Benchmarking SMP Memory System Performance

Bronis R. de Supinski and Andy Yoo
Center for Applied Scientific Computing
Frank Mueller
North Carolina State University
Sally A. McKee
University of Utah

October 11, 2001
Memory Microbenchmarks

- No existing benchmarks designed for SMPs
 - Parallelization method
 - Memory system contention

- STREAM
 - Memory intensive kernels
 - Limited to unit stride access patterns
 - Suggestion for OpenMP parallelization

- HbenchOS and Imbench
 - Simple memory intensive operations
 - Limited memory access patterns
 - No parallel implementations available
New Parallel Memory Microbenchmarks

- Parallelized version of HBenchOS
 - OpenMP parallel directives
 - Memory tests only: bw_mem_rd; bw_mem_wr; bw_mem_rdwr; bw_mem_cp, bw_mem_zero; and lat_mem_read
 - Extended access patterns
 - Reduced overhead with “macro-generator”

- New method for determining architectural features
 - Based on hardware performance monitors (PAPI)
 - Using direct deductions
 - Complements inference methods
H BenchOS Memory Read Bandwidth Test

```
for (many_iterations)
    while (more memory)
        for (10 times)
            acc += p[0]+p[1]+...+p[19];
            p += 20;
```

- **Pluses**
 - Clearly correspondence to memory size
 - Limited overhead for large memory sizes

- **Drawbacks**
 - Limited to unit stride
 - Limited to multiples of 200 * sizeof(int)
 - Sequential only
Parallel Memory Read Bandwidth Test

```
#include <omp.h>
#include <test_param_based_macro>

#pragma omp parallel
for (many_iterations)
  TEST_PARAM_BASED_MACRO
```

- **Test parameters**
 - Amount of memory to access (region size)
 - Stride
 - Number of threads
 - Miscellaneous things like alignment

- **Scripted test procedure**
 - Generate macro
 - Compile test
 - Run
Single Thread Unit Stride Read Bandwidth

Blue L1
= 32KB
Snow L1
= 64KB
Effect of Varying Stride

![Graph showing the effect of varying stride on bandwidth](image-url)
Effect of Varying Stride

![Graph showing the effect of varying stride on bandwidth. The x-axis represents region size in KB, and the y-axis represents bandwidth in MB/s. The graph includes multiple lines representing different stride values and region sizes.]
Inferring More Blue Architectural Features
Inferring More Blue Architectural Features

L1 Line Size = 32 bytes (8 ints)
Inferring More Blue Architectural Features

![Graph showing the relationship between Apparent L1 Size and Stride (ints). The graph indicates a decreasing trend.]
Inferring More Blue Architectural Features

Apparent L1 Size vs. Stride (ints)

- Associative set count = 2048 => 4-way
Finding Architectural Features

```c
initialize_array (p, stride,...)
PAPI_Start (L1Dmisses)/* or whatever */
for (; ;) p = (char **) *p;
PAPI_STOP, etc. in exception handler;
```

- Results for L1 on Blue agree with inferences
- Use hardware performance monitors (PAPI)
- Pluses
 - Clear connection to architectural features
 - Less subject to confusing factors
- Drawbacks
 - Does not provide performance measurement
 - Depends on availability and accuracy of HPM
Effect of Varying Number of Threads
Conclusion

- First parallel memory microbenchmarks
 - Extend HBenchOS
 - OpenMP parallelization
 - New access patterns
 - Infer more architectural features through stride
 - Significant bandwidth reduction due to contention
 - Between 11% and 40% on Blue
 - Between 7% and 30% on Snow

- New tests for architectural features
 - Use hardware performance monitors (PAPI)
 - Includes instruction cache tests
Current Focuses

- Pthreads version
- Instruction cache performance tests
- Testing on additional platforms
- Access pattern extensions
 - More tests with random access patterns
 - Application based access patterns
- Additional architectural features
 - Prefetching detection/characterization
 - Write buffers, etc.
- MPI memory microbenchmarks?
Work performed under the auspices of the U. S. Department of Energy by University of California Lawrence Livermore National Laboratory under Contract W-7405-Eng-48