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ABSTRACT
The US Department of Energy (DOE) has set a power target of

20-30MW on the first exascale machines. To achieve one exaflop

under this power constraint, it is necessary to minimize wasteful

consumption of power while striving to improve performance.

Toward this end, we investigate uncore frequency scaling (UFS)

as a potential knob for reducing the power footprint of HPC jobs.

We propose Uncore Power Scavenger (UPSCavenger), a runtime sys-

tem that dynamically detects phase changes and automatically sets

the best uncore frequency for every phase to save power without

significant impact on performance. Our experimental evaluations

on a cluster show that UPSCavenger achieves up to 10% energy

savings with under 1% slowdown. It achieves 14% energy savings

with the worst case slowdown of 5.5%. We also show that UPSCav-

enger achieves up to 20% speedup and proportional energy savings

compared to Intel’s RAPL with equivalent power usage making it a

viable solution even for power-constrained computing.
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1 INTRODUCTION
The Department of Energy (DOE) has set a power budget of 20-

30MW on each of the exascale machine sites to maintain a feasible

power demand that can be met by operational budget constraints
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and power plants. Today’s fastest supercomputer, Sunway Taihu-

Light, consumes 15.3MW to deliver 93PFlop/s [5]. Exascale su-

percomputers, which are slated to arrive in 2020, are expected to

achieve an exaflop under 20-30MW of power. To achieve this goal,

we need to achieve at least an order of magnitude improvement

in performance with respect to the state of art systems without

exceeding the DOE’s power constraint.

Chip manufactures have provided various knobs such as Dy-

namic Frequency and Voltage Scaling (DVFS), Intel’s Running Aver-

age Power Limit (RAPL) [11, 28], and software controlled clockmod-

ulation [28] that can be used by system software to improve power

efficiency of systems. Various solutions [6, 7, 16, 18, 26, 33, 41, 42]

have been proposed that use these knobs to achieve power con-

servation without impacting performance. While these solutions

focused on the power efficiency of cores, they were oblivious of the

uncore, which is expected to be a growing component in the future

generations of processors [34].

Fig. 1 depicts the architecture of a typical Intel server processor.

A chip or a package consists of two main components, core and

uncore. A core typically consists of the computation units (e.g., ALU,

FPU) and the upper levels of caches (L1 and L2) while the uncore

contains the last level cache (LLC), the quick path interconnect (QPI)

controllers and the integrated memory controllers. With increasing

core count and size of LLC and more intelligent integrated memory

controllers on newer generations of processors, the uncore occupies

as much as 30% of the die area [25], significantly contributing to

the processor’s power consumption [8, 23, 51]. The uncore’s power

consumption is a function of its utilization, which varies not only

across applications but it also varies dynamically within a single

application with multiple phases. We observed that Intel’s firmware

sets the uncore frequency to its maximum on detecting even the

slightest of uncore activity resulting in high power consumption.

We can save power replacing such a naive scheme with a more

intelligent uncore frequency modulation algorithm.
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Figure 1: A processor is a chip consisting of core and uncore.
The uncore consists of memory controllers (MC), Quick
Path Interconnect (QPI) and the last level cache (LLC).
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Toward this end, we propose Uncore Power Scavenger (UPSCav-

enger), a runtime system that automatically modulates the un-

core frequency to conserve power without significant performance

degradation. For applications with multiple phases, it automatically

detects phase changes and dynamically resets the uncore frequency

for each phase. To the best of our knowledge, UPSCavenger is the

first runtime system that focuses on the uncore to improve power

efficiency of the system.

To this end, the paper makes the following contributions:

• We explore uncore frequency scaling and its impact on power

consumption and performance of various applications.

• We propose Uncore Power Scavenger (UPSCavenger), a run-

time system that reduces the power consumption and the

energy footprint of applications by automatically modulat-

ing the uncore frequency.

• We propose a new light-weight approach for dynamic phase

detection that leverages real-time measurements and does

not require any prior information about the application.

• We evaluate UPSCavenger with multiple HPC benchmarks

and applications on a cluster over 286 cores to show that

it conserves power and achieves significant energy savings

compared to the default configuration. Our evaluations also

show that UPSCavenger achieves performance improvement

over Intel’s RAPL under equivalent power constraints.

The paper is organized as follows. Sections 2 introduces uncore

frequency scaling and analyze its impact on performance. Section 3

discusses the design of UPSCavenger, the proposed runtime system.

Section 4 describes the implementation and the experimental setup.

Section 5 presents the evaluation of UPSCavenger with multiple

applications and benchmarks. To assess energy savings we compare

UPSCavenger with the default configuration, i.e. without explicitly

setting the uncore frequency, while for performance we compare

UPSCavenger with Intel’s RAPL mechanism. Section 7 summarizes

the contributions.

2 OVERVIEW
From Haswell processors onward, Intel has introduced uncore fre-

quency scaling (UFS) that can be used to modulate the frequency

of the uncore independent of the core’s operating state. UFS is ex-

posed to software via a model-specific register (MSR) addressed at

0x620. Bits 15 through 8 of this MSR encode the minimum uncore

frequency multiplier while bits 7 to 0 encode the maximum uncore

frequency multiplier. The product (frequency multiplier x 100MHz)

gives us the frequency. For our architecture the minimum and the

maximum uncore frequency multipliers are 12 and 27, respectively.

We use the msr-safe [48] kernel module to read from and write to

the UFS MSR.

2.1 Single Socket Performance Analysis of UFS
We conducted our experiments on Broadwell nodes. Each node has

two sockets. Each socket hosts one Intel(R) Xeon(R) CPU E5-2620

v4 @ 2.10GHz processor. Each processor has 8 cores. Each node

has 128GB memory. While we conducted performance analysis

of a wide range of workloads, in this section we present datasets

for three representative workloads that have distinct performance

characteristics, viz., Embarrassingly Parallel (EP), the Block Tri-

diagonal solver (BT) and the Multi-grid solver (MG) from the NAS

parallel benchmark [4] suite. EP is a compute-intensive benchmark,

BT is a last level cache-bound benchmark and MG is a memory-

bound benchmark. We used the MPI version of these codes in our

experiments. The uncore frequency was modulated from 2.7GHz to

1.2GHz in steps of 0.1GHz. We report performance in terms of job

completion time in seconds, average package power and DRAM

power in Watts, memory bandwidth and LLC misses per second.

Each experiment was repeated five times. We report averages across

five runs.

Figures 2(a), 2(b) and 2(c) depict the effects of uncore frequency

scaling on EP, BT and MG, respectively. The x-axis represents un-

core frequency (from high to low). The default uncore frequency

is 2.7GHz. Each figure presents five datasets, viz., completion time

in seconds, package power and DRAM power reported by Intel’s

Running Average Power Limit (RAPL) [28] registers, memory band-

width and LLC misses per second. The y-axis represents data nor-

malized with respect to the default configuration (UCF=2.7GHz).

Table 1 shows the raw data for EP, BT and MG at 2.7GHz.

Table 1: Metrics for EP, BT and MG at 2.7GHz

Metric EP BT MG
PKG power 40W 46W 50W

DRAM power 19W 23W 54W

Memory Bandwidth [MB/s] 8 3983 37327

LLC misses per second 0.003M 3M 33M

Observation 1: UFS leads to (package) power savings without sig-
nificant performance degradation for CPU-bound applications.

This is illustrated by Figure 2(a) showing data for EP, a repre-

sentative CPU-bound benchmark. EP uses L1 and L2 caches ag-

gressively but otherwise has a negligible memory footprint. For

EP, package power decreases linearly with the uncore frequency.

However, completion time and DRAM power remain constant. This

is because EP neither uses the LLC nor the memory controllers

heavily. The reduction in package power can be attributed to the

uncore’s idle power consumption.

Observation 2: UFS reduces power for cache-bound applications but
aggressive frequency reduction may lead to performance degradation.

This is illustrated by Figure 2(b) showing data for BT, a cache-

bound application. It uses LLC aggressively. With the default con-

figuration, the LLC cache miss rate is only 3M per second as most

of its LLC accesses are hits and memory bandwidth consumption

is 3.9GB/s. Package power decreases linearly with the uncore fre-

quency. However, completion times increase slightly at lower un-

core frequencies. Reducing the uncore frequency leads to fewer LLC

misses per second and lower memory bandwidth which leads to

nominal performance degradation (slowdown) only beyond 1.5GHz.

It is important to note that the DRAM power remains constant.

Observation 3: UFS leads to significant performance degradation
for memory-bound applications.

This is illustrated by Figure 2(c) showing data for MG, a memory-

bound application. With the default configuration, its LLC miss

rate is 33M per second while it consumes 37GB/s (≈10X that of

BT) of memory bandwidth. Consistent with previous observations,
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Figure 2: Effects of UFS on EP, BT and MG.

even for MG package power decreases linearly with the uncore

frequency. The completion time increases linearly with the uncore

frequency under 2.1GHz. Reducing the uncore frequency leads

to slower LLC and slower memory controllers. Slower memory

controllers send memory requests at a lower rate to DRAM leading

to lower DRAM power consumption as shown in the figure. Unlike

EP and BT, DRAMpower reduces with the uncore frequency beyond

2.1GHz for MG. This decline in DRAM power is also coupled with

significant performance degradation beyond 2.1GHz reaffirming

our previously stated inference.

From observations 1-3, we conclude the following:

• The decline in DRAM power as a result of lowering the uncore
frequency is an indication of potentially significant perfor-
mance degradation.
• The uncore frequency can be reduced safely without a signifi-
cant impact on performance only up to the point until which
DRAM power remains unchanged.

Observation 4: Applications consist of multiple distinct phases
spanning across the spectrum from compute-intensive to memory-
intensive.

This is illustrated by Figure 3 depicting the DRAM power profile

and the IPC profile of MiniAMR [44]. The x-axis represents the

timeline while the y-axis represents data normalized to each metric

at maximum frequency. Five distinctly identifiable phases, P1-P5,

are annotated in the plot. P1-P5 are short compute-intensive phases

characterized by lowDRAM power and high IPC occurring between

relatively long memory-intensive phases characterized by high

DRAM power and low IPC. Hence, the phase transitions can be

detected as follows:

• The transition from a compute-intensive phase to a memory-

intensive phase can be identified by a rise in DRAM power.

• The transition from a memory-intensive phase to a compute-

intensive phase can be identified by a decline in DRAM

power.
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Figure 3: Phases in MiniAMR

PHASE CHANGE DETECTION
Let ∆IPC be the change in IPC and ∆DRAM_power be the change
in DRAM power during a fixed time interval. Algorithm 1 depicts

the pseudo code for phase change detection.

Hypothesis: Static UFS is sub-optimal for applications with distinct
phases.

By combining observations 1-4, we hypothesize that for an appli-

cation consisting of multiple phases with distinct uncore utilization,

DRAM access rates, and CPU intensity, statically setting a single

uncore frequency for the entire execution is sub-optimal. Hence, we

need a dynamic approach that automatically detects phase changes

and determines the best uncore frequency for each phase.

While techniques like power gating can be leveraged to save

power for phases with zero uncore utilization [19, 35, 37, 43],

i.e., while all processes are suspended, uncore frequency scaling

achieves power conservation during phases with non-zero but low

uncore utilization, which is often the case for HPC applications.

Using techniques like sleep states requires prediction of the length

of the zero utilization phases to evaluate the trade-offs of the over-

heads of entering and exiting from a sleep state. Uncore frequency

scaling is free of such overheads. Hence, we use uncore frequency

scaling in our proposed approach.
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Algorithm 1. Phase Change Detection

1: procedure detect_phase_change
2: if ∆DRAM_power == 0 then
3: no phase change detected

4: else if ∆DRAM_power > 0 then
5: phase change detected

6: compute-intensive to memory-intensive

7: else ▷ ∆DRAM_power < 0

8: phase change detected

9: memory-intensive to compute-intensive

10: end if
11: end procedure

end

3 UNCORE POWER SCAVENGER
(UPSCAVENGER)

We propose UPSCavenger, a power-aware runtime system that

aims at conserving power by dialing down the uncore’s operating

frequency opportunistically without significant performance degra-

dation. Figure 4 depicts the high-level architecture of UPSCavenger

and the mapping of its components to the components of an HPC

system. Figure 4(a) shows the architecture of a typical HPC cluster.

It consists of multiple compute server nodes. Each server node

hosts two sockets with a single 12-core processor. Multiple parallel

jobs spanning across one or more nodes can run on a cluster, e.g.,

job1 runs on the top 4 nodes while job2 runs on bottom 4 ones. An

instance of UPSCavenger runs alongside each job.

The high-level design of the UPSCavenger runtime is depicted

in Figure 4(b). The UPSCavenger runtime system allocates one UP-

SCavenger agent to each socket in a job. Each UPSCavenger agent

monitors its socket’s performance and DRAM power. It dynamically

and automatically manages a socket’s uncore frequency to conserve

power. UPSCavenger agents make asynchronous decisions based

only on the local information pertaining to their respective sockets.

Hence, UPSCavenger does not require any global synchronization

across the individual UPSCavenger agents. The UPSCavenger agent

is a closed-loop feedback controller [49]. The general idea of a

closed-loop feedback controller is depicted in Figure 5.

A feedback-control loop consists of three stages that are repeated

periodically, viz., sensor, control signal calculator, and actuator.

System is the component whose characteristics are to be moni-

tored and actuated by the controller. The current state of the system

is defined in terms of the process variable (PV). The desired state of

the system, PV=K, where K is a constant, is called the setpoint (SP).

It is input to the feedback controller. A feedback-control consists

of three main modules, viz., sensor, control signal calculator, and

actuator.

Sensor
The sensor periodically monitors the state of the system defined in

terms of process variable. This is indicated by READ_SENSOR.

Control Signal Calculator
The error (err) in the system state is calculated as the difference be-

tween the setpoint and the measured process variable. The feedback

controller determines the new value for the actuator as a function

of this error to drive the system closer to the setpoint.

Actuator

Parallel Job running on multiple processors

Cluster                        

Node
Socket/PKG/Processor

                      Job2– UPScavenger2                      

                      

                     
                      Job1 – UPScavenger1                       

READ_SENSOR ACTUATOR_SIGNAL

(a) Cluster

(b) UPScavenger Controller for a job

UPScavenger agents

UPScavenger Runtime

Figure 4: UPSCavenger Overview

Control 
Calculations

System

Error
Set Point +

-

   Actuator 
ACTUATE_SIGNAL

      Sensor
READ_SENSOR

Figure 5: Closed-loop Feedback Controller

The actuator applies the calculated signal to the system. This is

indicated by ACTUATE_SIGNAL.

3.1 UPSCavenger Agent
Each UPSCavenger agent is a closed-loop feedback controller that

performs three tasks. First, it periodically monitors the socket by

measuring its performance in terms of instructions per cycle (IPC)

and its DRAM power consumption. Second, depending on the mea-

sured power and IPC, it determines the uncore frequency that would

drive the system closer to the setpoint and actuates. Third, it de-

tects phase changes at runtime and resets the setpoint for every

new phase. The architecture of a UPSCavenger agent is depicted in

Figure 6.

 Processor
D
R
A
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Control Signal Calculator
determines best uncore frequency

System

error Set 
Point

+
-

      Actuator
sets uncore frequency

             Sensor
measures DRAM power & IPC ACTUATE_SIGNAL

READ_SENSOR

Figure 6: UPSCavenger Agent
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System, Process Variable and Setpoint
The system of a UPSCavenger is a socket consisting of a processor

and its local DRAM. The process variable of a UPSCavenger agent

is its socket’s DRAM power consumption, i.e., PV = DRAM power,

measure of socket’s DRAM utilization, which again, correlates with

the uncore utilization. Prior work [19, 37, 56] has used models

that rely on multiple performance counters to determine applica-

tion characteristics. Our approach has lower overhead than this

approach. UPSCavenger relies on a single register (DRAM RAPL

MSR) and hence, issues just one MSR request to quantify/determine

the state of the system. UPSCavenger automatically determines the

setpoint, which is the maximum DRAM power consumption for

every phase of the application, i.e., For an application with multiple

phases, UPSCavenger agent automatically resets the setpoint on

detecting a phase change.

Sensor
The sensor periodically monitors DRAM power and IPC of the

socket. This is indicated by READ_SENSOR.

Control Signal Calculator
The control signal calculator takes as inputs the socket’s DRAM

power consumption and IPC measured at runtime. It then deter-

mines the current state of the system to decide the next course of

action. Table 2 describes the variables used by the control signal

calculator. Figure 7 presents the control logic.

During its first invocation (INITIALIZATION), the UPSCavenger

agent sets the setpoint, SP_DRAM_power, to the observed DRAM

power, PV_DRAM_power. After initialization, the system enters

into a periodic control loop. IPC and DRAM power are measured

for each sampling interval. ∆DRAM_power is calculated as

PV _DRAM_power − SP_DRAM_power .

State 1: Candidate for UCF reduction
If ∆DRAM_power is zero, it implies that the DRAM power has not

declined (from the setpoint for the current phase) as a result of

the previous actuation. This puts the system in state 1, i.e., it is a

candidate for lowering uncore frequency in the current iteration of

the control loop. Therefore, the actuator decrements the uncore

frequency and control returns to the monitoring block.

Table 2: Variables in Control Signal Calculation

Variable Description
ucf uncore frequency

PV_DRAM_power DRAM power consumption measured during

current sampling interval

SP_DRAM_power setpoint

err = ∆ DRAM power PV_DRAM_power - SP_DRAM_power

previous_IPC IPC measured during previous sampling interval

current_IPC IPC measured during current sampling interval

∆ IPC current_IPC - previous_IPC

MAX_UCF maximum uncore frequency for the architecture

State 2: Increment UCF
If ∆DRAM_power is less than zero, it is an indication of a drop

in DRAM power from the setpoint for the current phase. This

Decrement ucf

    DRAM power 

==0

  IPC 
<0

<0

Increment ucf

>0

ucf = MAX_UCF
SetPoint = current DRAM power

    State 2:
Performance 
Degradation

State 1:
Candidate for 
UCF reduction

Monitor IPC &
DRAM Power

INITIALIZATION

≥0
         (3a)   
Phase Transition
       M→C

         (3b)
 Phase Transition
       C→M

State 3:

Figure 7: Control Logic: A State Machine

drop could either be an indication of a phase transition from a

memory-intensive to a compute-intensive phase or a detrimental

effect of excessive uncore frequency lowering in the previous

iteration of the control loop. To identify the cause of the observed

drop, we compare IPC. ∆IPC is the difference between IPC during

the current and the previous sampling intervals. If ∆IPC is less

than zero, it is an indication of performance degradation. Hence,

this observation puts the system in state 2. In response to this state,

the actuator increments the uncore frequency and control returns

to the monitoring block.

State 3: Phase Transitions
If ∆DRAM_power is less than zero and ∆IPC is greater than or

equal to zero, it is an indication of a rise in CPU activity with a

decline in DRAM power. This implies that a phase transition from

memory-intensive to compute-intensive phase occurred. Hence,

this observation puts the system in state 3 (3a).

If ∆DRAM_power greater than zero, it implies that the mea-

sured DRAM power is higher than the setpoint (maximum) for the

current phase. This implies that there has been a phase transition

from compute-intensive to memory-intensive phase. Hence, this

observation puts the system in state 3 (3b).

Actuator. The actuator is responsible for taking action in

response to the determined state of the system. This is indicated

by ACTUATE_SIGNAL. The UPSCavenger agent sets the socket’s

uncore frequency by writing to the MSR (at 0x620).

State 1: The actuator decrements the uncore frequency to conserve

power.

State 2: The actuator increments the uncore frequency to revert

the detrimental effects of the previous actuation.

State 3: On detecting a transition to a different phase, the actuator

sets the uncore frequency to the maximum value (MAX_UCF) and

sets the setpoint (say SP_DRAM_power) to the measured DRAM

power (PV_DRAM_power).

UPSCavenger does not need prior information about any phases

that occur during application execution. UPSCavenger’s IPC and

DRAM power-driven phase change detection suffices to automati-

cally detect these phases with distinct behavior (e.g., checkpointing
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to detect that is more memory-intensive than a blocked matrix

multiplication kernel).

Resetting the Setpoint to maximum DRAM power for a new
phase: It is important to note here that in response to both the

phase transitions (even in case of M->C) we set the uncore fre-

quency to MAX_UCF. As a result of this, the socket is guaran-

teed to have the opportunity to draw maximum DRAM power

(at MAX_UCF) during the subsequent sampling interval of the

new phase. This ensures that UPSCavenger doesn’t constrain the

performance of the newly detected phase based on the setpoint

of the previous phase. If this maximum DRAM power (measured

as PV_DRAM_power during the subsequent sampling interval) is

greater than SP_DRAM_power’, the system enters state 3 again. In

this case, SP_DRAM_power is now intentionally set to the maxi-

mum DRAM power for the new phase.

After actuation, the control returns to the monitoring block of

the control logic.

Sample Interval. We invoke the UPSCavenger agents periodically

every 200ms in our experiments. Sampling under 200ms lead to

high overheads. 200ms was the shortest sample interval that had

negligible overheads of obtaining measurements, setting the uncore

frequency while letting the change of frequency reflect in the next

sampling interval. We conducted a sensitivity study by varying the

sample interval from 200ms to 1s. We observed that our runtime

system has negligible overheads at 200ms while a longer sampling

interval makes it sluggish because of two reasons. First, it has

fewer opportunities of detecting phase changes and modulating

the uncore frequency. Second, it leads to longer reaction times. A

sampling interval of 200ms is sufficiently long to actuate the uncore

frequency modulation and observe its effect and it is sufficiently

frequent to have a fast reacting runtime system. This threshold is

driven by the overhead of UPSCavenger, not by any assumption

about the length of phases in an application. Applications with

even shorter phases would not benefit from UPSCavenger as they

would not allow enough time to modulate the frequency.

4 IMPLEMENTATION AND EXPERIMENTAL
FRAMEWORK

We conducted our experiments on a 108 node cluster of heteroge-

neous processors with Infiniband interconnect using 16 Broadwell

nodes. Each node has two Intel(R) Xeon(R) CPU E5-2620 v4 @

2.10GHz processors and each processor has 8 cores. Typical HPC

systems, like ours, provide exclusive node access. Each MPI job runs

on uniquely allocated nodes. No two jobs (or applications) share

nodes. We use all the cores of every socket in a job. We pin one MPI

rank to a unique core on every socket. Typical MPI applications are

NUMA-aware, i.e., all the cores access memory on the socket-local

DRAM via the local memory channel consuming the local mem-

ory bandwidth. We observed that the remote memory bandwidth

consumption is negligible and constant over time compared to the

local memory bandwidth for all applications. Hence, we can use

each socket’s DRAM power as an approximation of the socket’s

uncore utilization.

UPSCavenger is a light-weight library that is with the application

at the time of compilation. It is implemented leveraging the MPI

standard profiling interface [38] (PMPI). The UPSCavenger agents

are initiated in the wrapper function of the MPI_Init MPI call, which

is the first MPI function call invoked by an MPI application. We

use signals to set timers for periodic invocation of UPSCavenger

agents on every socket in a job. The system is restored to the

default state (maximum uncore frequency multiplier is set to 27)

in the wrapper function of the MPI_Finalize MPI call, which is

the final MPI call invoked by an MPI application indicating its

completion. As UPSCavenger is a shared library that can be linked to

the application and it leverages the PMPI interface for initialization

and termination, no modifications to the application’s source code

are required to use UPSCavenger. Applications only need to be

linked to our library by modifying their Makefile at the time of

compilation.

At each invocation, a UPSCavenger agent periodically monitors

the state of the system by measuring DRAM power consumption

and IPC. For the DRAM power measurement, we leverage Intel’s

Running Average Power Limit (RAPL) [28]. From Sandy Bridge

processors onward, Intel supports this interface that allows the

programmer to measure (or constrain) the power consumption of a

processor/socket/package (PKG) as well as the DRAM by reading

from (or writing to) the RAPL MSR. We also use RAPL in some

of our experiments to constrain the power consumption of the

processors. RAPL has a power capping mechanism implemented

in hardware that guarantees that the power consumption does not

exceed the power limit specified by the user. The UPSCavenger

agent measures IPC by reading the fixed counters [28].

Depending on the control calculations, the UPSCavenger agent

modulates the uncore frequency by writing to the bits 0 to 7 of the

UFS MSR addressed at 0X620 that encode the maximum uncore fre-

quency multiplier. The minimum uncore frequency multiple is set

to 12, as 1.2GHz is the minimum uncore frequency on our platform.

The msr-safe kernel module installed on this cluster enabled us to

read from and to write to Intel’s RAPL and UFS MSRs and fixed

counters indirectly via the libmsr library [48].

In Figure 7, we compare ∆DRAM_power and ∆IPC to absolute

zero. However, in the implementationwe use a realistic errormargin

of ±5% to avoid triggering the UPSCavenger agent for just minor

fluctuations in the measurements.

UPSCavenger agents in a job do not need any global synchro-

nization or communication with other agents. They monitor their

respective sockets and make local decisions based on local knowl-

edge about the system. Hence, UPSCavenger is a very light weight

runtime system with only nominal overheads of reading and writ-

ing to MSRs that are several orders of magnitude lower than the

total completion time of a typical HPC job.

5 EXPERIMENTAL EVALUATION ON A
MULTI-NODE CLUSTER

For evaluation we used Embarrassingly Parallel (EP), Scalar Penta-

diagonal solver (SP), Block Tri-diagonal solver (BT), Multi-Grid

(MG) and Fourier Transform (FT) from the NAS parallel benchmark

suite [4] and CoMD and MiniAMR from the ECP proxy applica-

tions suite [1]. We used input sizes C and D, 200x200x200 and

100X100x100 for NPB benchmarks, CoMD and miniAMR, respec-

tively. We used the MPI version of these codes in our experiments.

Our selection of applications ensures that we evaluate UPSCavenger
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Figure 8: Package and DRAM power savings achieved with
UPSCavenger and the resulting slowdowns and energy sav-
ings with respect to the baseline

with applications spanning across the spectrum from compute-

intensive to memory-intensive. For example, EP is a CPU-bound

application that uses uncore minimally, SP and BT use uncore (LLC)

intensively with moderate memory (DRAM) access rates while

other applications have high memory (DRAM) access rates. We

report average package power savings over the duration of the

job and slowdowns caused by the UPSCavenger runtime system

with respect to the baseline. We chose the default configuration,

where Intel’s firmware modulates the uncore frequency, as the

baseline. We also compare an application’s performance with UP-

SCavenger to its performance with Intel’s Running Average Power

Limit (RAPL) with equal power consumption. Each experiment was

repeated five times. We report averages across all repetitions with

standard deviation of 1-5%.

Figure 8 depicts power savings achieved with UPSCavenger, re-

sulting slowdowns and energy savings with respect to the baseline.

We show results for 64, 128 and 256 core experiments as shown

in the legend. X-axes represent the benchmarks and applications.

Y-axes represent (top to bottom) package and DRAM power savings,

slowdown and energy saving with respect to the baseline.

Observation 1: UPSCavenger achieves up to 11% package power
savings.
For applications like EP, MiniAMR, BT and SP that have longer CPU-

bound phases than others (such as MG, FT, CoMD), UPSCavenger

achieves higher package power savings. These codes keep the cores

busy and incur fewer LLC misses per second. As a result, they are

not as dependent on long latency memory accesses and the uncore

as the rest. Hence, the uncore frequency can be lowered for the

CPU-intensive phases to save power.

Observation 2: UPSCavenger has a marginal impact on DRAM
power.
This is a desired effect. UPSCavenger is designed to reduce uncore

frequency so long as it does not impact DRAM utilization. We

measure DRAM utilization in terms of DRAM power. Hence, a

substantial decline in DRAM power is an indication of decline in

DRAM utilization (unless a phase change occurs) which can lead

to performance degradation.

Observation 3: UPSCavenger causes worst-case slowdown of 5.5%.
In some cases, UPSCavenger achieves power savings at the cost

of marginal slowdown for a few applications. This includes the

overhead of the runtime system, i.e., measuring DRAM and PKG

power, IPC, calculating the feedback and setting appropriate un-

core frequency. The observed performance degradation is under

5.5% across all codes with some codes experiencing no slowdown.

The reported overhead includes the effect of throttling uncore fre-

quency momentarily below the phase’s optimal frequency before

UPSCavenger detects performance degradation and recovers by

incrementing it.

Observation 4: UPSCavenger achieves up to 14% energy savings.
UPSCavenger achieves energy savings of at least 5% across all ap-

plications and core counts, despite the slowdown incurred in some

cases. UPSCavenger conserves energy by simply reducing the un-

core’s energy usage when it is underutilized, thus reducing energy

wastage and shifting towards more energy efficient execution.

Observation 5: Intel’s default scheme consists of a naive algorithm
that sets the uncore frequency to its maximum.
Intel’s default algorithm sets uncore frequency to 2.7GHz on detect-

ing even the slightest uncore activity. Figure 9 depicts the uncore

frequency profile for runs of EP with default configuration (top)

and UPSCavenger (bottom). X-axes represent the timeline while

y-axes represent the uncore frequency. EP is a CPU-intensive em-

barrassingly parallel benchmark that does not use the uncore at

all. It operates on core-local cache and incurs nominal LLC misses

per second. Even in case of such a workload, the default scheme

sets the uncore frequency to 2.7GHz, which is the maximum for

our specific architecture.
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Figure 9: Uncore frequency profiles for EP with UPSCav-
enger and the default configuration.

Unlike this scheme, UPSCavenger intelligently modulates uncore

frequency by making measurement-driven decisions at runtime

based on DRAM power and IPC achieved by the socket. Our auto-

matic and dynamic algorithm leads to a constant uncore frequency

of 2GHz for the entire duration of EP. For other applications like

CoMD and MiniAMR, the uncore frequency continuously changes.

Figure 10 and 11 depict job profiles of MiniAMR and CoMD, re-

spectively, for 4 node (8 socket) runs. We show two sets of plots (left

and right). Plots on the left are the job profiles with the default con-

figuration (baseline) while those on the right are with UPSCavenger.

X-axes represent the timeline while y-axes represent the uncore

frequency, DRAM power, package power (top to bottom) for each

of the sockets of the job. Each socket is represented by a unique

color as depicted in the legend. With the default configuration, all

sockets operate at the maximum uncore frequency (2.7GHz) con-

stantly for both MiniAMR and CoMD. Hence, the uncore frequency

profiles of all the sockets coincide. However, with UPSCavenger, the

UPSCavenger agents dynamically modulate the uncore frequency

of sockets.

Observation 6: UPSCavenger detects phase change and increases
the uncore frequency to UCF_MAX leading to spikes in package power.
UPSCavenger detects phase changes based on deflection in DRAM

power and IPC. Figure 10 shows the DRAM power profile for Mini-

AMR. At least five phase changes indicated by dips in DRAM power

can be observed.When each of these phase changes occurs, UPSCav-

enger agents automatically detect it and reset the uncore frequency

of their corresponding sockets to UCF_MAX. This leads to a spike

in the package power consumption as the uncore consumes higher

power when operating at a higher uncore frequency. Even with

the default configuration, the power consumption varies across

packages in a job. This is a result of manufacturing variation across

processors [20, 27].

Observation 7: With UPSCavenger, packages spend more time at
lower power than with the default configuration.
After the initial spike in package power for each newly detected

phase, UPSCavenger gradually lowers the uncore frequency to

the lowest level before it starts affecting DRAM power. At this

low uncore frequency, the packages consume less power than at

UCF_MAX (depicted in PKG power plots in Figure 10 and Figure 11),

thus leading to power savings.

Observation 8: Even in case of codes with frequent phase changes,
UPSCavenger saves power.
For applications such as CoMD depicted in Figure 11 that incur

frequent phase changes with short-lived phases, UPSCavenger does

not stabilize at a constant lower uncore frequency for an extended

duration. Instead, it intelligently and automatically modulates the

uncore frequency between several (higher and lower) levels. As a

result, packages spend some time at frequencies lower than that

selected by the default scheme. This leads to overall power savings

over baseline as shown in Figure 8.

Observation 9: UPSCavenger outperforms Intel’s RAPL.
Intel’s RAPL is a power capping mechanism implemented in hard-

ware that restricts the power consumption of a processor to a value

specified in the RAPL MSR. Figure 12 depicts the comparison of

UPSCavenger with RAPL. We first recorded the completion time

and the resulting power consumption (say P Watts) of an appli-

cation with UPSCavenger. We then measured the application’s

performance without UPSCavenger under a P Watt power bound

enforced by restricting power consumption of the processors in the

job using RAPL. Figure 12 depicts the total (package and DRAM)

power savings obtained by UPSCavenger, resulting performance

improvements and energy savings with respect to RAPL. We show

results for 64, 128 and 256 core experiments (see legend). X-axes

represent the benchmarks and applications. Y-axes represent (top

to bottom) total power savings, speedup and energy saving with

respect to RAPL. The power consumption with UPSCavenger is

within±2% of RAPL. Interestingly, UPSCavenger achieves up to 20%

speedup over RAPL leading to proportional energy savings. This

indicates that even for a power-constrained computing paradigm

that aims at maximizing performance under a strict power budget,

UPSCavenger outperforms RAPL.

Observation 10: In a power-constrained environment, UPSCavenger
deducts power from the uncore without slowing the cores when possi-
ble while Intel’s RAPL always deducts power from the cores.
This is illustrated in Figure 13, which depicts the effective per core

frequency achieved with RAPL and with UPSCavenger for equiv-

alent power consumption of BT. We first recorded the effective

core frequency measured via Intel’s APERF and MPERF MSRs [28]

and the resulting power consumption (say P Watts) of an applica-

tion with UPSCavenger. The effective frequency is calculated as

∆APERF ∗BASE_FREQU ENCY
∆MPERF , where the base frequency on our ar-

chitecture is 2.1GHz.We thenmeasured the effective core frequency

without UPSCavenger under a P Watt power bound enforced by

restricting power consumption of the processors in the job using

RAPL. The x-axis represents the timeline while the y-axis represents

the effective core frequency.

RAPL lowers the core frequency from 2.3GHz down to 1.8GHz to

save power, which leads to performance degradation. UPSCavenger

achieves equivalent power savings by opportunistically reducing

the uncore frequencies without affecting the core frequencies al-

lowing the cores to operate at the maximum frequency of 2.3GHz.

6 RELATEDWORK
Chip manufactures have provided various knobs to modulate power

directly, e.g., power capping, or indirectly, e.g., dynamic voltage
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Figure 10: Power and uncore frequency profiles for 8 socket runs of MiniAMR with default configuration (left) and UPSCav-
enger (right).
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Figure 11: Uncore frequency profiles for 8 socket runs of CoMD with default configuration (left) and UPSCavenger (right).

frequency scaling (DVFS), of various components of a server. Con-

ventionally, DVFS has been used to modulate the frequency of

cores [28]. Intel processors prior to Haswell maintained all cores

at a common operating state, i.e., voltage and frequency. Starting

with Haswell, Intel introduced per core DVFS. From Sandy Bridge

processors onward, Intel introduced running average power limit

(RAPL) [11, 28], a power capping mechanism implemented in hard-

ware that constrains the average collective power consumption

of the cores and the uncore of a processor. A plethora of solu-

tions [6, 16–18, 20, 21, 26, 33, 41, 42, 50] have been proposed that

leverage these knobs to improve the power efficiency of a system.

DVFS-based solutions were oblivious of the power consumption

of the uncore, which is expected to be a growing component in

the future generations of processors [34]. RAPL-based solutions

off-loaded the management of the uncore’s power to Intel’s RAPL

implementation, which we show is sub-optimal.

Early work exploited DVFS to reduce CPU frequencies during

idle time, e.g., due to early arrival atMPI barriers and collectives [30].

An ILP-based approach to model energy [41] was demonstrated

to be effective during the runtime of MPI codes to determine op-

timal power levels for the cores [42]. These works were trying to

conserve energy without sacrificing performance by much when

utilizing just one core of a node resulting in underutilization of the

system. Memory DVFS [10] was also proposed as a technique to

conserve energy for workloads that are not constrained in memory

bandwidth. UPSCavenger differs in that its foremost objective is
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Figure 12: Package and DRAM power savings, speedups and
energy savings achieved by UPSCavenger with respect to
RAPL

to reduce the inefficient power consumption of the uncore of each

processor of an HPC job without reducing system utilization, i.e.,

using all cores of a processor. It conserves power and achieves

energy savings by dynamically modulating the frequency of the

uncore based on real-time feedback from the system.

Prior work [9, 32] leveraged the effect of concurrency throttling

and thread locality to save power and increase performance. An

ILP-based runtime approach has been shown to determine how

many cores an application should be run on to stay within a given

power budget [31, 55]. Marathe et al. [36] proposed Conductor, a

runtime system that speeds up an application’s critical path through

an adaptive socket power-allocation algorithm that periodically

performs dynamic voltage frequency scaling (DVFS) and dynamic

concurrency throttling (DCT) based on application behavior and

●

●●●●●●
●

●

●

●●●●
●

●

●

●●●●

●

●●●●

●
●

●●●●

●●

●

●●●●

●

●●●●

●

●
●●●●

●

●
●●●●

●

●●●●●

●

●●●●
●

●

●

●●●●
●

●●●●

●

●

●●●●

●
●

0 5 10 15

1.
7

1.
9

2.
1

2.
3

RAPL

Timeline [Seconds]

E
ffe

ct
iv

e 
C

or
e 

F
re

qu
en

cy
 [G

H
z]

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

UPScavenger
RAPL

Figure 13: Effective core frequency profiles for BT with
RAPL and UPSCavenger for equal power consumption.

power usage. Our work differs in terms of granularity and adap-

tivity. First, we reduce uncore power across resources at processor

chip level, exploiting dynamically adaptive feedback methods. Sec-

ond, UPSCavenger does not modify the concurrency or the thread

locality, which can be tightly coupled with the application’s input.

In recent work, Gholkar et al. [20] presented PTune, a process

variation-aware power tuner that uses performance characteriza-

tion data for all sockets on a cluster and application execution

characteristics to minimize the runtime of a job under its power

budget. It assumes that the jobs are moldable, i.e., the number of

MPI ranks can be varied at the time of job scheduling. UPSCav-

enger does not require jobs to be moldable. It also does not require

any prior characterization data to make uncore frequency deci-

sions at runtime. In [21], they proposed PShifter, a feedback-based

mechanism that shifts power from processors idling at barriers and

collectives to the processors on the critical path to improve perfor-

mance under a power constraint. PShifter does not strive to save

power. Its control calculations depend on the utilization of the cores

while being oblivious of the uncore’s utilization. Our approach is a

dynamic closed-loop feedback controller that specifically monitors

the uncore and depending on its utilization reduces any wasteful

power consumption by modulating the uncore frequency at run-

time. Ellsworth et al. proposed Pow, a system-wide power manager

that re-distributed the power budget across a system via schedul-

ing while adhering to a global machine-level power cap [13]. This

approach salvaged the unused power but did not address inefficient

power usage. Our approach goes one step further by detecting and

reducing the wasteful power consumption within a job.

Capacity-improving schemes that increase job throughput have

been developed under power limitations by exploiting “hardware

overprovisioning”, i.e., by deploying more nodes that will be pow-

ered at a time [14, 15, 39, 45, 46]. In such a system, the characteristics

of a code under strong scaling were used to calculate the optimal

number of processors considering core and memory power [47].

Modifications to the batch scheduler in how small jobs are backfilled
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depending on their power profile can further increase job capac-

ity [40]. While these solutions aimed at achieving performance or

throughput improvement while utilizing as much of the power bud-

get as possible, our approach aims at conserving power by reducing

wasteful power consumption with marginal impact on performance.

We do not explicitly aim at maximizing the machine’s throughput,

which is beyond the scope of this paper, but our runtime reduces the

overall power and energy footprint of the jobs making more power

available for more new jobs to be scheduled on an overprovisioned

system.

Hackenberg et al. [24] observed that the uncore frequency de-

pends on the core frequency even when there is no uncore activity.

Unlike UPSCavenger, which dynamically modulates the uncore

frequency using the measurement-driven closed-loop feedback con-

troller, Sundriya et al. [52, 53] propose a runtime approach that

relies on a static model for estimating the frequency. More recent

work [54] proposed a dynamic core and uncore frequency scal-

ing strategy that partially relied on regression models using prior

data to make dynamic decisions. UPSCavenger is independent of

such dependencies and overheads of prior characterization. Von et

al. [57] proposed a neural network-based uncore frequency scal-

ing approach that was simulated for chip multi-core (CMP) power

management. Da-Cheng et al. [29] simulated a semi-supervised

reinforcement learning based approach for dynamic frequency scal-

ing to maximize performance under a power budget. Unlike this

work, we implement and evaluate our runtime system on real hard-

ware, i.e., a Broadwell cluster. Our runtime is suitable for power

management of a multi-node and a multi-core system.

Our UPSCavenger work is unique in that it is the first of its kind

that targets the otherwise neglected uncore component of a chip.

It dynamically modulates the frequency of the uncore depending

on its utilization measured at runtime. It automatically detects new

phases within an application and resets the uncore frequency for

each phase. Proposed frameworks like Redfish, the PowerAPI, and

Intel’s GEOPM [2, 3, 12, 22] can integrate UPSCavenger as a unique

closed-loop feedback-based policy for job power management on a

cluster. UPSCavenger will also relieve the application developers of

the burden to explicitly indicate phase changes as required by the

APIs (like GEOPM) as UPSCavenger automatically detects phases

without any explicit information from the developer.

7 SUMMARY
We explored uncore frequency scaling and its impact on perfor-

mance, power and energy consumption of various HPC applications.

To the best of our knowledge, this is the first study of uncore fre-

quency scaling conducted on Broadwell processors. We proposed

UPSCavenger, a runtime system that automatically modulates the

uncore frequency to conserve power without significant perfor-

mance degradation. As a part of UPSCavenger, we also introduced

an algorithm that automatically detects phase changes at runtime.

Our evaluations indicate that UPSCavenger achieves up to 10% en-

ergy reduction with less than 1% slowdown. It achieves up to 14%

energy savings with a worst case slowdown of 5.5% compared to

the default configuration. We also show that UPSCavenger achieves

up to 20% speedup with proportional energy savings compared to

Intel’s RAPL with equivalent power usage. While UPSCavenger

can be easily deployed as a runtime on any HPC system, we intend

to collaborate with semiconductor manufacturers to incorporate

this into their firmware.
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