CC-NUMA architectures with a invalidation-
based directory mapped coherence protocol [4]. SimOS is a
complete machine simulator capable of booting commercial
operating systems [6]. However, these frameworks simulate
hardware and architecture state to a great detail, increasing
simulation overhead. This limits the size of the programs and
workloads that they can run. In contrast, ccSIM is an event-
based simulator that simulates only memory hierarchies. Our
instrumentation tool is flexible and allows us to collect partial
traces of only the pertinent memory access. Thus, we can
handle a much larger range of programs and workloads.
More importantly, these simulators provide only bulk statistics
intended for evaluating architecture mechanisms. In contrast,
we aim at providing the application programmer with infor-
mation on the shared-memory behavior of the program and
correlate metrics to higher levels of abstraction, such as line
numbers and source code data structures.

Execution-driven simulators are a popular approach for im-
plementing memory access simulators. Code annotation tools
annotate memory access points. Annotations call handlers,
which invoke the memory access simulator. Augmint [5],
Proteus [1] and Tango [3] are examples of this approach.
All these tools use static code annotation, i.e., they annotate
the target code at the source, assembly or object code level.
MemSpy [26] and CProf [27] are cache profilers that aim at
detecting memory bottlenecks. CProf relies on post link-time
binary editing through EEL [28], [29]. Lebeck and Wood also
applied binary editing to substitute instructions that reference
data in memory with function calls to simulate caches on-the-
fly [30]. Other approaches rely on hardware support, such as
watchdogs [31] or statistical sampling with hardware support
in ProfileMe [32], to gather information on data references.
Scal-Tool detects and quantifies scalability bottlenecks in dis-
tributed shared memory architectures, such as the SGI Origin
2000 [33]. It determines inefficiencies due to cache capacity
constraints, load imbalance and synchronization. Nikolopou-
los et al. discuss OpenMP optimizations for irregular codes
based on memory reference tracing to indicate when page
migration and loop redistribution is beneficial. This results
in comparable performance of optimized OpenMP with MPI

parallelization, again on the Origin 2000 [34].
CProf and MemSpy use static binary rewriting, but they

only provide information about uniprocessor misses (cold,
capacity, conflict). In contrast, we focus on characterizing
shared memory traffic.

All other tools (besides CProf and MemSpy) discussed
above do not allow misses to be related to source code and
data structures. Furthermore, our work differs from these
works in the fundamental approach of rewriting binaries,
which is neither restricted to a special compiler or program-
ming language, nor does it preclude the analysis of library
routines.

In addition, execution-driven simulators are often tied to
one architecture due to the requirements of annotating the
code at assembly or object level. DynInst is available on
a number of architectures. Porting our framework to these
platforms only involves changing the memory instructions
to be instrumented. Another major difference addresses the
overhead of large data traces inherent to all these approaches.
We allow the analysis of partial traces and employ trace
compression to provide compact representations.

SM-prof is an aggregate classification tool for shared-
memory references resulting in coherence traffic [35]. It
classifies all accesses into access classes depending on how
many processors read/write to the same data block in the
current time slot. It is up to the analyst to find and quantify
the location and magnitude of the coherence bottleneck. The
analysis tool does not provide this information at the level
of individual access points, but only at the level of each
access class. This causes to authors “to suspect false sharing”
[35]. In contrast, ccSIM is a per-reference coherence analysis
tool. We generate detailed coherence statistics for each access
point, as well as for global data structures. Metrics include
the magnitude of coherence misses, true and false sharing
invalidations and classification of invalidations across and in
a parallel OpenMP regions. Thus, we do not suspect, we know
when false/true sharing occurs (among other symptoms).

The SIGMA (Simulator Infrastructure to Guide Mem-
ory Analysis) [36] system has many similarities with our
work. It uses post-link binary instrumentation and online
trace compression, and allows tagging of metrics to source

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y., ACCEPTED NOVEMBER 2006 16

code constructs. A toolkit by Marin and Mellor-Crummey
uses statistical methods based on dynamic measurements of
edge counters and histograms of reuse distances for each
memory reference to predict cache and execution behavior
across different architectural platforms [37]. Both of these
approaches are limited to uniprocessor systems while we
focus on analyzing coherence traffic for SMPs. The latter
work does not focus on transformations, unlike our work.

Recently, most architectures have added hardware counters
that provide information on the frequency of hardware events,
e.g., to count shared memory events. Portable APIs like
PAPI provide a reasonably platform-independent method of
accessing these counters [38]. Hardware counters impose no
runtime overhead, and querying counters is typically of low
overhead. However, they only provide aggregate statistics
without any relation to the source code, and there are only
a limited number of counters available. In addition, there
are often restrictions on the type of events that can be
counted simultaneously. HPCToolkit uses statistical sampling
of performance counter data and allows information to be
correlated to the program source [39]. Our method goes
beyond this granularity by identifying evictors within caches
and coherence traffic in SMP to indicate source of ineffi-
ciency. A number of commercial tools, such as Intel’s VTune,
SGI’s Speedshop, Sun’s Workshop tools also use statistical
sampling with source correlation, albeit at a coarser level that
HPCToolkit or our approach. It is possible to finer-grained in-
formation with customized hardware. The FlashPoint system
uses a custom system node controller to monitor coherence
events [25]. In general, hardware monitors are fast but may
constrain the number of events that can be monitored. At this
point in time, they lack a wide acceptance in practice.

Krishnamurthy and Yelick develop compiler analysis and
optimization techniques for the shared-memory programming
paradigm using SplitC as an example [7]. Their main concern
is the hardware-supported coherence model, namely weak
consistency. They are specifically concerned about writes
and invalidations occurring out-of-order. Their optimizations
reflect the constraints of reordering writes in the presence of
locks and barriers with respect to weak consistency and em-
ploy message pipelining (aggregation of writes) and reduction
of communication (two-way to one way or elimination). Satoh
et al. study compiler optimizations for OpenMP in a dis-
tributed shared memory system based on data-flow techniques
to analyze thread interactions [8]. Optimizations include
barrier removal and data privatization to reduce coherence-
induced messages. Our work shares the aim at optimizing
shared-memory applications with these approaches. However,
we take a radically different approach by analyzing traces to
determine if and where inefficiencies in terms of coherence
traffic exist and if there is room for improvements.

VI. CONCLUSION

This work describes a novel framework to analyze cache
coherence and to correlate detailed information back to
source-code constructs. At the center of our framework is
ccSIM, a cache-coherent memory simulator. This simulator
obtains coherence metrics and retains reference correlations
based on actual data traces. The traces are obtained via on-
the-fly dynamic binary rewriting of OpenMP benchmarks
executing on a contemporary SMP architecture. We explored
the degrees of freedom in interleaving data traces from the
different processors with respect to simulation accuracy com-
pared to hardware performance counters. We evaluated the
run-time overhead of software instrumentation and several on-
line trace compression algorithms. We also provided detailed
coherence information per data reference and relate them to
their data structures and reference locations in the code.

Experimental results indicate a close match between our
simulations and the observed hardware performance coun-
ters for coherence events. By deriving detailed coherence
information, it becomes feasible to indicate the location of
invalidations in the application code. Benefits of this detailed
level of information are demonstrated by our ability to infer
opportunities for optimizations. Without ccSIM, these sources
of coherence bottlenecks would not have easily been detected
and, more importantly, localized. The resulting program trans-
formations ranged from coarsening of access granularity over
data alignment to call parallelization, critical section removal
with privatization and prefetching. Measurements of opti-
mized codes showed both significantly decreased coherence
traffic and execution time savings.

REFERENCES

[1] E. A. Brewer, C. N. Dellarocas, A. Colbrook, and W. E. Weihl,
“Proteus: A high-performance parallel-architecture simulator,” in Pro-
ceedings of the SIGMETRICS and PERFORMANCE ’92 International
Conference on Measurement and Modeling of Computer Systems.
New York, NY, USA: ACM Press, June 1992, pp. 247–248.

[2] D. Burger, T. M. Austin, and S. Bennett, “Evaluating future micropro-
cessors: The simplescalar tool set,” University of Wisconsin, Madison,
Technical Report CS-TR-1996-1308, July 1996.

[3] H. Davis, S. R. Goldschmidt, and J. Hennessy, “Multiprocessor
simulation and tracing using tango,” in Proceedings of the 1991
International Conference on Parallel Processing, vol. II, Software.
Boca Raton, FL: CRC Press, Aug. 1991, pp. II–99–II–107.

[4] C. Hughes, V. Pai, P. Ranganathan, and S. Adve, “Rsim: Simulating
Shared-Memory Multiprocessors with ILP Processors,” IEEE Com-
puter, vol. 35, no. 2, pp. 40–49, February 2002.

[5] A.-T. Nguyen, M. Michael, A. Sharma, and J. Torrellas, “The augmint
multiprocessor simulation toolkit: Implementation, experimentation
and tracing facilities,” in IEEE International Conference on Computer
Design: VLSI in Computers and Processors. Washington - Brussels
- Tokyo: IEEE Computer Society, Oct. 1996, pp. 486–491.

[6] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta,
“Complete computer system simulation: The SimOS approach,”
IEEE parallel and distributed technology: systems and applications,
vol. 3, no. 4, pp. 34–43, Winter 1995. [Online]. Avail-
able: http://www.computer.org/concurrency/pd1995/p4034abs.htm;
http://dlib.computer.org/pd/books/pd1995/pdf/h40034.pdf

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y., ACCEPTED NOVEMBER 2006 17

[7] A. Krishnamurthy and K. Yelick, “Optimizing parallel programs
with explicit synchronization,” in ACM SIGPLAN Conference on
Programming Language Design and Implementation, 1995, pp. 196–
204.

[8] S. Satoh, K. Kusano, and M. Sato, “Compiler optimization techniques
for openMP programs,” Scientific Programming, vol. 9, no. 2-3, pp.
131–142, 2001.

[9] J. Vetter and F. Mueller, “Communication characteristics of large-
scale scientific applications for contemporary cluster architectures,”
in International Parallel and Distributed Processing Symposium, Apr.
2002.

[10] ——, “Communication characteristics of large-scale scientific appli-
cations for contemporary cluster architectures,” Journal of Parallel
Distributed Computing, vol. 63, no. 9, pp. 853–865, Sept. 2003.

[11] B. Buck and J. K. Hollingsworth, “An API for runtime code patching,”
The International Journal of High Performance Computing Applica-
tions, vol. 14, no. 4, pp. 317–329, Winter 2000.

[12] J. Marathe, F. Mueller, T. Mohan, B. R. de Supinski, S. A. McKee,
and A. Yoo, “Metric: Tracking down inefficiencies in the memory
hierarchy via binary rewriting,” in International Symposium on Code
Generation and Optimization, Mar. 2003, pp. 289–300.

[13] Official OpenMP Specification, www.openmp.org, May
2005. [Online]. Available: http://www.openmp.org/drupal/mp-
documents/spec25.pdf

[14] J. Marathe, A. Nagarajan, and F. Mueller, “Detailed cache coherence
characterization for openmp benchmarks,” in International Confer-
ence on Supercomputing, June 2004.

[15] H. Jin, M. Frumkin, and J. Yan, “The openmp implementations of
nas parallel benchmarks and its performance,” NASA Ames Research
Center, TR NAS-99-011, Oct. 1999.

[16] W. Gunsteren and H. Berendsen, “Gromos: Groningen molecular
simulation software,” Laboratory of Physical Chemistry, University
of Groningen,” TR, 1988.

[17] LLNL, “Asci purple codes,” 2002, http://www.llnl.gov/asci/purple.
[18] SPEC, “SPEC OMPM2001 benchmarks,” 2001,

http://www.spec.org/omp.
[19] J. Marathe, “METRIC: Tracking memory bottlenecks via binary

rewriting,” Master’s thesis, North Carolina State University, June
2003.

[20] M. F. Oberhumer, “LZO real-time data compression library,” 2002.
[Online]. Available: http://www.oberhumer.com/opensource/lzo/

[21] J. Marathe, F. Mueller, and B. de Supinski, “A hybrid hard-
ware/software approach to efficiently determine cache coherence
bottlenecks,” in International Conference on Supercomputing, June
2005, pp. 21–30.

[22] R. D. F. E. Chow, A. J. Cleary, “Design of the hypre preconditioner
library,” in SIAM Workshop on Object Oriented Methods for Inter-
operable Scientific and Engineering Computing, Oct. 1998.

[23] J. Marathe and F. Mueller, “Hardware profile-guided automatic page
placement for ccnuma systems,” in ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, Mar. 2006, pp. 90–
99.

[24] RWCP, “C versions of nas-2.3 serial programs,” 2003,
http://phase.hpcc.jp/Omni/benchmarks/NPB.

[25] J. Gibson, “Memory profiling on shared memory multiprocessors,”
Ph.D. dissertation, Stanford University, July 2003.

[26] M. Martonosi, A. Gupta, and T. Anderson, “Memspy: analyzing
memory system bottlenecks in programs,” in Proceedings of the 1992
ACM SIGMETRICS joint international conference on Measurement
and modeling of computer systems, 1992, pp. 1–12.

[27] A. R. Lebeck and D. A. Wood, “Cache profiling and the SPEC
benchmarks: A case study,” Computer, vol. 27, no. 10, pp. 15–26,
Oct. 1994.

[28] J. Larus and T. Ball, “Rewriting executable files to measure program
behavior,” Software Practice & Experience, vol. 24, no. 2, pp. 197–
218, Feb. 1994.

[29] J. R. Larus and E. Schnarr, “EEL: Machine-independent executable
editing,” in ACM SIGPLAN Conference on Programming Language
Design and Implementation, June 1995, pp. 291–300.

[30] A. R. Lebeck and D. A. Wood, “Active memory: A new abstraction
for memory system simulation,” ACM Transactions on Modeling and
Computer Simulation, vol. 7, no. 1, pp. 42–77, Jan. 1997.

[31] B. R. Buck and J. K. Hollingsworth, “Using hardware
performance monitors to isolate memory bottlenecks,” in
Supercomputing, ACM, Ed., 2000, pp. 64–65. [Online]. Available:
http://www.sc2000.org/proceedings/techpapr/papers/pap197.pdf

[32] J. Dean, J. Hicks, C. Waldspurger, W. Weihl, and G. Chrysos,
“ProfileMe: Hardware support for instruction-level profiling on out-
of-order processors,” in Proc. 30th Annual IEEE/ACM Int. Symp. on
Microarchitecture (MICRO-97), Dec. 1997, pp. 292–302.

[33] Y. Solihin, V. Lam, and J. Torrellas, “Scal-tool: Pinpointing and
quantifying scalability bottlenecks in dsm multiprocessors,” in Su-
percomputing, Nov 1999.

[34] D. Nikolopoulos, C. Polychronopoulos, and E. Ayguade, “Scaling
irregular parallel codes with minimal programming effort,” in Su-
percomputing, 2001.

[35] M. Brorsson, “A tool to visualise and find cache coherence perfor-
mance bottlenecks in multiprocessor programs,” in ACM SIGMET-
RICS Conference, May 1995, pp. 178–187.

[36] L. DeRose, K. Ekanadham, J. K. Hollingsworth, , and S. Sbaraglia,
“SIGMA: A simulator infrastructure to guide memory analysis,” in
Supercomputing, Nov. 2002.

[37] G. Marin and J. Mellor-Crummey, “Cross architecture performance
predictions for scientific applications using parameterized models,”
in SIGMETRICS Conference on Measurement and Modeling of Com-
puter Systems, 2004, p. (to appear).

[38] S. Browne, J. Dongarra, N. Garner, K. London, , and P. Mucci,
“A scalable cross-platform infrastructure for application performance
tuning using hardware counters,” in Supercomputing, Nov. 2000.

[39] J. Mellor-Crummey, R. Fowler, and D. Whalley, “Tools for
application-oriented performance tuning,” in International Conference
on Supercomputing, June 2001, pp. 154–165.

Frank Mueller (mueller@cs.ncsu.edu)
is an Associate Professor in Computer
Science and a member of the Cen-
ters for Embedded Systems Research
(CESR) and High Performance Simula-
tions (CHiPS) at North Carolina State
University. Previously, he held positions
at Lawrence Livermore National Labo-

ratory and Humboldt University Berlin, Germany. He received
his Ph.D. from Florida State University in 1994. He has pub-
lished papers in embedded and real-time systems, compilers
and parallel/distributed systems. He is a member of ACM
SIGPLAN & SIGBED, the IEEE Computer Society and a
Senior Member of the ACM and the IEEE. He is a recipient
of an NSF Career Award, an IBM Faculty Award and a
Fellowship from the Humboldt Foundation.

Jaydeep Marathe (jp-
marath@ncsu.edu) is a doctoral student
in the Computer Science Department
of the North Carolina State University.
He is interested in parallel performance
evaluation and optimization.

