 Scalable Compression and Replay of Communication Traces in Massively Parallel Environments

Michael Noeth, Frank Mueller, Martin Schulz, Bronis R. de Supinski

Problem Motivation

- How can communication traces be gathered in peta-scale computing?
 - need scalable, loss-less approach
 - objective: near constant-size traces
- help understanding communication patterns
- assist in procurement
- rapid prototyping of communication needs
- Current communication analysis tools fall in 2 classes:
 1. aggregation methods
 2. flat traces

Our Approach

- Record Traces
 - Use MPI profiling layer
 - Compress at task level
 - Compress at node level
- Replay Traces
 - Inverse of merging algorithm

Task level compression framework

- Umpire: PMPI wrapper generator
 - Initialization wrapper
 - Tracing wrapper
 - Termination wrapper
- Task-level compression of MPI calls
 - Provides load scalability
 - Interoperable w/ cross-node framework

Cross-Node Framework Interoperability

- Single Program, Multiple Data (SPMD) nature of MPI codes
- Maintain structure of calling sequences
- stack walk signatures
- Match operations across tasks by manipulating parameters
- Source / destination offsets
- Reques handles
- Event aggregation
- Special handling of MPI_Waits

Cross-Node Compression Framework

- Invoked after application termination
- Merges operation queues produced by task-level framework
- Job-size scalability

- Reduction over binary radix tree
 - Cross-node framework merges operation queues of each task
 - Merge algorithm supports merging two queues at a time
 - Radix layout facilitates compression (constant stride b/w nodes)
 - Need a control mechanism to order merging process

Experimental Results

- Near constant size for fully compressed traces

NAS PB experiments, codes fall into 3 classes:

1. Constant size traces: EP, IS, and DT
 - Trace file size: Near constant size
 - Memory Usage: Near constant size

2. Sub-linear traces: MG, LU
 - Trace file size: sub-linear
 - Memory Usage: Sub-linear

3. Non-scalable traces: FT, BT, CG
 - Trace file size: not (yet) scalable
 - Memory Usage: Non-Scalable

NAS PB Codes – Output times

- EP, IS, DT = near constant
- MG, LU sub-linear
- FT, BT, CG = Non-scalable

Contributions and Future Work

- Scalable approach to capture full trace of communication
- Scalable replay mechanism
- Trace analysis determine inefficient MPI usage
- Assist in procurement via rapid replay
- Use to address task mapping problem