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Energy is a valuable resource in embedded systems as the lifetime of many such systems is
constrained by their battery capacity. Recent advances in processor design have added support
for dynamic frequency/voltage scaling (DVS) for saving energy. Recent work on real-time schedul-
ing focuses on saving energy in static as well as dynamic scheduling environments by exploiting
idle time and slack due to early task completion for DVS of subsequent tasks. These schedul-
ing algorithms rely on a priori knowledge of worst-case execution times (WCET) for each task.
They assume that DVS has no effect on the worst-case execution cycles (WCEC) of a task and
scale the WCET according to the processor frequency. However, for systems with memory hierar-
chies, the WCEC typically does change under DVS due to frequency modulation. Hence, current
assumptions used by DVS schemes result in a highly exaggerated WCET.

This paper contributes novel techniques for tight and flexible static timing analysis particularly
well-suited for dynamic scheduling schemes. The technical contributions are as follows: (1) We
assess the problem of changing execution cycles due to scaling techniques. (2) We propose a
parametric approach towards bounding the WCET statically with respect to the frequency. Using
a parametric model, we can capture the effect of changes in frequency on the WCEC and, thus,
accurately model the WCET over any frequency range. (3) We discuss design and implementation
of the frequency-aware static timing analysis (FAST) tool based on our prior experience with static
timing analysis. (4) We demonstrate in experiments that our FAST tool provides safe upper
bounds on the WCET, which are tight. The FAST tool allows us to capture the WCET of six
benchmarks using equations that overestimate the WCET by less than 1%. FAST equations can
also be used to improve existing DVS scheduling schemes to ensure that the effect of frequency
scaling on WCET is considered and that the WCET used is not exaggerated. (5) We leverage
three DVS scheduling schemes by incorporating FAST into them and by showing that the energy
consumption further decreases. (6) We compare experimental results using two different energy
models to demonstrate or verify the validity of simulation methods. To the best of our knowledge,
this study of DVS effects on timing analysis is unprecedented.
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1. INTRODUCTION

Power is an important constraint for mobile, battery-powered embedded devices. Limita-
tions on the lifetime of embedded devices have resulted in advances in embedded archi-
tectures to extend the lifetime of devices. Microprocessor designs ranging from low-end
8-bit up to high-end 32-bit embedded architectures (e.g., the Atmel Atmega AVR family
on the low end and the Intel XScale on the high-end, just to name two extremes) support
dynamic adjustment of processing speed to prolong battery life. Generally, two techniques
are employed in unison. On one side, dynamic frequency scaling allows the speed of in-
struction execution to change during the operation of a device. On the other side, dynamic
voltage scaling modulates the level of the supply voltage upon demand. Both schemes,
referred to as DVS in the following, work hand in hand: When the frequency is lowered
by a certain degree, the voltage can be also be reduced to a lower level. Furthermore, both
scaling techniques impact the power consumption of a device: power scales linearly with
the frequency and quadratically with the voltage. Hence, considerable energy savings may
result in a concerted approach of dynamic frequency and voltage scaling [Chandrakasan
et al. 1992].

Real-time systems are particularly well-suited to profit from DVS. Due to periodic task
execution, it is generally not feasible to utilize the range of sleeping modes that modern
processors offer. Tasks are invoked frequently (on a periodic basis in the order of a few
milliseconds). The time to enter a sleep mode (and the later wakeup time) is in the order of
tens of milliseconds, which generally matches the order of magnitude of a real-time task’s
period. Hence, suspension in sleep modes is not a viable option for real-time systems.
But real-time systems often have task sets that underutilize the processor. Hence, reducing
the frequency of execution while still meeting deadlines through DVS is a viable option
resulting in considerable energy reduction.

Recently, a number of hard real-time DVS scheduling schemes have been studied, rang-
ing from compiler support [Mosse et al. 2000] over numerous static scheduling approaches
[Gruian 2001; Pillai and Shin 2001] to dynamic methods [Pillai and Shin 2001; Aydin et al.
2001; Dudani et al. 2002]. All of these approaches have their own merits in that they pro-
vide a solution suitable to certain systems depending on scheduling methods, utilization
bounds of the task sets and architectural properties, such as scaling overhead.

Any DVS scheduling scheme is subject to the same constraints as other hard real-time
systems: The worst-case execution time (WCET) of a task has to be known a priori, i.e,
safe bounds on a task’s execution time have to be obtained. Prior work on static timing
analysis provides the means to derive relatively tight WCET bounds for simple embedded
architectures, which are provably safe. A number of research groups have addressed vari-
ous issues in the area of bounding the WCET of a real-time task. Conventional methods for
static analysis have been extended from unoptimized programs on simple CISC processors
to optimized programs on pipelined RISC processors, and from uncached architectures to
instruction and data caches [Park 1993; Lim et al. 1994; Healy et al. 1995; Mueller 2000;
White et al. 1999; Li et al. 1996]. The challenge of static timing analysis is to provide not
only safe but also tight bounds on the WCET in order to impose a high enough processor
utilization. These analysis approaches result in tight bounds for deterministic microarchi-
tectures with simple components.

In the context of DVS, static timing analysis is generally assumed to remain valid with
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frequency scaling. The conjecture is that reducing a processor’s frequency still results
in the same number of cycles of execution for a task. Hence, considering the proces-
sor frequency should suffice to derive safe WCET bounds. However, this simplistic view
generally does not hold for any realistic architectures. Consider the impact of memory ref-
erences. Any instruction or data reference that is resolved through a main memory access
operates at external bus frequency. But bus frequencies generally diverge from internal
processor frequencies, and they do not scale at the same rate as DVS scaling does. E.g.,
the first generation Compagq Ipaqg has a StrongArm microprocessor (SA-1110) that scales
at 8 frequencies but only supports two different external bus frequencies [Corp. ].

In short, when static timing analysis is applied in the context of DVS, tightness and
safety assumptions may no longer hold: WCET bounds may either not be tight (consider-
able overestimation upon fast memory operations for lower processor frequencies) or are
no longer safe (underestimation potentially leading to missed deadlines upon a reduced
data bus frequency). As a result, the memory latency also has to be adjusted to discrete
values according to dynamic settings for execution frequencies and memory latencies. In-
stead of obtaining one discrete WCET through static timing analysis, different values for
each processor frequency / bus frequency pair would have to be obtained. While this may
still be a feasible approach for a static schedule and for a small number of such frequency
pairs, it becomes infeasible for dynamic scheduling paradigms or a large number of fre-
quency pairs. For certain scheduling approaches that exhibit intra-task DV, such a static
approach becomes impossible if tight bounds for the WCET are to be determined since the
point of frequency changes during task execution is typically unknown at static time, e.g.,
due to dynamic scheduling, preemption and early completion.

The contribution of this paper is to remedy this problem by promoting a new method-
ology for frequency-aware static timing analysis (FAST). Instead of obtaining a WCET
bound for each frequency pair, FAST takes static timing analysis to a novel level suitable
for dynamic scheduling. FAST expresses WCET bounds as a parametric term whose com-
ponents are frequency-sensitive parameters. On the one side, cycles are interpreted in terms
of the processor frequency; on the other hand, memory accesses are expressed in terms of
the memory latency overhead due to the external bus speed. This parametric expression of
the WCET allows one to determine on-the-fly the WCET for a given frequency pair. This is
particularly appealing when scheduling decisions occur dynamically and when the number
of frequency pairs becomes large, such as is the case with state-of-the-art processors with
fine-grained frequency settings [Intel 2000].

Another contribution of this paper is its methodology to evaluate benefits of energy con-
servation. Instead of using a single simulation methodology, as done in most prior work,
two different analytical approaches are employed. A commonly used power estimation
model on one side is compared to a more detailed power model that considers architec-
tural components separately. The former is based on estimating power via its proportional
relation to processor frequency and the square of the voltage while the latter, known as
the Wattch model [Brooks et al. 2000], considers power consumption for the register file,
functional units, branch prediction etc. based on their dynamic utilization in conjunction
with frequency and voltage levels. The comparison shows a considerable difference in esti-
mated absolute energy consumption, which indicates that absolute values from simulations
can be controversial. Both models loosely agree in that they show an overall reduction in
energy consumption due to our approach, which validates our claims about the potential of
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FAST.

In the following, we detail the technical innovations necessitated by DVS to ensure that
safe and flexible WCET predictions may be obtained. We provide motivating examples,
discuss the design of our FAST analysis tool, and we show the feasibility of our approach in
a set of experiments that demonstrate flexibility and competitiveness while still providing
tight bounds on the WCET. Related as well as future work and a summary conclude our
contributions.

2. EFFECTS OF FREQUENCY SCALING ON WCET

In this section, we motivate the need for a parametric frequency model and assess the
challenges of supporting this novel model in a static timing analysis tool. We also describe
the parametric frequency model in detail, and we illustrate the key features in examples.

2.1 Motivation

Real-time systems that use DV S-based scheduling scale the WCET assuming that the num-
ber of worst-case execution cycles (WCEC) remains constant even with a change in the
frequency. This assumption holds for systems where the memory latency can scale with
processor frequency (systems with on-chip memory). In contrast, for a system where the
memory latency does not scale with processor frequency (systems with dynamic mem-
ory and memory hierarchies), the WCEC of a task does not remain constant when the
frequency is scaled since an increase in the frequency typically increases the number of
cycles required to access memory. This behavior is caused by a constant access latency for
memory references, regardless of changing processor frequencies.

Notice that the memory access time depends on the front-side bus (FSB) instead of
the processor frequency. Either the FSB has a constant frequency or it does not provide
scaling at the same rate as a processor, i.e., FSB frequencies typically are constrained by
a considerably smaller range. Let us assume a constant FSB frequency, which is most
common.

By assuming that the WCEC remains constant, one ignores the fact that the WCEC
reduces with frequency, which results in overestimations of the WCET. Figure 1 depicts
results for the C-lab real-time benchmark fft, where the actual WCEC for a system with a
memory hierarchy is compared to a constant WCEC. The WCEC for the benchmark was
calculated for a simple in-order pipeline with instruction and data caches. In this example,
it is assumed that the memory access latency is constant. Figure 1 illustrates that the
number of WCEC increases proportionally with the processor frequency. This results from
an increasing number of wait cycles for a constant time memory latency as the frequency
increases. The slope of the actual WCEC depends on the number of accesses to main
memory (and the latency to frequency ratio). Hence, the slope depends on the number of
misses in the instruction and data caches combined. Therefore, the accuracy of paradigms
that measure the worst-case behavior of the instruction and data caches not only control the
accuracy of the WCEC, but they also affect the accuracy by which the WCEC can be scaled
with frequency. Figure 2 depicts the equivalent WCET to the two WCEC curves in Figure
1. The actual WCET depicted indicates the assumption of a constant WCEC independent
of frequency modulations result in considerable overestimations of the WCET.

The objective of the work described in this paper is to accurately model the actual
WCEC and, thereby, the actual WCET of real-time tasks. We derive a parametric frequency
model for this purpose. The model provides WCET bounds that remain tight and accurate
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Fig. 1. Actual vs. Assumed WCEC for fft

throughout any frequency range. The parametric model complements real-time systems
employing a DVS-base scheduling scheme, and it is paramount to achieving higher energy
savings. lgnoring the change in WCEC with frequency results in considerably smaller
energy savings.

2.2 Parametric Frequency Model

Our parametric frequency model can be used for timing analysis with any simple in-order
single-issue pipeline. The model is applicable to systems with or without a memory hier-
archy. We consider the model in a system with a memory hierarchy in the following, and
we contribute solutions to the technical challenges posed. We assume that the system is
equipped with an on-chip instruction and data cache and that the main external memory
has a constant access latency. Let us assume that a static timing analyzer has detected a
worst-case path for now, which is an assumption that is lifted in Section 3.2. To accurately
model the WCET in systems with memory hierarchies, we propose a parametric frequency
model that captures the effect of frequency scaling accurately by splitting the WCEC of
a task into two components. The first component, ¢, captures the ideal number of cycles
required to execute the task assuming perfect caches. In other words, ¢ does not scale
with frequency. The second component, m, counts the total number of instruction and
data cache misses for the task. m is the part of the WCEC that scales with frequency and
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depends on the memory access latency. If a system without caches is considered, ¢ would
count the total number of cycles used for non-memory operations while m would count
the total number of memory references. Thus, the WCEC is expressed as follows:

WCEC =i+ mN )
where N is the number of cycles required to access the memory, which depends on the
latency of the memory and the frequency of the processor. For a uniform memory latency,
the WCEC can be easily be converted into the WCET by dividing by the frequency. This
frequency model can accurately model the actual WCET because it separates the WCEC
into components, one that scales and one that does not scale with processor frequency.

The following examples are presented to show that the parametric model can capture the
effects of different sequences of instructions in a task. Only sequences that contain data or
instruction cache misses are of concern since they are affected during frequency scaling.
A sequence of instructions without any cache misses can be captured exclusively by the
1 component and represents a trivial example of our parametric model. For the following
examples, let N = 10, as shown in the figures below. We assume separate instruction
and data caches and frequency scaling under our model with an arbitrary simple in-order
pipeline.

Consider a sequence of four instructions, as shown in the Figure 3. This instruction

A: add R2, R1, R3
B: load R4, [M1]

C: add R2, R1, R4
D: add R2, R1, R5

Fig. 3. Sample Instruction Sequence

sequence is executed in a processor with a simple six-stage in-order pipeline. The pipeline
stages are fetch (IF), decode (ID), issue (IS), execute (EX), memory access (MEM) and
write-back (WB).

(1) In Figure 4, we observe the effects of an instruction cache. Consider instruction B
resulting in a miss. While instruction B misses in the instruction cache, all other cache
accesses result in hits. Since instructions are stalled till the miss on B is resolved, the
number of cycles involved can be separated into two components. With ¢ = 9 and
m = 1 in Equation 1, the WCEC is accurately captured by our model as WCEC =
9 + 1N. Hence, the WCEC is accurately modeled for any value of IV resulting in an
accurate WCET regardless of frequencies.

Cycles 1) 2| 3| 4] 5| 6| -| —|12|13|14|15|16|17|18|19
IF A|B|B|B|B|B| -| -|B|C|D

1D A B|C|D

IS A B|C|D

EX A B|C|D

MEM A B|C|D
WB A B|C|D

Fig. 4. Ex 1: Instruction cache miss

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, 04 2004.



)

®3)

FAST: Frequency-Aware Static Timing Analysis . 7

In Figure 5, we observe the effects of a data cache miss. Instruction B misses in the
data cache while all other cache accesses are hits. With : = 9 and m = 1, the WCEC
is again calculated as 9 + 1N. Since the data miss stalls subsequent instructions, one
can separate the number of cycles required for the memory access. However, had the
Instruction C or any other stalled instruction performed any useful work instead of
being stalled, a potential for overestimation would occur for the model, e.g., for multi-
cycle floating-point operations, branch mispredictions, etc. Any such overestimation
results from the overlap of useful cycles with the memory stall. In our model, the
1 component counts these useful cycles while the m component counts data miss.
Overlap would not be considered by the model. For example, if instruction C took an
extra cycle to execute, the new WCEC would become 10 + 1.N. The model does not
consider the overlap between the data miss and the extra cycle used by instruction C.
A similar problem is also observed in example 1 if the instruction miss overlaps with
a high execution latency instruction.

Cycles 1| 2| 3| 4| 5| 6| —| —-|16]17|18|19
IF A|B|C|D

ID A|B|C|D

IS A|/B|C|D| -| -|D

EX A|B|C| -| -|C|D

MEM AlB| -| -|B|C|D
WB A B|C|D

Fig. 5. Ex2: Data cache miss

The potential for overestimations implies that the obtained WCET obtained still pro-
vides an upper bound on the execution time, albeit not necessarily a tight one. But re-
moving overestimations due to instructions with high execution latencies is non-trivial
because instructions may have different execution latencies. Subsequent experiments
show that these design choices have a diminishing affect on the tightness of WCET
bounds.

In Figure 6, we observe the effects of a simultaneous instruction and data cache misses.
Instruction B results in a data cache miss while the instruction C results in an instruc-
tion cache miss. All other cache accesses are hits. With ¢ = 9 and m = 2, the
WCEC = 9+ 2N. The instruction and the data cache misses cannot be serviced
together. Hence, instruction B is stalled till instruction C’s cache miss is serviced.
The model captures all sequences of instructions where a cache miss stalls yet another
cache miss. Notice that the two misses in question need not result from consecutive
instructions. We observe some overestimation because of overlapping of some work
with the miss cycles.

In the above examples, different combinations of cache misses were considered, which

can occur in a simple pipeline. In the presence of these misses, the parametric model
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Cycles 1| 2| 3| 4| 5| 6| —| —|13|14|15|16| —|24|25|26|27
IF A|B|C|C|C|C| -| -|C|D

1D B Cc|D

IS A |B CcC|D| -

EX B c| -|C|D

MEM B| - -|B(B|B|B| -|B|C|D
WB B|C|D

Fig. 6. Ex 3: Instruction + data cache miss

accurately captures the worst-case timing behavior for any sequence of instructions. Over-
estimation is expected when a high execution latency operation overlaps with a miss or
when an I-cache miss overlaps with a D-cache miss.

3. TIMING ANALYSIS

In this section, we describe conventional static timing analysis and briefly contrast the
approach to dynamic timing analysis methods. We specify the novel enhancements ne-
cessitated by DVS to adapt conventional static timing analysis to a frequency-aware static
timing analysis (FAST) tool.

3.1 Static Timing Analysis

Schedulability analysis for hard real-time systems requires that the worst-case execution
time (WCET) be safely bounded in order to ensure feasibility of scheduling a task set
for a given scheduling policy, such as rate-monotone and earliest-deadline-first scheduling
[Liu and Layland 1973]. If the execution time of a task were obtained through dynamic
timing analysis based on experimental or trace-driven approaches, these values would not
provide a safe bound of the WCET [Wegener and Mueller 2001]. On the one side, it
is difficult to determine the worst-case input set even for moderately complex tasks that
would exhibit the WCET, and to perform exhaustive testing over the entire input space is
infeasible except for trivial cases. On the other side, even if the worst-case input set was
known, the interaction between the software and hardware might cause the task to exhibit
its WCET for a different input set. The cause of this behavior is architectural complexity,
such as complex pipelines and caching mechanisms.

Static timing analysis is a viable alternative to dynamic timing analysis, and while var-
ious static approaches have been studied, we will constrain ourselves to one such toolset
without loss of generality [Healy et al. 1999; Mueller 2000; White et al. 1999]. The WCET
bounds obtained by static timing analysis provide a guaranteed upper bound on the com-
putation time of a task. Static timing analysis performs the equivalent of a traversal over
all execution paths to determine timing information independent of a program trace and
without tracking values or program variables. Loop bodies only require a few traversals
to determine the worst-case behavior of the entire loop due to an efficient fixed-point ap-
proach. As the execution paths are traversed, the behavior of the architectural components
along the execution paths is captured. The paths are composed to form loops, functions
and ultimately the entire application to calculate both WCEC and WCET.

Figure 7 depicts an overview of the organization of this timing analysis toolset. An
optimizing compiler has been modified to produce control flow and branch constraint in-
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Source "Gec (PISA) Control Flow & Timing WCET
Files 1/D-References Analyzer, Prediction

Compiler

Static \ Cache
Cache

Categorization

imulator

Fig. 7. Obtaining Safe WCET Bounds

formation as a side effect of the compilation of a source file. The original research compiler
VPCC/VPO [Benitez and Davidson 1988] was replaced by GCC with a Portable Instruc-
tion Set Architecture (PISA) backend that interfaces with SimpleScalar. Real-time appli-
cations are compiled into assembly code using the GCC PISA-compiler. The control-flow
graph and instruction as well as data references are extracted from the assembly code. Up-
per bounds on the number of iterations performed by loops are provided, a prerequisite
for performing static timing analysis. A static instruction cache simulator uses the control
flow information to construct a control-flow graph of the program that consists of the call
graph and the control flow of each function. The program’s control-flow graph is then ana-
lyzed, and a caching categorization for each instruction and data reference in the program
is produced. Separate categorizations are provided for each loop level in which the in-
structions and data references are contained. The categorizations for instruction references
are described in Table 1. Next, the timing analyzer uses the control flow and constraint
information, caching categorizations, and machine dependent information (e.g., pipeline
characteristics) to calculate bounds on the WCET.

[Cache Category | Definition |

always miss | Instruction may not be in cache when referenced.
always hit | Instruction will be in cache when referenced.
first miss Instruction may not be in cache on 1st reference

for each loop execution, but is in cache on subse-

quent references.

first hit Instruction is in cache on 1st reference for each

loop execution, but may not be in cache on subse-

quent references.

Table I. Instruction Categories for WCET

The approach in this paper differs from our prior toolset as follows. Our tool sepa-
rates static I-cache and D-cache (instruction/data cache) analysis. The D-cache analysis
currently lacks sufficiently detailed information about references for the GCC compilation
phase, and D-cache analysis does not fully match the SimpleScalar model. The focus of
this paper is on enhancing the timing analyzer with respect to the FAST model and PISA
instruction set. But since we use our SimpleScalar-based architectural simulation environ-
ment [Anantaraman et al. 2003] to validate our approach, we have to make simplifying
assumptions about data caches. Specifically, we assume a constant number of data cache
accesses to be misses for each application to model compulsory misses. The remaining
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references are considered to be hits, which models a sufficiently large cache. This sim-
plifying assumption does not affect the design of FAST, i.e., our model supports a more
precise static data cache analysis as well.

The timing analyzer uses the control-flow information and loop bounds, caching cat-
egorizations, and pipeline description to derive WCET bounds. The pipeline simulator
considers the effect of structural hazards (an instruction occupying the universal function
unit for multiple cycles), data hazards (a load-dependent instruction stalls for at least one
cycle if it immediately follows the load), branch prediction (backward-taken/forward-not-
taken), and cache misses (derived from caching categorizations) for alternative execution
paths through a loop body or a function. Static branch prediction is easily accommodated
by worst-case analysis: the misprediction penalty is added to the non-predicted path (not-
taken path for backward branches and taken path for forward branches). Path analysis (see
below) selects the longest execution path as usual. Once timings for alternate paths in a
loop are obtained, a fixed-point algorithm (quickly converging in practice), is employed to
safely bound the time of the loop based on the its body’s cycle counts.

The fixed-point approach generally requires path analysis for only a few iterations.
Given the longest path for the first iteration, the next-longest path is determined for the
second iteration, which may differ from the original path due to caching effects. The
lengths of these paths are monotonically decreasing due to cache effects, and once we
reach a fixed-point, subsequent loop iterations can be safely approximated by this fixed-
point timing value. When the longest paths of consecutive iterations are combined, we
account for the pipeline overlap between the tail of the earlier path and the head of the path
that follows. The alternative — no overlap — is tantamount to draining the pipeline between
iterations. Using this fixed-point approach, the timing analyzer ultimately derives WCET
bounds, first for each path, then for loops, and finally for functions within the program.
A timing analysis tree is constructed, where each node of the tree corresponds to a loop
or function. Nodes in the tree are processed in a bottom-up manner. In other words, the
WCET for an outer loop / caller is not calculated until the times for all of its inner loops /
callees are known. This means that the timing analyzer predicts the WCET for programs by
first analyzing the innermost loops and functions before proceeding to higher-level loops
and functions, eventually reaching the tree’s root (e.g., main()). For our purposes, the tim-
ing analysis tree provides a convenient method for obtaining WCET for a specific scope, in
particular for sub-tasks. From the description in this section, it becomes evident that static
timing analysis is non-trivial, even for simple pipelines.

3.2 Frequency-Aware Static Timing Analysis

The static timing analysis tool calculates the WCEC for a particular task. However, static
timing analysis has to be performed whenever the processor frequency is changed. Re-
assessing the WCET bound is paramount to temporal safety since a change in the processor
frequency causes a change in the number of cycles required to access the memory since
front-side bus frequencies do not scale at all (or at least not at the same rate). Due to the
change in memory latency, the WCEC information for different paths changes, which may
result in a different worst-case path than before. Our frequency model can be elegantly
incorporated into static timing analysis such that it calculates the number of cycles for
each possible worst-case path in the program. The following technical innovations to the
static timing analysis framework support such flexible calculations.

Instead of using the memory access cycles to simulate the sequence of instructions in
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the pipeline, the ideal number of cycles is calculated assuming all cache accesses to be
hits. The instruction and data cache misses are accumulated as a side-effect to compose a
first-order polynomial equation describing the WCEC.

Static timing analysis requires different paths through the same node (loop or function)
to be compared. The path with the worst WCEC is used as the WCEC for the node. After
integrating the frequency model into the framework, one has to compare two equations to
determine which one was to result in a larger number of execution cycles. The challenge
here is posed by having to consider both equations: One of them (e.g., for path one) has
greater WCEC for some range of frequencies while the other (for path two) has greater
WCEC for the rest of the frequency range. Remember that the frequency model is a first-
order polynomial. Consider the case where two equations intersect, i.e., both polynomials
have a common solution. We propose three approaches to address this problem.

1. One can maintain an ordered list of equations and the ranges where subsequent poly-
nomials represent a larger WCEC than previous ones. Since the frequency model is a
first-order polynomial with different slopes, there exists an intersection point constraining
the range for each equation.

2. Alternatively, a curve-fitting equation could capture the effects of both equations. This
obviates the need for maintaining large numbers of equations but increases the complexity
of the parametric equation. A higher-order polynomial with strict upper bounds on each
base polynomial would provide a relatively close fit. The resulting curve would not be as
tight as in case (1) but may suffice if the slopes of the original polynomials do not diverge
significantly. This would impose more overhead on dynamic scheduling schemes that have
to perform additional arithmetic to evaluate the equation upon any scheduling action.

3. Another, easier solution is to declare a valid range of frequencies for the processor. If
two equations intersect outside the given range, we simply have to choose the equation that
provides the higher WCEC within the valid range. If two equations intersect within this
specified range, we use a simple curve-fitting technique through a first-order polynomial
that provides a WCEC greater or equal to the values of either of the original equations.

By using one of the above techniques, we ensure that a FAST equation obtained always
provides an upper bound on the WCEC of the task, regardless of the chosen frequency.
For our FAST framework, we have used the third, the easiest technique to bound FAST
equations.

4. FAST-DVS SCHEMES

Most DVS scheduling algorithms use the assumption that the WCEC is constant with
frequency when scaling the WCET. By not considering the effect on WCEC during fre-
quency modulation, DVS schemes assume a considerably overestimated WCET. Thus,
DVS schemes fail to completely utilize available slack because the scaled WCET is not a
tight bound. We have implemented our parametric frequency model as the FAST frame-
work. Parametric equations obtained by FAST can be used in DVS scheduling schemes to
ensure that the scaled WCET remains an accurate and tight bound of the execution time for
atask. Thus, we can increase the efficiency of DVS schemes and further reduce the energy
consumption of the system.

DVS schemes can execute a task set at a lower frequency provided that a schedulability
test deems the task set feasible and tasks do not exceed their WCET. For DVS schemes
based on earliest-deadline-first (EDF) scheduling, the schedulability test expressed in
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Equation 2 must be satisfied by the task set to ensure feasibility. Equation 2 represents
the original Liu and Layland utilization test of the system without considering frequency
scaling [Liu and Layland 1973].

Ci Oy Cn
E+FQ+"'+P—nS1 2
C1, Cy, -+, C,, represent the WCET for each of the n tasks. Py, P, --- , P, repre-

sent the respective periods of the tasks. As is common in base EDF, tasks” deadlines are
assumed to be equal to their periods. Let us now consider a scaling factor « that identifies
the actual (scaled) frequency such that o« = f./ f.., where f. is the scaled frequency and
fm is the maximum processor frequency.

Next, let us express Equation 1 in time instead of cycles where the number of cycles,
N, is expressed in terms of the actual frequency, f., and the memory latency, L, using the
relation N = L x f., and f. is then substituted by f,,, x « by definition of «.

WCEC _it+mLfe _i+mLfna @
fe fe Jma
Recall that equation 2 does not consider the effect of frequency scaling on WCET. By
combining Equation 3 with Equation 2, we yield a more accurate scaling factor by taking
the effects of frequency scaling on WCET into account, as seen in Equation 4.
i1 +amiLfm, in +ampLfm
" Pifma T Pafua @

By solving for «, we get:

C =

<
- L 5 " ©)

The scaling factor in Equation 5 results in a much lower frequency f.. The WCET used
is not exaggerated, and slack is exploited efficiently.

In our implementation work, we integrated FAST equations into DVS-EDF scheduling
as proposed by Pillai and Shin through (a) static voltage scaling, (b) cycle-conserving RT-
DVS and (c) look-ahead RT-DVS [Pillai and Shin 2001]. With only minimal changes to the
original algorithms, we integrated the FAST equations into the respective DVS schemes,
thereby improving energy savings obtained.
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4.1 FAST - Static Voltage Scaling

The static voltage scaling scheme introduced by Pillai and Shin [Pillai and Shin 2001]
uses the modified EDF test shown in Equation 2 to calculate the scaling factor «.. This
algorithm uses all static slack in the system. The processor frequency for the entire task
set is set statically. Dynamic slack produced during runtime due to early completion of
tasks is not considered for frequency scaling. The FAST equations for the WCET can be
integrated into the static voltage scheme as shown in Figure 8. Equation 1 represents the
WCET of all tasks, and the scaling factor is calculated using Equation 5. The FAST static
voltage scaling algorithm performs better than the original static voltage scheme because
it considers the portion of WCET that scales with frequency.

EDF-test(q):
. 251 1i/P;
if = < a return true ;
fm (1 — LZj:l m; /Pj)
elsereturn false;
select-frequency:

use lowest frequency

fke{f17"' 7f’m|f1 << f'maz}
such that EDF-test( %/ fmaz) iStrue;

Fig. 8. FAST-Static Voltage Scaling for EDF

4.2 FAST - Cycle-Conserving RT-DVS

The cycle conserving RT-DVS by Pillai and Shin [Pillai and Shin 2001] calculates the
utilization for a task set at every task release and task completion. Upon task release,
the utilization is calculated based on the WCET. Upon task completion, the utilization is
calculated by considering the actual execution time of the completed task instead of the
WCET. This algorithm uses the static slack available in the system as well as the dynamic
slack generated due to early task completions. Figure 9 shows the necessary modifications
to the original algorithm to incorporate the FAST equations.

The FAST cycle conserving DVS scheme outperforms the original scheme since it takes
the actual execution times as well the scaling levels of previous tasks into account. The
scheme derives the current system utilization after task completion by considering the ac-
tual execution time. In FAST cycles-conserving RT-DVS, the total number of cycles and
the total number of misses experienced by a task are determined during executing, e.g.,
by hardware counters, which have become quite common for modern architectures. The
actual execution time is also converted into a FAST equation to consider its scaling with
frequency. The system utilization and the scaling factor are calculated through Equations
4 and 5.

4.3 FAST - Look-Ahead RT-DVS

The look-ahead RT-DVS schemes by Pillai and Shin [Pillai and Shin 2001] finds the min-
imum amount of work that may be performed between now and the next scheduling event
without missing any deadlines. All work is deferred till the last possible moment, also
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sel ect-frequency():
use lowest frequency
fke{f17 o 7fmaz|f1 <0 < fmaz}

> i1 1i/Pj
fm(1-L Z?:1 m;/Pj)

Such that < fi/fmax ;
upon task-release(T;):
set iy = iwceTr and m; = mwceT ;
select frequency();
upon task-completion(75;):
set ij = lactual and mMj = Mactual ;
[*Mgctuar aethe actual number of misses
for thisinvocation,
lactual @€ theideal number of cyclesfor
this invocation not counting the miss cycles*/
select frequency();

Fig. 9. FAST-Cycle conserving DVS for EDF

referred to as last-chance scheduling [Chetto and Chetto 1989]. As a side effect, the fre-
quency may be increased as execution approaches a deadline. In practice, most tasks com-
plete execution early, i.e., prior to their WCET. Hence, the frequency rarely has to be
raised to complete by a deadline. This algorithm also uses all the static slack (idle) as
well as most of the dynamic slack. Figure 10 depicts the modified original algorithm to
integrate the FAST equations into the DVS scheme. Figure 10 also shows a modification
to the look-ahead RT-DVS algorithm for task — completion by setting c_le ft; = C; (see
appendix). The FAST look ahead scheme also takes advantage of FAST equations to lower
energy consumption of the algorithm. The terms i_left and m_left describe the compu-
tation left in the form of a FAST equation. Hardware counters are employed to track total
cycles completed and total misses inflicted while a task is executing. The s component
shown in Figure 10 cannot be converted into a FAST equation unless considerable changes
are made to the algorithm. Doing so would make the algorithm more aggressive leading
to lower frequencies. To avoid excessive modifications, only the next scheduled task is
expressed in the form of a FAST equation. The experiments show that the performance of
the algorithm is improved even with minimal modifications to the algorithms.

5. EXPERIMENTAL FRAMEWORK

The experimental framework is divided into two sections. The first section is devoted to
comparing the WCEC calculated using FAST equations, obtained from the FAST frame-
work, to the WCEC obtained from the traditional static timing analysis tool. The second
section tests and compares FAST-DVS algorithms with the original DVS algorithms pro-
posed by Pillai and Shin [Pillai and Shin 2001].

We assess the energy consumption using two different models for each case, the classi-
cal model based on E ~ V2 and an architectural resource model Wattch [Brooks et al.
2000]. The former is widely used in early general-purpose DVS work and in real-time
systems to evaluate DVS-scheduling algorithms. The latter has become popular in the
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sel ect-frequency(x): use lowest frequency
fke{f17 e 7f'ma,z|f1 <0 < f'maz}
such that = < fk/fmaz ;
upon task-release(T5):

set c_leftj = Cj,
i_left; = i_wcet; and m_left; = m_wcet; ;
defer();
upon task-completion(75;):
set cleft; = Cj,
i_left; = i_wcet; and m_left; = m_wcet; ;
defer();

during task-execution(7}):
decrement c_le ft;, i_left; and m_left; ;

defer():
sets=0;

fij:].tOTL,Tj ET1,~~~ ,TnlDl >...>D,
/*Note: reverse EDF order of tasks*/
setU =U — Cj/Pj ;
set z; = maz (0, cleft; — (1 —U)(Dj — Dn));
setU =U + (c_leftj — IL’J)/(D] — Dn) )
sets = s+ x;;
S =8 — Xn
t = D, — current_time
(i-leftn +s)/t ]
fm(1 — L X m_left,/t) ’

X =

select-frequency(x);

Fig. 10. FAST-Look ahead DVS for EDF

architectural community since it integrates with SimpleScalar [Burger et al. 1996]. To
provide a proper comparison between the two, the V2 f model was also integrated into
our SimpleScalar-based simulator [Anantaraman et al. 2003]. Notice that the results re-
ported in Section 6 differ from our preliminary paper [Seth et al. 2003], which reported
V2 f-based energy readings obtained from a scheduler simulator. Our new results consis-
tently utilize the SimpleScalar architectural simulator, which, besides the Wattch model,
we have enhanced by a real-time scheduler and an implementation of three DVS scheduling
schemes based on EDF, as proposed by Pillai et al. [Pillai and Shin 2001]. Hence, the DVS
scheduling and task dispatch overheads are considered in our framework. The overhead of
voltage/frequency switching itself may be considered as part of these overheads.

5.1 Testing the FAST Framework

We re-designed our static timing analyzer [Healy et al. 1999] to create the FAST frame-
work. The FAST tool, like its predecessor [Anantaraman et al. 2003], is based on the
portable ISA (PISA) used by the SimpleScalar tool set. All instruction execution latencies
are based on the MIPS R10K latencies. Specifically, a constant memory latency of 100ns
is used. We use a 8KB direct-mapped instruction cache and a 8KB direct-mapped data
cache. For the instruction cache categorizations, the static cache simulator of our existing
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tool set is used. To obtain data cache categorizations distinguishing hits and misses, we
use a scheme that assumes a constant number of data accesses as misses and the remaining
references as cache hits. During pipeline simulation, a static branch prediction scheme
using the Ball-Larus heuristic is modeled [Ball and Larus 1993]. Both the static timing
analysis tool and the FAST tool model a simple in-order six-stage pipeline.

When incorporating the frequency model into the static timing analyzer, two paths with
FAST equations that result in intersecting first-order polynomials may be encountered. In
this case, we resort to the third method introduced in Section 3.2 to choose the equation
resulting in the worst-case behavior. First, we try to determine if one equation is always
greater than the other for the valid range of frequencies (100MHz-1GHz). Otherwise, we
approximate the two equations by an equation providing a safe upper bound. This may
result in slight overestimations but, overall, still provides sufficiently tight bound of the
WCEC, as will be seen. We also remove the branch misprediction penalty from the FAST
equation if branch misprediction overlaps with a data miss stall. The overestimation caused
by instructions with execution latencies higher than one are not removed from the equation
as they contribute insignificant savings.

We studied six real-time benchmarks from the C-lab real-time benchmark suite [C-Lab
], commonly utilized for WCET experiments. Three floating point benchmarks, adpcm,
Ims and fft as well as three integer benchmarks, cnt, srt and mm are analyzed. These
benchmarks were compiled by the PISA GCC compiler integrated with our SimpleScalar-
based tool set. From the compilation of these benchmarks, the control-flow graphs and
instruction layouts were obtained, which are taken as inputs to the FAST analyzer and
the static cache analyzer. The FAST output is the WCEC in the form of a parametric
equation conforming with our parametric frequency model. The same benchmarks were
also exposed to the original static timing analysis tool set for comparison. The original
static timing analyzer must be run separately for each frequency under consideration to
account for changed memory latency for a given processor frequency. In contrast, the
FAST framework captures the same effect in an equation (derived from a single analysis
step).

5.2 Testing FAST-DVS Schemes

To test the FAST-DVS schemes, we implemented the algorithms and compiled that into
PISA object code to simulate the scheduling overhead, along with each task’s execu-
tion, within our SimpleScalar-based simulator. Implementation features include generic
static voltage scaling support and scheduling algorithms ranging from base EDF, cycle-
conserving RT-DVS, look-ahead RT-DVS, FAST static voltage scaling, FAST cycle con-
serving RT-DVS to FAST look ahead RT-DVS. All the scheduling algorithms can choose a
frequency between 100MHz to 1GHz for the next scheduled task. The base EDF algorithm
runs all tasks at 1GHz. All algorithms switch the processor frequency to 100MHz during
idle times in the schedule, the lowest available frequency, since it is not realistic to put a
processor into sleep mode (with millisecond overheads) for frequent task releases (in the
order of milliseconds).

A combination of task sets resulting from application workloads of six real-time bench-
marks, namely srt, fft, mm, Ims, adpcm and cnt, were studied. The task sets were exposed
to the simulator, and energy consumption was calculated for all scheduling algorithms. The
execution times were derived from exposing the benchmarks to a cycle-accurate pipeline
model implemented in our SimpleScalar-based simulator [Anantaraman et al. 2003]. By
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exploiting a cycle-accurate architectural simulator, we can obtain the total number of cache
misses as well as the total number of cycles executed. The execution times obtained from
the architectural simulator are scaled with frequency using the same assumption used while
formulating the FAST parametric model. Namely, we assume that the total number of ex-
ecution cycles does not remain constant with frequency. The same execution time scaling
method is used for all the voltage scaling algorithms.

Energy consumption is determined based on the V2 f and the Wattch models. To eval-
uate the different FAST-DVS and DVS schemes, we formed several tasksets using the cnt,
srt, mm, adpcm, fft and Ims benchmarks. Three groups were formed as follows - G1:
cnt, srt, mm (all integer), G2:adpcm, fft, Ims (all floating point) and G3:cnt, mm, fft, Ims
(mixed). The periods were chosen for each benchmark and from each group two tasksets
are created — one with high utilization, and one with low utilization. The high utilization
tasksets have a utilization of approximately 0.9 while the low utilization tasksets have a
utilization of approximately 0.5.

Bench- Equations |WCET:Static timing anaysis/ FAST (WCEC)
marks i m |100MHZ| 400MHZ | 700MHZ | 1000MHZ
fft | 355933 | 24658 | 600628/ | 1340578/ | 2079876/ | 2820478/
602675 | 1342625 | 2081993 | 2822525
adpcm | 3026370544104 | 8433905/ | 24749525/ | 41065145/ | 57380765/
8467410 | 24790530 | 41113650 | 57436770
Ims | 167890 | 29905 | 466438/ | 1363598/ | 2260748/ | 3157898/
466940 | 1364090 | 2261240 | 3158390
cnt 71221 | 6066 | 131880/ | 313860/ | 495840/ | 677820/
131881 | 313861 495841 677821
mm |2038538| 59134 |2629877/ | 4403897/ | 6177917/ | 7951937/
2629878 | 4403898 | 6177918 | 7951938
st |3509420|102145|4530868/ | 7595218/ |10659568/ | 13723918/
4530870 | 7595220 | 10659570 | 13723920

Table Il.  WCEC of FAST vs. Traditional

The frequency/voltage settings used for the scheduling simulator are loosely based on
Intel Xscale, which is reported to have 5 settings ranging from 150 MHz / 0.76 V to 1 GHz
/1.8 V [Intel 2000]. From the Xscale, we extrapolated 37 settings ranging from 100 MHz
/0.70Vto1GHz/1.8Vin25MHz/0.03V increments. We calculate energy per cycle
at a particular frequency by integrating power over a fixed period of time (e.g., over the
hyperperiod) using the relation Power ~ Voltage? x frequency.

6. RESULTS FOR FAST FRAMEWORK

The FAST equations for the WCEC for the six benchmarks obtained from the static timing
analysis tool and the FAST tool are compiled in Table Il and in Figure 11. The FAST
scheme differs from conventional static timing analysis without parametric expressions
of frequencies by less than half a percent. Hence, we conclude that the FAST equations
accurately model the WCEC obtained from the static analysis tool. Since the effects of
scaling on WCEC are accurately modeled by the FAST equations, the scaling of the WCET
can also be accurately captured.
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Fig. 11. FAST vs. Traditional WCEC

Table 11 shows the WCEC for all six benchmarks calculated for four different frequencies
using the FAST equations and compared with the corresponding WCEC obtained from the
static timing analysis tool. Figure 11 plots the ratio of the WCET for the FAST tool and the
static timing analysis tool. Table Il and Figure 11 show that the FAST bounds on WCET
match the bounds obtained by the static timing analyzer exactly for cnt, mm and srt. For
fft, adpcm and Ims, the FAST bounds on WCET are very close to the bounds obtained by
the static timing analyzer. The overestimation in these benchmarks is due to the presence
of floating point operations that have overlapping execution latencies with memory stalls
(see Section 2.2, Figure 5). Thus, the FAST tool can accurately model the WCEC of tasks
with a negligible error (<1%) by using our parametric frequency model.

7. RESULTS FOR FAST-DVS SCHEMES

Figures 12(a) to 12(f) depict the energy consumption for both the V2 f and the Wattch
model of all the DVS schemes normalized to the base EDF scheme for all six tasksets. For
each DVS scheme, two bars are presented, the left bar showing the energy consumption
according to the Wattch model and the right bar that of the V2 f model, each relative to
normalized base EDF under the corresponding power model.

The figures show a decrease in energy consumption for all the FAST-DV'S schemes when
compared to the original RT-DVS schemes. The first, third and fifth bars in the graphs show
the energy consumption for the original RT-DVS schemes. The second, fourth and sixth
bars in the graphs show the improved energy consumption for the FAST-DVS schemes.

For the integer taskset G1, the Wattch model indicates savings of about 30% on energy
between static and cycle-conserving RT-DVS and the corresponding FAST variants (Fig-
ures 12(a) and 12(b)). For the V2 f model, savings are even more considerable (in excess
of 50%) for these two scheduling schemes. Lower system utilization results in slightly
higher energy savings, which can be attributed to exploiting the additional static slack.
The look-ahead scheme shows none or only marginal savings under FAST for high and
lower utilizations, respectively, regardless of the power model. This is caused by fact that

ACM Transactions on Embedded Computing Systems, Vol. 3, No. 1, 04 2004.



FAST: Frequency-Aware Static Timing Analysis .

19

ahead

DVS-EDF Schemes

1.000 0.500
& 0.900 _l w 0450 —
Y 0.800 1 ‘DWatlch model 1| ‘g 0.400 1 ‘uvvatlch model
£ 0.700 1| |V2f model 8 0350 | mV2f model
2 0600 1 2 0300 ++ —
& 0500 1+ & 0.250 1+
= =
£ 0.400 7 £ 0.200
o o
£ 0.300 1 € 0.150
] | B
§ 0.200 1— % 0.100 1+
< c
w 0.100 1 w 0.050 + J:
0.000 + 0.000 +— J:J:
static  fast-static  cycle  fast-cycle look-ahead fastlook- static  fast-static  cycle  fast-cycle look-ahead fastlook-
ahead ahead
DVS-EDF Schemes DVS-EDF Schemes
(a) Taskset G1 with utilization 0.9 (b) Taskset G1 with utilization 0.5
1.000 0.600
w 0.900 w
a —| — || 8 0500 ]
‘s 0-800 - BWattch model f| | ‘0 @ Wattch model
] B V2f model @ mV2f model
© =+ ©
_: 0.700 8 0.400 1
20600 - 2 —
3 g
N 0.500 1 N 0.300 1 —
= — =
£ 0.400 1 | E
E 0.300 E 0200 1+
2 0.200 - M 5 0.100
2 2 0.
" oo ﬂ_t 3 I N
0.000 + 0.000 +1 L
static  fast-static  cycle  fast-cycle look-ahead fastlook- static  fast-static  cycle  fast-cycle look-ahead fastlook-
ahead ahead
DVS-EDF Schemes DVS-EDF Schemes
(c) Taskset G2 with utilization 0.9 (d) Taskset G2 with utilization 0.5
0.600 0.450
w - w0400 ——
2 0500 1 2 JE—
> mWattch model || | ', 0.350 4| @ Wattch model
& mV2f model 4 BV2f model
< 0.400 1 < 0.300 +
2 2 —
E] 2 0.250 +| —
& 0300 { K ,— —
® ® 0.200 1
£ 5
2 0.200 1 7 2 0.150 —
] 3 0.100 ||
0.100 2
; "ol L Il
0.000 - 0.000 +— J:
static fast-static cycle fast-cycle look-ahead fast look- static fast-static cycle fast-cycle look-ahead fast look-

ahead

DVS-EDF Schemes

(e) Taskset G3 with utilization 0.9

Fig. 12.

(f) Taskset G3 with utilization 0.5

Energy Normalized to Base EDF for Various Task Sets

the FAST look-ahead scheme runs the taskset at a lower frequency and has to recover by
raising the frequency more often than the original look-ahead scheme.

The results are also sensitive to the task set, as a comparison with the floating-point
taskset G2 shows. Figures 12(c) and 12(d) indicate that G2 still experiences considerable
savings for high utilizations — and slightly lower ones for lower utilizations — under the
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corresponding FAST scheme. In case of G2, savings for the static and cycle-conserving
schemes are even higher than in G1. A comparison between the power models confirms
again that the V2 f model results in higher savings than the Wattch model reports. The
results for the integer/floating point mix of G3 in Figures 12(e) and 12(f) show savings
at levels between the G1 and G2 tasksets for static and cycle-conserving schemes. The
look-ahead version of FAST results in less significant savings, mostly due to already very
aggressive savings due to the original look-ahead scheme.

The differences observed for the 12 f vs. Wattch models indicate that the absolute en-
ergy savings obtained by simulation depend on the power model used. Both models show
savings relative to base EDF, which validates the FAST approach. However, even rela-
tive savings differ by 20%. We believe that the more detailed, architectural Wattch model
comes closer to realistically estimating energy savings. The main reason for the inade-
quacy of the V2 f model is in its lack to capture power dependencies following different
curves, such as seen in caches and similar architectural structures. In cache-like com-
ponents, power no longer follows a V2 relationship [Zyuban and Kogge 1998]. This
explains the lower energy readings for the Wattch model and also indicates that differences
between the models depend on the size of caches and similar structures. Hence, the V2 f
model, while suitable as a coarse indicator, may be inaccurate at a more detailed level since
it does not distinguish overheads of different architectural components into account.

All results depend on the FAST equation for the benchmarks. The scalability of the
WCET depends on the number of misses counted during timing analysis. Due to a worst-
case analysis, the number of misses are usually highly exaggerated, especially for data
caches. This means that the original schemes are penalized heavily due to their assump-
tions about scaling the WCET. Using the FAST equations, the DVS schemes can improve
the tightness of the WCET, which is already highly exaggerated, thereby improving energy
consumption.

In summary, FAST equations with the RT-DVS schemes are more greedy and result in
lower frequencies. The relative energy benefits are highest in the static RT-DVS scheme
because it has the most scope for improvement. The cycle conserving and the look-ahead
RT-DVS schemes are dynamic schemes and already scale the frequency aggressively. The
addition of the FAST equations to these aggressive schemes enables them to scale the
frequency even more aggressively, showing lower energy consumption. But these dynamic
schemes also requires higher scheduling overhead with a complexity of O(n) where n
denotes the number of tasks. FAST allows simpler, lower complexity DVS schemes, such
as the O(1) static RT-DVS variant, to yield results close to their dynamic counterparts. For
complex dynamic scheduling schemes, a simpler static scheme in conjunction with FAST
may sometimes be the better choice. Overall, benefits for FAST are being observed in all
cases.

8. RELATED WORK

Recently, a number of research groups have addressed various issues in the area of predict-
ing the worst-case execution time (WCET) of real-time programs. Conventional methods
for static analysis have been extended from unoptimized programs on simple CISC proces-
sors to optimized programs on pipelined RISC processors, and from uncached architectures
to instruction and data caches [Park 1993; Lim et al. 1994; Healy et al. 1995; Mueller 2000;
White et al. 1999; Li et al. 1996]. All these methods obtain discrete values to bound the
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WCET in a non-parametric fashion.

Vivancos et al. describe techniques for addressing static timing analysis for variable
loop bounds [Vivancos et al. 2001]. The so-called parametric timing analysis allows dy-
namic schedulers to re-assess the WCET based on dynamically determined loop bounds
during program execution. Chapman et al. [Chapman et al. 1996] used path expressions
to combine a source-oriented parametric approach of WCET analysis with timing anno-
tations, verifying the latter through the former. Bernat and Burns also proposed using
algebraic expressions to represent the WCET of subprograms, where the algebraic expres-
sion is parameterized by some of the subprogram’s parameters [Bernat and Burns 2000].
These approaches differ in that they address fundamental problems in static timing anal-
ysis. Our FAST approach, in contrast, aims at isolating execution effects as a function of
the processor frequency, a unique, unprecedented approach complementing existing work
on static timing analysis.

9. FUTURE WORK

The Fast-Look ahead DVS algorithm in Figure 10 can be improved by considering partial
execution of preempted tasks in terms of their instruction (:_left) and memory (m_left)
components instead of a more general counter of remaining cycles (m_left). Consider a
task k preempted by a release of another task j int ask- r el ease of the algorithm. Cur-
rently, the preempted task & is only considered in terms of its c_left(k), not its i left(k)
and m_left(k). Upon calling def er (), i_left(n) and m_left(n) be considered only for
task n. By not considering the instruction and memory components of task &, a higher
frequencies than necessary may be chosen, which is still correct but presents a missed op-
portunity to further reduce power consumption. As stated in Section 4.3, the s component
shown in Figure 10 cannot be directly converted into a FAST equation since the calculation
of c_left is based oni_left and m_left.

To further reduce power, one could normalize the c_le ft component to the maximum
frequency, f_max. By doing so, we assume that the number of misses on the paths taken
so far are not exceeding the number of misses on the worst-case paths up to this point,
which is valid. Hence, we can calculate

cleft(k) =ileft(k)+ Lxm.left(k)

for a memory latency L and the preempted task &k upon a task release, i.e.,, within
t ask-rel ease. This scaled c_left value can then be used in subsequent def er ()
calculations to more tightly bound the required remaining execution time of preempted
tasks. Hence, lower frequencies may be chosen so that additional power can be saved.

10. CONCLUSION

In this work, novel techniques for tight and flexible static timing analysis were developed
most suitable — but not restricted to — dynamic scheduling schemes. The essence of our ap-
proach lies in providing frequency-aware bounds on the WCET through static timing anal-
ysis. Using a frequency-sensitive parametric model, we can capture the effect of combined
DFS/DVS on the WCEC and, thus, accurately model the WCET over any frequency range.
These techniques are implemented in a frequency-aware static timing analysis (FAST) tool
leveraging prior expertise on static timing analysis. Experiments show the capability of
FAST to derive safe upper bounds on the WCET, which are almost as tight (within 1%) as
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conventional, non-parametric timing analysis. FAST equations can also be used to improve
existing DVS scheduling schemes to ensure that the effect of frequency scaling on WCET
is considered and that the WCET used is not exaggerated. This is demonstrated by in-
corporating FAST into three DVS scheduling schemes. Results indicate significant energy
savings over the base DVS schedulers due to FAST for two different power models. To the
best of our knowledge, this study of DVS effects on timing analysis is unprecedented.
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Modified Look-ahead DVS-EDF

A number of DVS schemes were proposed by Pillai and Shin for scheduling hard real-time
systems [Pillai and Shin 2001]. A simple, static scaling version uniformly scales the fre-
quency for all tasks based on utilization tests for schedulability, both for rate-monotone
and EDF scheduling. Cycle-conserving EDF lowers utilization upon task completion tem-
porarily to the proportion of the actual execution time. Look-ahead EDF is an extension to
these scheme that capitalizes on early task completion by deferring work for future tasks
in favor of scaling the current task. Scaling of the current task occurs based on a modified
utilization test that benefits from both idle slots and early task completion. At any comple-
tion (both early and on time), the utilization is effectively reduced for the completing task
(up until its next release time).

Specifically, upon task completion, cG = c_left; = 0 according to Cycle-Conserving
EDF and Look-ahead EDF, respectively. The defer calculations of Look-ahead EDF then
reassesses the utilization based on future and past deadlines for released and completed
tasks, respectively.

We modified the Look-ahead EDF by setting c.left;, = C; at task completion instead
of assigning a zero value. In addition, we reassess the utilization strictly based on the next
deadline in the future, regardless of whether tasks are already released and not. This allows
us to look ahead even further in the schedule and, thereby, potentially save additional
energy by lowering frequencies more aggressively, and it retains the safety of the schedule
by adhering to the EDF utilization test. If the WCET is not fully utilized, then other tasks
may still benefit from early completion up to the threshold given by the idle times left in the
schedule. This modified Look-ahead EDF scheme was implemented in our comparison and
is shown to result in up to 34% lower energy consumption than the original scheme. On the
average, the modified scheme saves an additional 5-11% of energy for utilizations between
25% and 100%. At high utilizations, our modification occasionally requires between 0.5-
8% more energy, which is due to considering an actual time of cc; = 0 in the original
scheme up to the next release of a task. Hence, it would be possible to switch between
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the two schemes based on a utilization threshold as a trigger. Additional savings over the
modified scheme due to early completion can only be obtained by considering the density
of a schedule at some instance in time, such as given by the maximal schedule utilized in
our feedback EDF scheme.
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