
Exploiting Synchronous and Asynchronous DVS
for Feedback EDF Scheduling on an Embedded
Platform

YIFAN ZHU and FRANK MUELLER, North Carolina State University

Contemporary processors support dynamic voltage scaling (DVS) to reduce power consumption
by varying processor voltage/frequency dynamically. We develop power-aware feedback-DVS algo-
rithms for hard real-time systems that adapt to dynamically changing workloads. The algorithms
lower execution speed while guaranteeing timing constraints.

We study energy consumption for synchronous and asynchronous DVS switching on a PowerPC
board. Energy, measured via data acquisition, is reduced up to 70% over näıve DVS for our
feedback scheme with 24% peak savings over previous algorithms. These results, albeit differing
in quantity, confirm trends observed under simulation. They are the first of their kind on an
embedded board.

Categories and Subject Descriptors: D.4.1 [Operating Systems]: Process Management—scheduling; D.4.7 [Op-
erating Systems]: Organization and Design—real-time systems and embedded systems

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Real-Time Systems, Scheduling, Dynamic Voltage Scaling,
Feedback Control

1. INTRODUCTION

Energy consumption has always been a critical issue for embedded and mobile systems
where the system service time largely depends on the limited battery capacity. Software
mechanisms have been widely exploited to reduce the energy consumption of those embed-
ded systems, especially the energy costs from processors and I/O devices. Some coarse-
grained power saving solutions have been implemented in operating systems, which turn
off the CPU or I/O devices whenever the system idle time exceeds a certain threshold.
These solutions restrict the system functionality when the CPU or I/O devices are shut
down, usually resulting in much longer response times for external requests. Therefore,
fine-grained power saving mechanisms have been studied in recent years for a better trade-

This work was supported in part by NSF grants CCR-0208581, CCR-0310860 and CCR-0312695.
Authors’ address: Y. Zhu, F. Mueller, Department of Computer Science and Center for Embedded Systems
Research, North Carolina State University, Raleigh, NC 27695-7534, e-mail: mueller@cs.ncsu.edu, phone:
+1.919.515.7889
Preliminary versions of this paper, at different stages, appeared in the internal IBM Pa=c2 Conference [Anantara-
man et al. 2004] and the ACM SIGPLAN Conference on Language, Compiler, and Tool Support for Embedded
Systems, 2005 [Zhu and Mueller 2005].
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 2006 ACM 1539-9087/2006/0200-0001 $5.00

ACM Transactions on Embedded Computing Systems, Vol. 5, No. ?, 06 2006, Pages 1–24.

2 · Yifan Zhu and Frank Mueller

off between system performance and energy consumption. The philosophy behind those
mechanisms is to keep processors or I/O devices running without heavy-weight shutdown
operations. Processors or I/O devices dynamically switch between low power states and
high power states with little overhead. The degradation of quality of service is usually
transparent to users so that low power consumption is achieved while providing continu-
ous system services and short interrupt response times.

Dynamic voltage scaling (DVS) is one of the fine-grained power saving mechanisms
proposed in recent years for microprocessors. It is based on the relationship of

P ∝ V 2
× f (1)

where P denotes the power dissipation of CMOS-based chips, V is the supply voltage and
f the clock frequency the processor [Chandrakasan et al. 1992]. Because of the quadratic
relationship between the supply voltage and the power consumption, lowering the volt-
age results in significant power reductions for CMOS circuits. Since multiple voltage and
frequency levels are supported in contemporary microprocessors and supporting chipsets,
DVS can leverage power consumption by dynamically scaling the processor supply voltage
up or down depending on the computational demand of the workload. For any concrete
processor, a higher clock frequency mandates a higher supply voltage. Hence, DVS con-
trols both voltage and frequency simultaneously. In the following, we use the term dynamic
voltage scaling to refer to combined voltage and frequency switching.

DVS algorithms for general-purpose systems often use various heuristics to reduce pro-
cessor voltage or frequency according to observed system workload [Weiser et al. 1994;
Pering et al. 1995; Govil et al. 1995]. DVS for hard real-time systems, in contrast, requires
more subtle control to not only consider the voltage and frequency but also the timing con-
straints of a task set. Each task in a real-time system has a certain deadline associated with
it. Since the execution of the task has to finish before that deadline, reducing the processor
frequency, i.e., slowing down the speed of execution, may not always feasible in a real-
time context. Different schemes have been proposed in previous work to integrate DVS
algorithms into real-time systems [Pillai and Shin 2001; Aydin et al. 2001; Grunwald et al.
2000]. The objective is to derive a safe clock frequency considering timing constraints so
that just enough processing capability is provided to complete a given task before its dead-
line. Th primary objective is to meet deadlines, i.e., to guarantee schedulability of hard
real-time tasks while the secondary objective is to safe as much energy as possible under
the timing constraints.

In this work, we focus on DVS algorithms for hard real-time systems with earliest-
deadline-first (EDF) scheduling. Hard real-time systems are mission-critical control sys-
tems where a single deadline miss may have catastrophic effects, i.e., the highest mandate
is to meet all deadlines without compromise. We develop several power-aware schemes
for feedback DVS algorithms under EDF scheduling. The feedback DVS algorithms ad-
just real-time tasks’ speed dynamically according to feedback of past execution workload
characteristics and guarantee that deadlines can still be met at the adjusted speeds.

Our previous work presented a simulation framework for DVS scheduling algorithms
and reported results from simulations with different task sets [Dudani et al. 2002; Zhu
and Mueller 2004]. In this paper, we refine this framework and further develop feed-
back schemes considering practical design and implementation issues on a real embedded
platform. Specifically, our feedback DVS algorithm targets real-time tasks with dynamic
workloads. It aggressively reclaims unused or under-utilized CPU resources according to

ACM Transactions on Embedded Computing Systems, Vol. 5, No. ?, 06 2006.

Exploiting Synchronous and Asynchronous Dynamic Voltage Scaling... · 3

the dynamic variation of task workloads. Different feedback schemes are compared with
each other and the actual energy consumption is measured on an embedded platform. Al-
though the relationship of P ∝ V 2

× f is useful for simulation, the actual power savings
also depend on other architectural and operating system factors. DVS algorithm overhead,
such as the voltage and frequency switching overhead, and the DVS scheduling overhead,
are measured and evaluated quantitatively in an actual embedded environment.

Traditionally, the processor voltage and frequency switching operation, although much
of lighter weight than the overheads associated with sleep modes, still takes a small amount
of time to complete. All other tasks have to be stooped during that interval. A unique DVS
feature supported by our embedded platform is asynchronous switching, which allows ap-
plications to continue execution even during the frequency and voltage transitions. We
study this asynchronous switching feature with our feedback DVS algorithm and compare
it with synchronous switching operations.

Another factor that needs to be considered is the DVS scheduling overhead. Since DVS
schemes are integrated into the operating system scheduler, the scheduler itself may ex-
ecute at different processor speeds, which impacts timing properties of the entire system
and requires accurate modeling. We examine all these issues by implementing our feed-
back DVS algorithm as well as several other DVS algorithms on an IBM PowerPC 405LP
embedded board, which was specially modified for power management research. We show
the strength of our feedback DVS algorithms by comparing their energy consumption with
other DVS algorithms on the embedded platform.

This paper is organized as follows. Section 2 gives a brief introduction of the DVS
scheduling framework and task model. Section 3 discusses our DVS algorithm and two
feedback mechanisms proposed for the practical environment. Detailed experimental re-
sults are presented in Section 4. Section 5 discusses some of the related work. Conclusions
are given in Section 6.

2. TASK MODEL

We use a periodic, fully preemptive and independent task model in our framework. Each
task Ti is defined by a triple (Pi, Di, Ci), where Pi is the period of Ti, Di is the relative
deadline of Ti, and Ci is the worst-case execution time (WCET) of Ti, measured at the
maximal processor frequency. We always assume Di=Pi in our model. The periodically
released instances of a task are called jobs. Tij is used to denote the jth job of task Ti. Its
release time is Pi ∗ (j − 1) and its deadline is Pi ∗ j. We use cij to represent the actual
execution time of job Tij . Different instances of a task Ti usually has different actual
execution times, which are always bounded by that task’s worst case execution time Ci.
The hyperperiod H of the task set is the least common multiplier (LCM) among the tasks’
periods.

With the above task model, we examine the DVS scheduling problem in hard real-time
systems with the earliest deadline first (EDF) policy. The EDF scheduler always assigns
the highest priority to the task with the earliest deadline and schedules tasks preemptively.
EDF is especially attractive to DVS algorithms because of the dynamic priority for each
task, which allows the DVS algorithm to reclaim un-used slack as much as possible. We
integrate our feedback DVS algorithm into the operating system scheduler. Feedback DVS
algorithm incrementally adjusts system behavior according to feedback information from
previous workload characteristics to achieve a low energy consumption for the task set.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. ?, 06 2006.

4 · Yifan Zhu and Frank Mueller

In order to assess the algorithms for their suitability and energy saving performance, we
regard the entire system as consisting of the following two components: (1) an EDF sched-
uler, (2) a DVS scheduler. The EDF scheduler always chooses the highest priority task in
the task set while The DVS scheduler assigns a particular processor voltage and frequency
setting to that task. These two components are independent of each other so that the EDF
scheduler is capable of working with different DVS algorithms.

In the following, we describe in detail the feedback DVS scheduler and several feedback
schemes used in the framework.

3. FEEDBACK DVS ALGORITHM

The feedback DVS algorithm is based on the task-splitting scheme, as depicted in Figure
1. Instead of running the entire task at a uniform speed, each task’s worst case execution

TBTA

CA/a CB

t

f_max
Frequency

Fig. 1. Task Splitting

image is divided into two sub-tasks: TA and TB . These two subtasks are allowed to execute
at different frequency and voltage levels. TB always executes at the maximum frequency
level fmax, which allows TA capable to execute at a lower frequency level than it could
without task splitting. We expect that the task can finish its actual execution within TA

while reserving enough time in TB to meet the deadline if it requires its full WCET. An
optimal case is achieved if the entire task completes within the TA portion. With this
scheme, we can safely scale the frequency of TA using available slack while TB executes
at maximum frequency following a last-chance approach [Chetto and Chetto 1989]. Let
CA and CB be the worst-case execution time of the two subtasks(CB = WCET − CA)
under the maximal frequency, and sk be the slack available when the task is scheduled. α
is the speed scaling factor which can be derived from α = CA

CA+sk
. By splitting each task

into at most two subtasks, we incur at most one speed change for every task, and keep the
impact of voltage and frequency switching overhead to a minimum.

In order to let a task complete within its TA portion most of the time to remove the high
voltage and frequency portion of TB, we need to let CA approximate the task’s actual exe-
cution time. In real-time applications, the actual execution time of a task often experiences
fluctuations over different intervals. Different instances of a task also present variant exe-
cution time behavior. We use feedback control to capture the dynamic workload behavior,
which is one of the fundamental mechanisms for dynamic systems to achieve equilibrium.
In a feedback system, some variables, i.e., controlled variables, are monitored and mea-
sured by the feedback controller and compared to their desired values, the so-called set
points. The differences (errors) between the controlled variables and the set points are

ACM Transactions on Embedded Computing Systems, Vol. 5, No. ?, 06 2006.

Exploiting Synchronous and Asynchronous Dynamic Voltage Scaling... · 5

fed back to the controller for further actions. Corresponding system states are usually ad-
justed according to the differences to let the system variables approximate the set points
as closely as possible. Our feedback DVS algorithm assigns CA according to the feedback
information collected from the execution time of previous instances. As long as the actual
execution time of a task is less than or equal to CA, the entire task can therefore execute at a
low frequency and voltage level. If, on the contrary, a task’s actual execution time is longer
than CA, the additional task (CB) runs at the maximum frequency to meet the deadline
requirements of the real-time task. The algorithm still keeps the total system utilization
below 100%, even when reducing processor frequency and voltage, which guarantees the
schedulability of hard real-time task sets.

The feedback scheme plays an important role in our DVS algorithm. In the following,
we propose several feedback schemes that were refined during the implementation of our
feedback DVS algorithm on the IBM 405LP embedded board. Practical design and im-
plementation issues are considered here to exploit different opportunities of energy saving
potentials.

3.1 Simple Feedback

A periodic real-time workload may exhibit a relatively stable behavior during a certain in-
terval of time. Thus, the actual execution time of different jobs remains nearly constant or
only varies within a very small range. For such workloads, we use a very simple feedback
mechanism by computing the moving average of previous jobs’ actual execution times and
feed it back to the DVS scheduler. We try to avoid the overhead of more complicated
feedback mechanisms, such as the PID-feedback controller proposed in the next section,
because the moving average values usually provide sufficiently accurate predictions in this
case. The quantitative comparison of the overhead between our PID-feedback DVS al-
gorithm and several other DVS algorithms also shows that a complicated feedback DVS
scheme can degrade the energy saving potential to some extent, as discussed in the context
of Table III.

We choose the value of CA as the controlled variable for our simple feedback mecha-
nism. Each job Tij’s actual execution time cij is chosen as the set point. CA is assigned
to be 50% WCET for the first job of each task, which means half of the job’s execution
is budgeted at a low frequency, and half of it (CB) is reserved at the maximum frequency.
This is only a heuristic setting we have chosen for the initial job. The CA value of follow-
ing jobs is determined by the feedback scheme. The maximum frequency setting for CB

guarantees the deadline requirements of real-time tasks, even if the worst-case execution
time is exhibited. Each time a job completes, its actual execution time is fed back and
aggregated to anticipate the next job’s CA using previous jobs’ moving average. Let CAij

denote the CA value for Tij . The (j +1)th job of the task is assigned a CA value according
to:

CAi(j+1) = (CAij × N + cij − ci(j−N))/N (2)

where N is a constant representing the number of items used in the moving average cal-
culation. Our experiments show significant energy savings for such a simple feedback
mechanism with very low scheduling overhead as long as the workload’s actual execution
time exhibits a stable behavior for a certain period of time. When the workload’s behav-
ior keeps changing dynamically with highly fluctuating execution times, simple feedback
does not necessarily minimize power consumption. In those cases, a more sophisticated
feedback mechanism is required, as detailed in the next section.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. ?, 06 2006.

6 · Yifan Zhu and Frank Mueller

3.2 Multi-Input PID Feedback

The simple feedback control described in the previous section follows a proportional ad-
justment relative to average execution times. In practice, real-time embedded systems, such
as audio and video playback or image processing systems, often experience fluctuating ex-
ecution times among multiple task instances. The fluctuations may result in tendencies
leading to higher processing demands up to some point and receding demands after this
peak point. In order to devise a DVS algorithm adaptive to such a dynamic environment,
we design a more sophisticated feedback scheme presented as a multiple-input PID feed-
back control system. PID-feedback control is a continuous feedback controller capable of
providing sophisticated control response. The controlled variable can usually reach its set
point and stabilize within a short period. A PID controller consists of three different ele-
ments, namely, proportional control, integral control, and derivative control. Proportional
control influences the speed of the system adapting to errors, which is defined as the differ-
ence between the controlled variable and the set point, denoted by a pure proportional gain
item. Integral control is used to adjust the accuracy of the system through the introduction
of an integrator on past error histories. Derivative control usually increases the stability of
the system through the introduction of a derivative of the errors.

For every task Ti in the system, its CA value is chosen as the controlled variable while
its actual execution time cij is chosen as the set point. The system error is defined as the
difference between the controlled variable and the set point, i.e.,

εij = cij − CAij . (3)

The error is measured periodically by the controller. Its output is fed back to the
feedback-DVS scheduler to adjust the value for CA. For n tasks in the task set, there
are altogether n feedback inputs (εij , i=1...n) and n system outputs (CAi, i=1...n). For
each task Ti, let CAij be the estimated CA value for its jth job. The following discrete PID
control formula is used in our feedback-DVS scheduler:

∆CAij = Kp ∗ εij + 1
Ki

∑
IW εij + Kd

εij−εi(t−DW)
DW

CAi(j+1) = CAij + ∆CAij

(4)

where Kp, Ki and Dd are proportional, integral, and derivative parameters, respectively.
εij is the monitored error. The output ∆CAij is fed back to the scheduler and is used to reg-
ulate the next anticipated value for CAi. IW and DW are tunable window sizes such that
only the errors from the last IW (DW) task jobs will be considered in the integral (deriva-
tive) term. We use DW = 1 to limit the history, which ensures that multiple feedback
corrections do not affect one another. The three control parameters Kp, Ki and Kd adjust
the control response amplitude and dynamic behavior with great versatility. The process
of tuning the control parameters is a compromise among different system performance
metrics. For example, the system may be tuned to have either a stable but slow control
response, or an instable but dynamic control response. What is preferred in our system is a
sufficiently rapid and stable control output during the entire scheduling process. We chose
to tune those PID parameters by trial and error in our experiments.

This multi-input model achieved significant energy savings in our previous simulation
experiments [Zhu and Mueller 2004], but it also exhibited some drawbacks when we im-
plemented it on real embedded platforms. The multi-input control structure increases the
total memory requirements of the system, since the DVS scheduler needs to create an indi-

ACM Transactions on Embedded Computing Systems, Vol. 5, No. ?, 06 2006.

Exploiting Synchronous and Asynchronous Dynamic Voltage Scaling... · 7

vidual feedback controller for every task in the task set. Each feedback controller maintains
a queue structure in order to store the execution time history of previous jobs, which re-
quires additional memory spaces proportional to the length of the queue as well as the
total number of tasks. Such per-task memory requirements limit the maximal number of
tasks an embedded system can sustain. Furthermore, the multi-input model manipulates
multiple inputs and multiple outputs simultaneously, which increases the complexity of
the scheduler design and implementation. Given the difficulty of precisely characterizing
the behavior of a control system, it also adds complexity to the theoretical analysis of the
system.

In order to address these drawbacks, we transform the above multi-input control problem
into a single-input control model in the following.

3.3 Single-Input PID Feedback

Instead of using CAi(i = 1...n) as the controlled variable for each task Ti and creating n
different feedback controller for n different tasks, we now define a single variable r as the
controlled variable for the entire system as:

rj =
1

n

n∑

i=1

CAij − cij

cij

(5)

where j is the index of the latest job of task Ti before the sampling point. rj describes
the average difference between tasks’ actual execution times and their corresponding CA

values. Our objective is to make r approximate 0 (i.e., the set point). The system error
becomes

ε(rj) = rj − 0. (6)

where ε(rj) reflects the error of the entire task set and is not a function of a particular
task Ti any more. ε(rj) is further fed back to the PID scheduler to regulate the controlled
variable r. The PID feedback controller is now defined as:

∆rj = Kpε(rj) + 1
Ki

∑
IW ε(rj) + Kd

ε(rj)−ε(rj−DW)
DW

rj+1 = rj + ∆rj

(7)

where Kp,Ki and Kd are the PID parameters. IW and DW are the integral and derivative
window sizes.

When job Tij completes, we adjust the CA value for Ti(j+1) by CAi(j+1) = rjcij + cij ,
which is used by the DVS scheduler to calculate the scaling factor α and to determine a
processor frequency and voltage for the next job. Such a single controller mechanism is
easy to implement because one feedback controller suffices for the entire system, which
reduces the complexity and overhead of the feedback DVS algorithm. It reduces the mem-
ory requirement of the system since only one global feedback queue needs to be created,
instead of n different queues for n different tasks in the multi-input feedback scheme. The
stability analysis of this control model is omitted here as it does not deviate from the stan-
dard proof for PID control systems [Franklin et al. 2002].

4. EXPERIMENTAL EVALUATION

In order to evaluate the energy saving potential of our algorithm in an actual system as
opposed to a simulation environment, we implemented our feedback-DVS algorithm as
well as several other DVS algorithms, namely static DVS, cycle-conserving DVS, look-
ahead-1/2 DVS (all by Pillai and Shin [Pillai and Shin 2001]), DR-OTE and AGR-2 (by

ACM Transactions on Embedded Computing Systems, Vol. 5, No. ?, 06 2006.

8 · Yifan Zhu and Frank Mueller

Aydin et al. [Aydin et al. 2001]). Look-ahead-1 and look-ahead-2 are the original and
a modified version of the look-ahead DVS algorithm in [Pillai and Shin 2001], respec-
tively. Look-ahead-1 updates each task’s absolute deadline immediately when a task in-
stance completes. Look-ahead-2 delays such updates till the next task instance is released,
which results in additional energy savings. AGR-2 follows the most aggressive scheme
with an aggressiveness parameter k of 0.9. In these experiments, we use simple feedback
on constant workloads and single-input PID feedback for dynamic fluctuating workloads,
if not stated explicitly. We compared the energy consumption as well as DVS overhead of
different algorithms. We also wanted to determine if the lower frequencies and voltages
chosen by our feedback scheme outweigh the higher computational overhead required to
make scheduling decisions.

4.1 Platform and Methodology

The embedded platform used in our experiment is a PowerPC 405LP embedded board
running on a diskless MontaVista Embedded Linux variant, which is based on the 2.4.21
stock kernel but has been patched to support DVS on the PPC 405LP. This board provides
the hardware support required for DVS and allows software to scale voltage and frequency
via user-defined operation points ranging from a high end of 266 MHz at 1.8V to a low end
of 33 MHz at 1V [Nowka et al. 2003; Brock and Rajamani 2003; IBM and Software]. The
board has also been modified for 50% reduced capacitance, which allows DVS switches
to occur more rapidly, i.e., switches are bounded by at most a 200-microseconds duration
from 1V to 1.8V. The DVS algorithms (static, cycle-conserving, look-ahead [Pillai and
Shin 2001] and our feedback-DVS) were exposed to the DVS capabilities of the 405LP
board. The scheduling algorithms can choose any frequency/voltage pair from the set
depicted in Table I.

Table I. Valid Frequency/Voltage Pairs
Setting 0 1 2 3 4

CPU freq. (MHz) 33 44 66 133 266
bus freq. (MHz) 33 44 66 133 133

CPU voltage (Volts) 1.0 1.0 1.1 1.3 1.7

This set of pairs was constrained by a need to have a common phase lock loop (PLL)
multiplier of 16 relative to the 33MHz base clock, and a divider of two or any multiple of
4. Changing the multiplier incurs additional overhead for switching, which we wanted to
eliminate in this study. A dynamic power management (DPM) facility [Brock and Raja-
mani 2003] is developed as an enhancement to the Linux kernel to support DVS features.
DPM operating point defines stable frequency/voltage pairs (as well as related system pa-
rameters), which we experimentally determined.

In order to assess power consumption, we need to monitor processor core voltage and
current at a high rate. Hence, we used a high-frequency analog data acquisition board to
gather data for (a) the processor core voltage and (b) the processor current. The latter was
measured as a voltage level over a resistor with a 1V drop per 360mA. Power consumption
was computed by multiplying the CPU voltage with its current. The data acquisition board
allowed us to experiment with longer-running applications to assess the energy consump-

ACM Transactions on Embedded Computing Systems, Vol. 5, No. ?, 06 2006.

Exploiting Synchronous and Asynchronous Dynamic Voltage Scaling... · 9

tion of the processor, which is the integration of power over time. We also employed an
oscilloscope for visualizing the voltages and currents with high precision in readings.

We implemented an EDF scheduler as a user-level thread library under Linux on the
405LP board. A user-level library was chosen over a kernel-level solution because of
the simplicity of its design and the fact that the operating system background activity is
minimal on the embedded board infrastructure. Different DVS scheduling schemes were
integrated into the EDF scheduler as independent modules.

4.2 Synchronous vs. Asynchronous Switch

We first assessed the overhead of different DVS techniques supported by the test board and
the dynamic power management extensions of the operating system.

A unique DVS feature supported by the IBM PPC 405LP embedded board is that fre-
quency switching can be done either synchronously or asynchronously. Synchronous
switching is the traditional approach for processor frequency/voltage transitions, where
applications have to stop execution during the transitional interval. Asynchronous switch-
ing, on the contrary, allows applications to continue execution during the frequency/voltage
transitions. Figure 2 depicts the changes in current (lower curve) and voltage (upper curve)
of the PPC 405LP processor core during an asynchronous switch.

Fig. 2. Current and Voltage Transition During Asynchronous Frequency Switching

This unique feature of asynchronous switching is achieved by a system call that, when
switching to a higher voltage/frequency, first reprograms the voltage to ramp up towards
the maximum as fast as possible (the 30 degree voltage ramp on the upper curve of Figure
2). Meanwhile, the time to reach a voltage level at least as high as required by the new
frequency is estimated. A high-resolution timer is programmed to interrupt when this
duration expires, prior to which the application can still continue execution. Once the timer
interrupt triggers its handler (at the peak after the 30 degree ramp on the upper curve), the
power management unit is reprogrammed to settle at the target voltage level, and the new
processor frequency is activated before returning from the handler. The voltage then settles
(in case it overshot) in a controlled manner to the new operating point. The current also
settles in a controlled manner depending on processing activity.

Table II reports the overhead for synchronous and asynchronous switching in a time
range bounded by two extremes: (a) Switching between adjacent frequency/voltage levels
and (b) switching between the lowest and highest frequency/voltage levels. Furthermore,
the overhead of the subsequent signal handler associated with each asynchronous switch

ACM Transactions on Embedded Computing Systems, Vol. 5, No. ?, 06 2006.

10 · Yifan Zhu and Frank Mueller

Table II. Frequency/Voltage Switch Overhead
sync. switch async. switch signal handler syscall
117-162 µsec 8-20 µsec 0.07-0.6 µsec 3-8 µsec

is also measured for a range of the highest and the lowest processor frequencies. In order
to make a comparison, the execution time of a system call getpid() is also measured. The
results indicate that a synchronous DVS switch has about an order of a magnitude higher
overhead than an asynchronous switch. In contrast, the asynchronous DVS switch is almost
as efficient as a null system call. The timer interrupt handler triggered at each asynchronous
switch has a negligibly small impact on the DVS switching operation. Overall, triggering
an asynchronous DVS switch only has the cost of a light-weight system call.

4.3 DVS Scheduler Overhead

We compared the timing overhead of our feedback-DVS algorithm with several other dy-
namic DVS algorithms. We first measured the execution time of these DVS scheduling al-
gorithms under different frequencies on the embedded board, as depicted in Table III. The
overhead was obtained by measuring the amount of time when a task issues a yield() sys-
tem call till another task was dispatched by the scheduler. The table shows that static DVS
has the lowest overhead among the four while our PID-feedback DVS has the highest one.
This is not surprising since static DVS uses a very simple strategy to select the frequency
and voltage falling short in finding the best energy saving opportunities. Cycle-conserving
DVS, look-ahead DVS and our PID-feedback DVS use more sophisticated and aggressive
algorithms for lower energy consumption, albeit at higher overheads. The single-input
feedback scheme and the multi-input feedback scheme have almost the same timing over-
head at high frequencies, since they require constant time to update the feedback infor-
mation. But the single-input scheme imposes slightly less overhead than the multi-input
scheme scheme at low frequency cases.

Table III. Overhead of DVS-EDF Scheduler
DVS scheduling overhead[µsec]

CPU freq. static cc la feedback
simple PID

SI MI
33 MHz 217 487 2296 3207 3612 3633
44 MHz 170 366 1714 2433 2943 3012
66 MHz 100 232 1112 1568 1728 1739

133 MHz 52 120 546 725 801 796
266 MHz 36 76 229 413 472 477

4.4 Synchronous vs. Asynchronous DVS

We also assessed if our feedback-DVS algorithm, although incurring the largest overhead
among the four, gives the best energy saving results in the real embedded environment.
We measured the actual energy consumption of these DVS algorithms when executing
three medium utilization task sets depicted in Table IV using both synchronous and asyn-
chronous DVS switchings. As a baseline for comparison, we also implemented a naı̈ve

ACM Transactions on Embedded Computing Systems, Vol. 5, No. ?, 06 2006.

Exploiting Synchronous and Asynchronous Dynamic Voltage Scaling... · 11

DVS scheme where the maximum frequency is always chosen whenever a task is sched-
uled, and the minimum frequency is always chosen whenever the system is idle. Since we
isolate power measurements at the CPU level, excluding the memory and I/O subsystems,
we experimented with a synthetic task set that does not affect the measurements of DVS at
the CPU level due to their off-chip usage of resources.

Table IV. Task Set, times in msec
Task Set 1 Task Set 2 Task Set 3

task Period (Pi) WCET (Ci) Period (Pi) WCET (Ci) Period (Pi) WCET (Ci)
1 2,400 400 600 80 90 12
2 2,400 600 320 120 48 18
3 1,200 200 400 40 60 6

The first task set in Table IV is harmonic, i.e., all periods are integer multiples of the
smallest period, which facilitates scheduling. This often allows scheduling algorithms to
exhibit an extreme behavior, typically outperforming any other choice of periods. The
second and third task sets are non-harmonic with longer and shorter periods, respectively.
Actual execution times were half that of the WCET for each task for this experiment.

Table V depicts the energy consumption in a unit of mWatt-hours. The naı̈ve DVS
algorithm serves as a base of comparisons for each of the subsequent DVS algorithms.
For task set one, static DVS reduces energy consumption by about 29% over the naı̈ve
scheme. Cycle-conserving DVS saves 47% energy. Look-ahead RT-DVS saves over 50%,
and our feedback method saves about 54% energy compared to naı̈ve DVS. This clearly
shows the tremendous potential in energy savings for real-time scheduling. The savings

Table V. Energy [mW − hrs] consumption per RT-DVS algorithm

algorithm na ı̈ve static(saved) cycle-cons.(saved) look-ahead(saved) feedback (saved)
Task Set 1

synchronous 4.47 3.2 (28.41%) 2.38 (46.61%) 2.21 (50.56%) 2.04 (54.21%)
asynchronous 4.43 3.13 (29.35%) 2.327 (47.51%) 2.12 (52.07%) 2.00 (54.70%)
sync/async saved 0.89% 2.19% 2.51% 3.92% 1.95%

Task Set 2
synchronous 0.544 0.5056 (7.06%) 0.4713 (13.36%) 0.424 (22.06%) 0.4089 (24.83%)
asynchronous 0.5276 0.5025 (4.76%) 0.4622 (12.40%) 0.4218 (20.05%) 0.4064 (22.97%)
sync/async saved 3.01% 0.61% 1.93% 0.52% 0.61%

Task Set 3
synchronous 0.595 0.5616 (5.61%) 0.4799 (19.34%) 0.4043 (32.05%) 0.3708 (37.68%)
asynchronous 0.5802 0.5496 (5.27%) 0.4547 (21.63%) 0.3912 (32.57%) 0.3671 (36.73%)
sync/async saved 2.49% 2.14% 5.25% 3.24% 1.00%

Task Set 2 vs. Task Set 3
change 9.07% 8.57% -1.65% -7.82% -10.71%

of each algorithm are lower for task set two peaking at 23% in our feedback scheme. As
mentioned before, task set one is harmonic, which typically results in the best scheduling

ACM Transactions on Embedded Computing Systems, Vol. 5, No. ?, 06 2006.

12 · Yifan Zhu and Frank Mueller

(and energy) results since execution is more predictable. Task set three lies in between the
other two with peak savings of 37% for our feedback scheme. The results also demonstrate
that the overhead for calculations inherent to scheduling algorithms is outweighed by the
potential for energy savings. This is underlined by the increasing overhead in execution
time for each of the scheduling algorithms (from left to right in Table V) while energy
consumption decreases.

Another noteworthy result is the comparison between synchronous and asynchronous
DVS switching depicted in the last row for each task set in Table V. For each of the
scheduling algorithms, we see additional savings of 1-5% on asynchronous switch due to
the ability to commence with a task’s execution during frequency and voltage transitions.
We also ran experiments with task sets that had an order of a magnitude smaller periods
and execution times. Surprisingly, the synchronous vs. asynchronous savings remained
approximately the same, even though DVS switches occur ten times as often. We believe
that the periods and execution times used in our experiments are still large compared to
the execution time of a synchronous or asynchronous switch. If we only save about 100
µsec at each frequency switch (as has been shown in Table II) but later on spend more then
10-100 msec in running a task, the benefit of the asynchronous DVS switching becomes
insignificant. These results seem to indicate that the benefit of continuous execution during
DVS switching, although not negligible, is secondary to trying to minimize the overhead
of DVS scheduling itself.

We also compared task sets two and three in terms of their absolute energy readings,
which is valid since they executed for the same amount of time (ten seconds), the same ac-
tual to worst-case execution time ration and the same utilization, albeit at seven times more
context switches. This change is depicted in the last row of Table V for the asynchronous
case. Not surprisingly, the energy with naı̈ve DVS is about 9% higher for task set three
than for set two due to the higher context switch overhead of the latter. Quite interestingly,
this overhead turns into a reduction in energy as DVS schemes become more aggressive.

4.5 Impact of Different Workloads

We now examine the behavior of our DVS algorithm on different workloads in more detail.
A suite of task sets with synthetic CPU workloads was created. Each task set contains three
independent tasks with different periods whose worst-case execution time varies from 0.1
to 0.9 with an increment of 0.1. The actual execution time of a task is determined by timing
the body of each task plus the scheduler overhead (see Table III) of the corresponding
DVS algorithm under the lowest CPU frequency. We dynamically changed the number of
instructions inside each task body among different invocations (jobs) to approximate the
workload fluctuation behavior of actual real-time applications. The fluctuation of one task
is independent of that in another and, due to different periods, intentionally out-of-sync.
Altogether, four synthesized execution patterns were created, as shown in Figure 3.

In the first pattern, a task’s actual execution time is always 50% WCET. In the second
pattern, the actual execution time of a task drops exponentially from a peak value cm to
50%WCET among its consecutive jobs, modeled as ci = 1/2(t−cm). The peak value cm

is randomly generated for each spike from a uniform distribution between 50% of WCET
and 100% of WCET. This pattern simulates event-triggered activities that result in sudden,
yet short-term computational demands due to complex inputs often observed in interrupt-
driven systems. The third pattern is similar to the second one except that it drops more
gradually, modeled as ci = cmsin(t + π/2). This pattern simulates events resulting in

ACM Transactions on Embedded Computing Systems, Vol. 5, No. ?, 06 2006.

Exploiting Synchronous and Asynchronous Dynamic Voltage Scaling... · 13

Pattern 2

Pattern 4

Pattern 3

50%WCET

50%WCET

10%WCET

50%WCET

WCET

WCET

WCET

Pattern 1
50%WCET

WCET

Fig. 3. Task Actual Execution Time Pattern

computational demands in a phase of subsequent complex inputs with a decaying ten-
dency. In the fourth pattern, the actual execution time of a task increases and decreases
gradually around 50% WCET with either a positive or negative amplitude, modeled as
ci = cmsin(t) and ci = −cmsin(t). This pattern represents periodically fluctuating activ-
ities with gradually increasing and decreasing computational needs around peaks. We used
simple feedback on pattern 1 because of its nearly constant execution time pattern among
different jobs. The number of items to compute the moving average was set as N = 10.
PID-feedback was used on patterns 2, 3, and 4 to exploit fluctuating execution time char-
acteristics. The PID parameters were chosen by manual tuning as Kp = 0.9, Ki = 0.08,
Kd = 0.1. The derivative and integral window size were 1 and 10, respectively. We used
asynchronous switching in the experiment.

Figures 4 - 7 present the energy consumption of our feedback-DVS algorithm, as well
as four other dynamic DVS algorithms under the four dynamic execution time patterns.
Each task set contains three tasks. For pattern 1, we compare our simple feedback scheme
with the multi-input feedback scheme. For dynamic pattern 2, 3 and 4, we compared our
single-input feedback scheme with the multi-input feedback scheme. All energy values
are normalized to the naı̈ve DVS results under corresponding task set configurations. DR-
OTE and AGR-2 dynamically reclaim unused slack up to the next arrival time of any task
instance, thereby saving about 50% extra energy than naı̈ve DVS. AGR-2 is not as good
as Look-ahead-1/2 DVS in pattern 1 and 3, but beats Look-ahead-1/2 in pattern 2 and 4
for some cases. Look-ahead-1/2 is aggressive in frequency scaling, but it has to overcome
the fact that the frequency is occasionally lowered too aggressively so that it has to be
subsequently raised to a high level. We avoid such behavior in our algorithm via feedback.

In Figure 4, our simple feedback scheme performs almost as well as the multi-input
feedback scheme. The difference of normalized energy between our algorithm and others
ranges from an additional 5% to 15% energy savings over the best scheme published pre-
viously. Considering the low overhead of the simple feedback scheme, it is a good choice

ACM Transactions on Embedded Computing Systems, Vol. 5, No. ?, 06 2006.

14 · Yifan Zhu and Frank Mueller

for tasks whose execution time does not vary over multiple instances.

���

���

���

���

���

���

��� ��� ��	 ��
 ��� ��� ��� ��� ���
��������

��
��

��
��

���
��

��
���

��
��

��
��

�

������
�����
	

��������
	

��������
�������������������
���������������

Fig. 4. Energy Consumption for Set of 3 Tasks, Pattern 1

In Figures 5, 6 and 7, our single-input and multi-input feedback schemes save an addi-
tional 5%-18% energy over other schemes due to the algorithm’s self-adaptation to a job’s
actual execution time. Single-input feedback performs slightly worse than the multi-input
feedback scheme, because its modeling method is not as precise as the multi-input feed-
back scheme . But the energy consumption differs by about 4% for all cases between these
two schemes. There are even cases, e.g., at 0.6 utilization in Figure 6, where single-input
feedback outperforms the multi-input feedback. In extremely low or extremely high task
utilization cases, our feedback-DVS, Look-ahead DVS and AGR algorithm result in com-
parable energy consumption. In these cases, tasks either have enough slack to always run
at the minimum speed, or they do not have slack at all preventing them to lower their speed.
This results in virtually identical frequency choices irrespective of the DVS algorithm.

To better assess the scalability of our feedback-DVS algorithm, we further ran two ex-
periments. One experiment increases the number of tasks in the task set from 3 to 30, as
shown in Figure 8. AGR-2 benefits from such a smaller task granularity in 30-task sets and
outperforms Look-ahead-1 and Look-ahead-2 in some utilization cases. Small task granu-
larity also reduces the gap between our feedback-DVS algorithms and the other algorithms.
But we still save around 3% to 8% additional energy than others.

The second experiment fixes the execution time pattern of the task set, while varying
the baseline (the average execution time) of different task instances, as shown in Figure 9.
The average execution time in Figure 9 is set as 75%WCET, 50%WCET and 30%WCET,
respectively. All energy values are normalized to the naı̈ve DVS values. We see from these
figures that our single-input feedback scheme scales equally well for loose (0.3WCET
case) and tight (0.75WCET case) actual execution-times. In all three cases, 14% to 24%
additional energy is saved over look-ahead-2 DVS. The feedback schemes show larger im-
provements for median execution times than the loose or tight ones. In this range, there is
enough slack to distinguish itself from the other algorithms. When comparing our feedback

ACM Transactions on Embedded Computing Systems, Vol. 5, No. ?, 06 2006.

Exploiting Synchronous and Asynchronous Dynamic Voltage Scaling... · 15

���

���

���

���

���

���

���

��	 ��� ��� ��� ��� ��� ��� ��� ��

��������

��
��

��
��

���
��

��
���

��
��

��
��

�

������

�����

	

��������

	

��������

���������������

���������������

Fig. 5. Energy Consumption for Set of 3 Tasks, Pattern 2

���

���

���

���

���

���

��� ��� ��	 ��
 ��� ��� ��� ��� ���
��������

��
��

��
��

���
��

��
���

��
��

��
��

�

������

�����

	

��������

	

��������

���������������

���������������

Fig. 6. Energy Consumption for Set of 3 Tasks, Pattern 3

algorithm with the naı̈ve DVS scheme, we observe even more significant energy savings.
The largest saving is shown in Figure 8, where up to 70% additional savings are achieved
by our algorithm over the naı̈ve one at the 0.3 utilization case.

We also visualized voltage and current switches using an oscilloscope. Figures 10 and
11 depict the screen-shots of voltage and current obtained from the oscilloscope for the
phase just after a simultaneous release of all tasks at the beginning of a hyperperiod. In
Figure 10, every task has a loose WCET, which is two times of its actual execution time.

In Figure 11, a tight WCET equal to a task’s actual execution time is used. Static DVS
shows two levels of voltages (busy/idle time) whereas cycle-conserving DVS differentiates
three levels on a dynamic base. Even lower voltage and current readings are given by look-

ACM Transactions on Embedded Computing Systems, Vol. 5, No. ?, 06 2006.

16 · Yifan Zhu and Frank Mueller

���

���

���

���

���

���

��� ��� ��	 ��
 ��� ��� ��� ��� ���
��������

��
��

��
��

���
��

��
���

��
��

��
��

�

������

�����

	

��������

	

��������

���������������

���������������

Fig. 7. Energy Consumption for Set of 3 Tasks, Pattern 4

���

���

���

���

���

���

���

	

��	 ��
 ��� ��� ��� ��� ��� ��� ���
��������

��
��

��
��

���
��

��
���

��
��

��
��

�

������

�����

	

��������

	

��������

���������������

���������������

Fig. 8. Energy Consumption for Set of 30 Tasks, Pattern 2

ahead DVS, which not only distinguishes more levels but also exhibits much lower power
levels during load. The lowest results were obtained by our feedback DVS, which defers
execution even more aggressively than any of the other methods. However, our feedback
scheme can only reduce power consumption occasionally as sufficient static or dynamic
slack exists to be reclaimed. Dynamic slack is recovered in increasing orders by the latter
three schemes.

Our feedback-DVS scheme obtains lower energy consumption than previous non-
feedback approaches because the feedback controller lets most of the tasks complete within
the TA subtask without getting into the high-frequency TB portion. In order to substantiate
this claim, for the varying execution time patterns 2, 3 and 4, we measured the percentage

ACM Transactions on Embedded Computing Systems, Vol. 5, No. ?, 06 2006.

Exploiting Synchronous and Asynchronous Dynamic Voltage Scaling... · 17

of jobs that get into the high frequency TB subtask, as well as the percentage of energy
consumed in the TB portion. The results, as depicted in Figures 12, 13 and 14, show that
the number of jobs that get into the high-frequency TB portion is constrained to be less
than 31% of the total number of released jobs. The amount of energy consumed in those
TB portions is even less, from 1% to 9%, compared to the total energy consumption. These
results clearly show that the feedback scheme can approximate the optimal energy case by
removing the TB subtask during the actual task execution as much as possible.

Besides the execution time patterns listed in Figure 3, we also investigated task sets
with random execution characteristics, i.e., tasks’ actual execution times are derived from a
random uniform distribution. We performed this experiment in order to assess the behavior
of our algorithm for task sets with highly fluctuating execution time patterns that cannot be
predicted with PID feedback. Our feedback-DVS scheme still resulted in similar energy
savings as other DVS algorithms. Random execution times do not give additional benefits
to our algorithm because the algorithm cannot supply any useful history information to
the feedback controller. This is a limitation of feedback schemes in general. Nonetheless,
even in this worst case, our feedback-DVS algorithm behaves no worse than previous non-
feedback-based DVS algorithms.

4.6 Comparison with Simulation Results

When we compare the energy saving results obtained from the IBM 405LP embedded
board with our previous simulation results presented in [Zhu and Mueller 2004], we clearly

���
����
���

����
���

����
���

����
���

��� ��� ��� ��� ��� ��� ��� ��	 ��

����������	
�����
���������������

��
��

��
	�

���
��

��
�

�����������
�����������

���
����
���

����
���

����
���

����

��� ��� ��� ��� ��� ��� ��� ��	 ��

����������	
�����
��������������

��
��

��
	�

���
��

��
�

�����������
�����������

���
����
���

����
���

����
���

����

��� ��� ��� ��� ��� ��� ��� ��	 ��

����������	
�����
��������������

��
��

��
	�

���
��

��
�

�����������
�����������

Fig. 9. Energy Consumption for Set of 3 Tasks, Pattern 4, with Varying Baseline

ACM Transactions on Embedded Computing Systems, Vol. 5, No. ?, 06 2006.

18 · Yifan Zhu and Frank Mueller

2V

1V t

0mA

360mA

(a) static RT-DVS EDF

2V

1V t

0mA

360mA

(b) cycle-conserving RT-DVS EDF

2V

1V t

0mA

360mA

(c) look-ahead RT-DVS EDF

2V

1V t

0mA

360mA

(d) our feedback RT-DVS EDF

Fig. 10. Voltage/Current Oscilloscope Shot, Loose WCET= 2× ActualExecTime, U=0.5

see the advantage and disadvantage of simulation for power-aware studies. The advantage
of simulation lies in its ease of implementation and predictability of performance trends.
The energy consumption of different DVS algorithms shows a consistent trend under both
simulation and the actual embedded platform. But the quantitative results differ. Our previ-
ous simulation results reported 5%-10% higher savings on average. For example, the best
energy saving of our feedback-DVS over look-ahead DVS was reported as 29% in simula-
tion while the best result we measured from the test board is around 24%. The differences

ACM Transactions on Embedded Computing Systems, Vol. 5, No. ?, 06 2006.

Exploiting Synchronous and Asynchronous Dynamic Voltage Scaling... · 19

2V

1V t

0mA

360mA

(a) static RT-DVS EDF

2V

1V t

0mA

360mA

(b) cycle-conserving RT-DVS EDF

2V

1V t

0mA

360mA

(c) look-ahead RT-DVS EDF

2V

1V t

0mA

360mA

(d) our feedback RT-DVS EDF

Fig. 11. Voltage/Current Oscilloscope Shot, Tight WCET= ActualExecTime, U=0.5

are likely due to discrepancies in the simulation model for actual power/energy consump-
tion since it does not consider specific hardware details, such as fabrication sizes, number
of transistors etc. [Jejurikar et al. 2004]. We also used different task set parameters, such
as periods and execution times.1 This is also the case when evaluating the overhead. Since

1Our objective was to allow a direct comparison with look-ahead DVS, which constrained us to four frequency
levels at 25% intervals. While more frequency levels are support by our hardware platform, they do not match

ACM Transactions on Embedded Computing Systems, Vol. 5, No. ?, 06 2006.

20 · Yifan Zhu and Frank Mueller

��� ��� ��� ��� ��� ��� ��� ��	 ��
 �
�������������������������

��
��

���
���

���

���

���

���

����������	
����

�������������������
�����
������������������
�������������

Fig. 12. Pattern 1, Percentage of subtask(energy) in TB

��� ��� ��� ��� ��� ��� ��� ��	 ��
 �
�������������������������

��
��

���
���

���

���

���

���

����������	
����

�������������������
�����
������������������
�������������

Fig. 13. Pattern 2, Percentage of subtask(energy) in TB

��� ��� ��� ��� ��� ��� ��� ��	 ��
 �
�������������������������

��
��

���
���

���

���

���

���

����������	
����

�������������������
�����
������������������
�������������

Fig. 14. Pattern 3, Percentage of subtask(energy) in TB

the overhead of DVS algorithms was not included in our previous simulation experiment,
we still observed 7%-10% energy savings over look-ahead DVS even at high utilization
cases. But the actual energy measurements from the test board show only 3%-6% savings
for these cases.

Overall, our experiments on the embedded platform quantitatively show the potential of
our feedback-DVS algorithm. Using the feedback-based DVS scheme, processor frequen-
cies are possible to be scaled even more aggressively than previous DVS algorithms.

the 25% intervals, e.g., a 75% frequency level does not exist.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. ?, 06 2006.

Exploiting Synchronous and Asynchronous Dynamic Voltage Scaling... · 21

5. RELATED WORK

Dynamic voltage scaling for real-time systems has received considerable attention in re-
cent years. Pillai and Shin present a suite of DVS algorithms integrated with hard real-time
EDF and RM scheduling [Pillai and Shin 2001]. Processor speed for each task is adjusted
dynamically while the schedulability of the system is still reserved. Look-ahead DVS is the
most aggressive DVS scheme among the suite of algorithms proposed. Aydin et al. discuss
a series of algorithms, which dynamically reclaim unused computation time of real-time
tasks to reduce the processor speed [Aydin et al. 2004]. Energy-aware scheduling of hybrid
workloads, including both periodic and aperiodic tasks, are further investigated by Aydin
and Yang in [Aydin and Yang 2004]. Gruian analyzes dual-speed and multi-step stochastic
intra-task DVS using a hybrid scheme with static and dynamic frequency scaling [Gruian
2001]. He observes that a dual-speed approach would be best but, short of knowledge
about the actual execution time, promotes the stochastic approach whose data is derived
from past execution traces. In contrast, our PID controller approximates the actual exe-
cution time closely so that the dual-speed approach becomes feasible. PID feedback is
superior to a stochastic approach in that it can dynamically adjust to changing execution
patterns. Also, our approach switches to the maximum frequency in the second part, not
just a higher one. Furthermore, this switch only takes place when the predicted actual ex-
ecution time is exceeded while Gruian’s approach allowed earlier switches, which would
result in additional switch overhead on average. Jejurikar and Gupta investigate static and
dynamic slowdown factors for periodic tasks [Jejurikar and Gupta 2004b] and combine
it with procrastination scheduling [Jejurikar and Gupta 2004c] and preemption threshold
scheduling [Jejurikar and Gupta 2004a] for DVS. Several of these algorithms were com-
pared in a unified simulation environment, SimDVS [Shin et al. 2002]. In contrast, we
measure power consumption on a concrete micro-architecture for several EDF-based algo-
rithms.

Feedback control for real-time scheduling was first investigated by Stankovic et al.
[Stankovic et al. 1999]. Real-time system performance specifications are analyzed sys-
tematically through a control-theoretical methodology by Lu et al. [Lu et al. 2000]. A
feedback-control real-time scheduling framework for unpredictable dynamic real-time sys-
tems is further proposed by Lu et al. where execution times diverge from their worst case
[Lu et al. 2002]. Dynamic models of real-time systems are developed to identify different
categories of real-time applications with different feedback control algorithms. Our work
extends feedback to power-aware EDF scheduling.

Feedback control was also proposed for energy-aware computing in previous work.
Varma et al.[Varma et al. 2003] present a feedback-control algorithm where the previous
workload execution history is used to predict the future workload behavior by a discrete-
time PID function. The combination of the proportional, integral and derivative part of
the PID function provides good estimation across different applications insensitive of the
change of their parameters. Lu et al.[Lu et al. 2002] describe a formal feedback-control
algorithm combined with dynamic voltage/frequency scaling technologies for multimedia
systems. Both continuous and discrete DVS settings are exploited in a scheme to reduce
energy consumption while still guaranteeing real-time requirements. An adaptive set-point
is used to achieve fast responses with a stable multimedia throughput. Poellabauer et al.
[Poellabauer et al. 2005] apply a feedback loop on cache miss rates to make more reli-
able prediction of future task execution times. A general energy management scheme with

ACM Transactions on Embedded Computing Systems, Vol. 5, No. ?, 06 2006.

22 · Yifan Zhu and Frank Mueller

feedback control is proposed by Minerick et al. [Minerick et al. 2002]. Average energy us-
age is achieved by continuously adjusting the voltage/frequency of a processor to meet the
energy consumption goal. A PI (proportional and integral) feedback controller is used to
adapt the proper power setting based on previous energy consumptions without the predic-
tion of future system workloads. While Varma, Lu and Poellabauer’s work target software
real-time systems and Minerick’s work targets general purpose systems, our feedback DVS
scheme focuses on hard real-time systems where timing constraints must not be violated.

6. CONCLUSION

This paper presents different feedback schemes for DVS algorithms considering practical
hardware and software design and implementation issues. We evaluated our feedback DVS
algorithms as well as several other real-time DVS algorithms on an IBM 405LP embedded
platform. Real-time task sets with different varying workloads were assessed under differ-
ent feedback schemes. We measured the actual energy consumption of our feedback DVS
algorithm as well as several other real-time dynamic DVS algorithms on the embedded
platform. Algorithm performance and its adaptability to dynamic workloads were evalu-
ated. Asynchronous switching, a unique feature provided by the IBM 405LP embedded
test board, and synchronous switching were also assessed with the real-time task sets. Our
experiments show up to 5% additional energy savings with asynchronous switching, as op-
posed to traditional synchronous switching operations. The experimental results indicates
a considerable potential for real-time DVS scheduling algorithms with up to 70% energy
savings over a naı̈ve DVS scheme. The strengths of our feedback DVS algorithms were
also shown in experiments with a 24% peak energy savings over previous real-time DVS
algorithms. These results differ in quantity from prior simulations, but they confirm the
trends of savings observed under simulation. To the best of our knowledge, this is the first
comparative study of real-time DVS algorithms on a concrete micro-architecture and the
first evaluation of asynchronous DVS switching.

Acknowledgments

Ajay Dudani contributed to early work of the Feedback-DVS scheme [Dudani et al. 2002].
Aravindh Anantaraman, Ali Mahmoud and Ravi Venkatesan designed and implemented an
early version of the DVS experimentation environment. Bishop Brock from IBM provided
most valuable technical details for the PPC 405LP board, which was donated by IBM
Research (Austin).

REFERENCES

ANANTARAMAN, A., MAHMOUD, A., VENKATESAN, R., ZHU, Y., AND MUELLER, F. 2004. Edf-dvs schedul-
ing on the ibm embedded powerpc 405lp. In Proceedings of the IBM Pa=c2 Conference.

AYDIN, H., MELHEM, R., MOSSE, D., AND MEJIA-ALVAREZ, P. 2001. Dynamic and agressive scheduling
techniques for power-aware real-time systems. In IEEE Real-Time Systems Symposium.

AYDIN, H., MELHEM, R., MOSSE, D., AND MEJIA-ALVAREZ, P. 2004. Power-aware scheduling for periodic
real-time tasks. IEEE Trans. Comput. 53, 5, 584–600.

AYDIN, H. AND YANG, Q. 2004. Energy-responsiveness tradeoffs for real-time systems with mixed workload.
In Proceedings of the 11th IEEE Real-Time and Embedded Technology and Applications Symposium.

BROCK, B. AND RAJAMANI, K. 2003. Dynamic power management for embedded systems. In IEEE Interna-
tional SOC Conference.

CHANDRAKASAN, A., SHENG, S., AND BRODERSEN, R. W. April, 1992. Low-power cmos digital design. In
IEEE Journal of Solid-State Circuits, Vol. 27, pp. 473-484.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. ?, 06 2006.

Exploiting Synchronous and Asynchronous Dynamic Voltage Scaling... · 23

CHETTO, H. AND CHETTO, M. 1989. Some results of the earliest deadline scheduling algorithm. IEEE Trans-
actions on Software Engineering 15, 10 (Oct.), 1261–1269.

DUDANI, A., MUELLER, F., AND ZHU, Y. 2002. Energy-conserving feedback edf scheduling for embedded
systems with real-time constraints. In ACM SIGPLAN Joint Conference Languages, Compilers, and Tools for
Embedded Systems (LCTES’02) and Software and Compilers for Embedded Systems (SCOPES’02). 213–222.

FRANKLIN, G., POWELL, J. D., AND EMAMI-NAEINI, A. 2002. Feedback Control of Dynamic Systems, 4 ed.
Prentice-Hall.

GOVIL, K., CHAN, E., AND WASSERMAN, H. 1995. Comparing algorithms for dynamic speed-setting of a
low-power cpu. In 1st Int’l Conference on Mobile Computing and Networking.

GRUIAN, F. 2001. Hard real-time scheduling for low energy using stochastic data and dvs processors. In
Proceedings of the International Symposium on Low-Power Electronics and Design ISLPED’01.

GRUNWALD, D., LEVIS, P., III, C. M., NEUFELD, M., AND FARKAS, K. 2000. Policies for dynamic clock
scheduling. In Symp. on Operating Systems Design and Implementation.

IBM AND SOFTWARE, M. Dynamic power management for embedded systems. white paper.

JEJURIKAR, R. AND GUPTA, R. 2004a. Integrating preemption threshold scheduling and dynamic voltage
scaling for energy efficient real-time systems. In Proceedings of the 10th International Conference on Real-
Time and Embedded Computing Systems and Applications (RTCSA ’04).

JEJURIKAR, R. AND GUPTA, R. 2004b. Optimized slowdown in real-time task systems. In Proceedings of the
16th Euromicro Conference on Real-Time Systems (ECRTS ’04).

JEJURIKAR, R. AND GUPTA, R. 2004c. Procrastination scheduling in fixed priority real-time systems. In
Proceedings of the Language Compilers and Tools for Embedded Systems.

JEJURIKAR, R., PEREIRA, C., AND GUPTA, R. 2004. Leakage aware dynamic voltage scaling for real-time
embedded systems. In Design Automation Conference.

LU, C., STANKOVIC, J. A., ABDELZAHER, T. F., TAO, G., SON, S. H., AND MARLEY, M. 2000. Performance
specifications and metrics for adaptive real-time systems. In Proceedings of the IEEE Real-Time Systems
Symposium.

LU, C., STANKOVIC, J. A., TAO, G., AND SON, S. H. 2002. Feedback control real-time scheduling: Framework,
modeling, and algorithms. Real-Time Syst. 23, 85–126.

LU, Z., HEIN, J., HUMPHREY, M., STAN, M., LACH, J., AND SKADRON, K. 2002. Control-theoretic dynamic
frequency and voltage scaling for multimedia workloads. In Conference on Compilers, Architecture and
Synthesis for Embedded Systems. 156–63.

MINERICK, R., FREEH, V. W., AND KOGGE, P. M. 2002. Dynamic power management using feedback. In
Proceedings of Workshop on Compilers and Operating Systems for Low Power.

NOWKA, K., CARPENTER, G., AND BROCK, B. 2003. The design and application of the powerpc 405lp energy-
efficient system on chip. IBM Journal of Research and Development 47, 5/6 (September/November).

PERING, T., BURD, T., AND BRODERSEN, R. 1995. The simulation of dynamic voltage scaling algorithms. In
Symp. on Low Power Electronics.

PILLAI, P. AND SHIN, K. 2001. Real-time dynamic voltage scaling for low-power embedded operating systems.
In Symposium on Operating Systems Principles.

POELLABAUER, C., SINGLETON, L., AND SCHWAN, K. 2005. Feedback-based dynamic frequency scaling for
memory-bound real-time applications. In Proceedings of the 11th IEEE Real-Time and Embedded Technology
and Applications Symposium.

SHIN, D., KIM, W., JEON, J., KIM, J., AND MIN, S. L. 2002. Simdvs: An integrated simulation environment
for performance evaluation of dynamic voltage scaling algorithms. In Workshop on Power-Aware Computer
Systems.

STANKOVIC, J. A., LU, C., SON, S. H., AND TAO, G. 1999. The case for feedback control real-time scheduling.
In Proceedings of the EuroMicro Conference on Real-Time Systems.

VARMA, A., GANESH, B., SEN, M., CHOUDHURY, S. R., SRINIVASAN, L., AND BRUCE, J. 2003. A control-
theoretic approach to dynamic voltage scheduling. In Proceedings of the 2003 international conference on
Compilers, architectures and synthesis for embedded systems. ACM Press, 255–266.

WEISER, M., WELCH, B., DEMERS, A., AND SHENKER, S. 1994. Scheduling for reduced cpu energy. In 1st
Symp. on Operating Systems Design and Implementation.

ACM Transactions on Embedded Computing Systems, Vol. 5, No. ?, 06 2006.

24 · Yifan Zhu and Frank Mueller

ZHU, Y. AND MUELLER, F. 2004. Feedback edf scheduling exploiting dynamic voltage scaling. In IEEE
Real-Time Embedded Technology and Applications Symposium. 84–93.

ZHU, Y. AND MUELLER, F. 2005. Feedback edf scheduling exploiting hardware-assisted asynchronous dynamic
voltage scaling. In ACM SIGPLAN Conference on Language, Compiler, and Tool Support for Embedded
Systems. 203–212.

Received August 2005; revised March 2006; accepted September 2006

ACM Transactions on Embedded Computing Systems, Vol. 5, No. ?, 06 2006.

